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ABSTRACT were not visible in the reference view(s) due to occlusion by

Although images as viewed from intermediate virtual View_foreground object(s), but became V'.S'bl.e after t_he V|evbt-.s_h
e address the problem of how to fill disocclusion holes in a

points can be synthesized using texture and depth ma _ o
\ﬂsually satisfactory manner in this paper.

from nearby camera views via depth-image-based renderin ) f . .
(DIBR), the rendered images contain disocclusion holes— Frevious attempts [4, 5, 6, 7] at disocclusion hole filling
spatial regions that were not visible in the reference view€Verage on inpainting techniques developed in the compute

due to foreground object occlusion—that requires propler fi vision community such as Criminisi’'s exemplar-based match

ing. In this paper, we introduce a new signal prior into theld algorithm [8] (calledCR in the sequel). Specifically, a

hole filling problem formulation: given disocclusion hokee ~ €OMMonN observation is that disocclusion holes tend to be par

part of the background and background tends to have low v2f the background, so direction of signal propagation into a
sual saliency, the extrapolated signal into the holes miast a disocclusion hole should emanate from the background side.

be of low saliency. Mathematically, we add a low-saliency'Vhile this observation enables these proposals to often pro
prior to an exemplar-based inpainting algorithm, so that th duce more reasonable fillings than origi@&, the occasional

best-matched block has both small matching cost and is GTO'S they produce can be visually disturbing.
low visual saliency. Moreover, we compute a suitable La- I this paper, we introduce one more significant insight
grange multiplier value for the saliency cost term via asisly Into the problem of d|socclu§|on hole f|_|||ngbackground
of the reference images. Experimental results show thagusi SCE€nery tends to draw less visual attention than foreground

a low-saliency prior can improve performance(by dB over objects in typical 3D scene That means that during hole
a previous hole filling scheme. filling, we knowa priori that the extrapolated signal tends to

. . .. havelow visual saliency [9]. Mathematically, we express th
Index Terms— Depth-image-based rendering, inpaint-ynqyjedge as sow-saliency prior so that during exemplar-

ing, visual saliency based block matching, we can include it as an additional term
in addition to the matching criteria. Moreover, we compute a
1. INTRODUCTION suitable Lagrange multiplier value for the saliency costte

ds th [ off . . L he abil via a simple analysis of the reference images. Experimental
Towards the goal ofree viewpoint navigatiofl]—the abil-  oqjt5 show that using the low-saliency prior we can outper

ity for a receiver to freely choose any view from which to Ob'form a previous hole filling scheme by upd dB in PSNR
serve a dynamic 3D scene—itis now commoniin the literature. jisoccluded regions

to represent visual data_of the 3D scentﬁexture-plus—depth The outline of the paper is as follows. We first review re-
format [2]. In a nutshell, it means texture maps (color ingge lated work in Section 2. We then overview our chosen visual
and depth maps (per-.pixel distance between objects in the 3§éliency model and how it was used in our previous works in
scene gnd the capturing camera) from multiple closely spac ection 3. We discuss how the low-saliency prior is applied
\s/;gvgmrgsiifﬁgﬁg dailgti ?/ri]r(;gadlev?ea\lft/:ig?]egésgx?fli)én\tﬁo disocclusion hole filling in Section 4. Finally, we presen
nag : . . experimental results and conclusion in Section 5 and 6, re-
depth-image-based renderifBIBR) [3] at receiver. While :
. . . . L spectively.
DIBR is attractive for its low computation cost—it is essen-
tially a pixel-to-pixel color mapping from reference viesy(
to target view dictated by corresponding depth pixels—eher
existdisocclusion holes the rendered images that can caus8npainting of missing pixel patches in an image has been
visual discomfort. Disocclusion holes are spatial areas th gt ,died in computer vision for well over a decade, with ap-

This work was partly supported by CNPq grants 476176/20td  Proaches including par.tial differential equations (PDH)][
310375/2011-8 and NSERC grant RGPIN 327249. exemplar-based matching [8] and sparse representatipn [11

2. RELATED WORK




Exemplar-based matching, in particular, has gained popul
ity due to its conceptual and implementation simplicityr fo
example, [12, 13] pursued extensions where linear comb
nation of multiple similar patches are sought instead of jus
the single best-matched patch. We also follow the exempla
based matching paradigm in our work.

Previous works on disocclusion hole filling in DIBR-
synthesized images can be broadly divided into two ca
egories: i) signal extrapolation based on spatial correla- ) _ )
tion [4, 5, 6, 7], and ii) extrapolation based on temporaIF'g_' 1. Example _ofacolor image (left) and its corresponding
correlation [14, 15]. In principle, our proposed low-salig saliency map using the model in [20].
prior can also be used for disocclusion hole filling of DIBR-

synthesized video, where the saliency computation will iny,44 the background. Hence in this application too, the low-

clude in _addition low-level temporal features su_ch as flicke saliency prior provides the correct SI during exemplarebas
and motion [16]. However, we focus on applying the low- patch matching in the typical case.

saliency prior for inpainting of DIBR-synthesized imagas i

this paper, and leave the video extension as future work. 4. DISOCCLUSION HOLE-FILLING ALGORITHM
In our previous work, we applied the low-saliency prior to

error concealment in loss-corrupted streaming video [hd] a 4.1. System Overview

view synthesis of Ioss-corrupte(_j free vigwpoint video. [18] We first overview a generic free viewpoint video streaming
To the best of our knowledge, this is the first work that mcor—sys,[em in which our disocclusion hole filling algorithm is ap

porate th_e low-saliency p_rior t_o the disocclusion holerfdli plicable. We assume that at sender, multiple cameras syn-
problem in DIBR-synthesized images. chronously capture a dynamic 3D scene from different view-
points in texture (color) and depth maps of the same spatial
3. LOW-SALIENCY PRIOR resolution. For bandwidth efficiency, texture and depth map
pairs from at most two camera viewpoints nearest to the re-
Visual saliency refers to the propensity of visual stimoli t qyested virtual view are compressed at sender for transmis-
draw attention to themselves. Contrast in various lowllevesjon to receiver. The received texture and depth maps ade use
features such as intensity, color, orientation and motiongsy virtual view synthesis via DIBR [3]. For better RD perfor
mediated by the center-surround mechanism, is known tghance, recent proposals [21, 22] call for transmissionsof te
attract attention [9]. Bayesian surprise, measured asithe dy,re and depth map pair fronsingleviewpoint for view syn-
ference between prior and posterior distribution of a @erta hesis at receiver. This results in larger disocclusio®&iah
feature following an observation, has also been linked tQeneral, and our proposed hole filling method becomes more
saliency [19]. As computational models for saliency becomgmportant.
more accurate, they become new tools to improve various 'p|BR [3] is a pixel-based image synthesis procedure,
visual signal processing tasks. where each color pixel in the texture map of a camera-
In particular, the low-saliency prior has been found to becaptured view reference vieyis copied to a pixel location
useful in video error concealment [17], where it was usedn the virtual view image; the copied location is determined
to promote blocks with low saliency relative to the neigh-py camera parameters and corresponding depth pixel value.
borhood during the concealment process. The benefit W3as two pixe|5 from the same reference view are mapped to
twofold. First, if high-saliency Region-Of-Interest (RA$  the same location, then the pixel with the smaller depthevalu
protected more than the remainder of the frame, which is & kept. If two pixels from two different reference views are
reasonable design approach, the low-saliency prior isahe ¢ mapped to the same location, then a linear combination of the
rect side information (SI) and focuses the search to a small@wo pixel values gixel blending is computed. Disocclusion
feasible region around the correct solution. Second, the lo hole is a location in the virtual view image where no color
Saliency requirementleads to concealment blocks thaease | pixe|s are mapped from the reference texture map(s), due to
attention grabbing, so that resulting errors are less ealite.  occlusion by foreground objects in the reference view(s. W
In the present application of disocclusion hole filling, focus on the filling of disocclusion holes next.
while there is no guarantee that the newly-revealed back-
ground will always be of low saliency relative to its immedi-
ate neighborhood, we have observed empirically that this is
fact the case in most frames of free viewpoint test sequenced/e now overview the exemplar-based patch matching strat-
See Fig. 1 for an example of saliency maps where clearlggy proposed in [8]. Let theource regionknown pixel re-
the foreground objects attract visual attention much more sgion) be® = I —, wherel and{ are inputimage anthrget

4.2. Exemplar-based Matching



@ computation efficiencyS can be computed, for example, via
r observed saliency values of background regions in referenc
¥ frames.
]_9_ 2 As traditionally done in the literature [23], instead of\sol
np*" vl ing the original constrained optimization (4), we solve in-
vVip Q stead the corresponding unconstrained Lagrangian problem

with multiplier A:
Fig. 2. lllustration of Criminisi’s algorithm [8].

Jniny d(Wp, Ugq) + AS(¥g) (5)
region (disocclusion holes), respectively. Let the boundarwye discuss selection of an appropriati the next section.
.betwee.n the source and hole regiondbe See Fig. 2 for an Besides the actual patch search for given taiigein (5),
illustration. we also optimize the selection of suitable target patch

LetaN x N patch with center at pixel be denoted by  given target regiof. In particular, DIBR-synthesized image
U,. [8] proposed to always selecttarget patch¥, with  contains (partial) per-pixel depth information that we ean
center pixelp on the boundary.e. p € 0, for exemplar-  pioit for target path selection. Specifically, we use aldéa
based matCh|ng. Mathematlcally, the matChIng IS written as depth values in the target patd’}) to Compute an average

. depthZ, and inverse depth variandgp) for inclusion into
qine% d(¥p, W) (1) the priority computation [24]:

In other words, the most similar patch, to target¥, in p(p) = (C(p) + D(p) + L(p)) x f(Zp) (6)

source regionb, in terms of the difference between known

pixels in ¥, and corresponding pixels i, is sought. The Wheref(Z) is a monotonically increasing function of input

idea is that images tend to self-similar, so the target patch Z. The main idea is that patches with largest average depth

with missing pixe]s will ||ke|y reappear in the source regio will be selected first, and among those with the similar aver-
At any given time in the inpainting process, there can beége depth, ones with smallest depth variance will be salecte

many potential target patchds,, p € 6. [8] stressed that first. This ensures background information will be propadat

the order in which the patches are selected as target is |ntp the disocclusion hOleS, as described in the Introduction

portant; the order proposed was according fwriarity term

P(p): 4.4. Selection of Lagrange Multiplier

P(p) = C(p) D(p) @) In a typical Lagrangian minimization, the optimal selentio
whereC(p) and D(p) are theconfidencenddataterms, de-  of the appropriate multiplier valugis a difficult task [23]. In
fined as: our specific case of low-saliency prior, however, we can com-
) C(q) VIE . n| pute an appropriaté as follows. Using a reference texture
%, D(p) = —» P (3 map, we first identify portions of boundary background re-

W] « gions horizontally next to foreground objects—regionslyk
similar to disoccluded region in the virtual views. We then
perform patch search using (1), where in this case the target
regionV,, has no unknown pixels. Suppose the best-matched
patch is¥ -, i.e,

Clp) =

where|¥,,| counts the number of known pixels i, n,, is
the unit vector orthogonal t6S2 at p, lel is the isophote
(direction and intensity) at, anda is a normalization factor.
C(p) gives higher priority to patches with more known pixels.
D(p) encourages propagation of linear structures. See [8] for

details. Wq- = arg min d(¥p, Ty) )

which represents the best solution using the exemplardbase
framework under ideal condition. The first constraint fds

We are now ready to discuss how we introduce a low-salienct@ ensure that even with the low-saliency prigr.can still be
prior into exemplar-based patch matching. Essentiallyrave selectedi.e, V¥, € & | S(V,) < S(¥4-),

strict candidate matching patchés, to ones with saliency

valuesS(¥,) less than a threshold values.: d(Wp, Ugx) + AS(Wgx) < d(Tp, ¥y) + AS(Ty)
d(wm qu]) — d(\Ij]h \Ijq*)
)

4.3. Saliency-cognizant Exemplar-based Matching

inie% d(V,,¥,) st S(¥,)<S (4) As S(Wy) — S(W, ®
q
Saliency is a relative term, ansi(¥,) is computed relative The second constraint onis that it has to be large enough

to the known pixels in a local neighborhood centeydbr  to make a difference. In other words, when ohblf of the



pixels are used for distortion computation (denotedi3s
V- is still the optimal solution. Mathematically we write:
v\Pq € | d/(‘llpv‘Pq) < d/(‘IJpa ‘I/q*)-

Table 1. Luma PSNR results in dB within disocclusion areas
for hole filling algorithms.

, , Image EB1 | EB2 | Proposed
@ (W W) + A5(Ver) < d (T, Wq) +AS(Vo) Srealdancers 21 | 2214 | 2293|2343
AT S ACTI TV Breakdancers 2-3 | 22.42 | 22.61 | 22.75
- S(Wq) — S(¥g+) Akko & Kayo 48-47| 15.01 | 15.33 | 15.64
. . . Ballet 2-3 22.10 | 22.29 | 22.30
_ Performing the above calculation for a given pateh Poznan Street5.3 | 27.79 | 27511 27.87
yields a rangeRk, for A\. We repeat the calculation for all
patches in the estimated regi6nand the\ selected is in the . )
intersection of the largest s&tof rangesk,,'s without having Table 1 presents PSNR for the hole filling algorithms
the intersection as empty set. In other words: computed for luminance components with respect to the
original views (ground truth) within the disocclusion asea
A € ﬂ R, For the tested images, our proposed scheme achieved higher
peS PSNR, outperformings B2 by up to0.5 dB. As illustrated in

Fig. 3, we note further that our proposed method fills back-
ground holes with lower saliency content, resulting in more
visually pleasant images.

S = arg e IS| st ﬂ R, # 10 (10)
peS
The final chosen is the middle value of the intersection
of rangesRk,’sin S.

5. EXPERIMENTATION

Experimental results are reported for four test sequeBads,
let, Breakdancer$25], Akko & Kayo[26] andPoznan Street
[27] under various camera setups. We assume a virtual view-
point is synthesized via DIBR using texture and depth map
pair from a single camera viewpoint, resulting in disocclu-
sion holes. FoBreakdancerswe synthesized view 2 using
view 1 as reference and synthesized view 2 using view 3, as
specified in Table 1. Fohkko & Kayqg we synthesized view
48 from 47, forBallet, we synthesized view 2 from 3 and for
Poznan Streetve synthesized view 5 from 3. In all cases the
first frame of each sequence is used.

Saliency was computed according to the method in [20]Fi9. 3. (&) Disocclusion holes (in green) f@reakdancers
To improve performance of the regular exemplar-based holéi€w 2 synthesized from view 1 and hole filling results of (b)
filling algorithm [8], referred to as£B1 in our discussion, £152 and (c) proposed method. Detail crops from (d2
we restricted the search area for candidate patches tmlsagioa”d (e) proposed.
around holes which are opposite the direction of DIBR pro-
jection. For example, the search area is limited to a 36 pixel 6. CONCLUSION
band to the left of the holes depicted Breakdancers 2-1
shown in Fig. 3(a). In this manner, the background regionyVe presented a method for filling of disocclusion holes—
are generally applied towards hole filling. In addition, weSPatial regions that were occluded in the reference view(s)
test an improved exemplar-based algorithm [28], referced tbut became visible after a view-switch. Given background
as EB2, using a level regularity term based on depth infor-tends to draw less visual attention than foreground in gipic
mation. Note that depth information of the virtual view will 3D scene, the key idea is to includéosv-saliency priordur-
also contain disocclusion holes. FiB2 as well as in our ing exemplar-based patch matching, so that the selected pat
proposed scheme, these depth holes are filled jointly wéh thin the source region has both small matching cost and low
corresponding texture filling mechanism. In other words, afSaliency value. Experimental results show that the aduifo
ter the best candidate is selected for texture, its corretipg @ low-saliency prior together with variable patch size entp
depth patch is also used to fill the virtual depth map. Eax1 ~ formed a previous implementation of disocclusion holen|i
andE B2 the patch size was settd x 11, while the proposed Method by0.5 dB in PSNR.
scheme uses variable patch sizes for0 to 13 x 13. In this
case, the best candidate is selected among the best-matched
patch of each size using a size-normalized version of (5).

(d) (e)
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