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ABSTRACT

Quality of sleep greatly affects a person’s physiological well-being.
Traditional sleep monitoring systems are expensive in cost and in-
trusive enough that they disturb natural sleep of clinical patients.
In this paper, we propose an inexpensive non-intrusive sleep mon-
itoring system using recorded depth video only. In particular, we
propose a two-part solution composed of depth video compression
and analysis. For acquisition and compression, we first propose an
alternating-frame video recording scheme, so that different 8 of the
11 bits in MS Kinect captured depth images are extracted at dif-
ferent instants for efficient encoding using H.264 video codec. At
decoder, the uncoded 3 bits in each frame can be recovered accu-
rately via a block-based search procedure. For analysis, we estimate
parameters of our proposed dual-ellipse model in each depth image.
Sleep events are then detected via a support vector machine trained
on statistics of estimated ellipse model parameters over time. Exper-
imental results show first that our depth video compression scheme
outperforms a competing scheme that records only the eight most
significant bits in PSNR in mid- to high-bitrate regions. Further, we
show also that our monitoring can detect critical sleep events such as
hypopnoea using our trained SVM with very high success rate.

Index Terms— Sleep monitoring, depth video compression,
depth image processing

1. INTRODUCTION

Everyone sleeps. It is well documented [1] that a sleep-deprived
person carries a number of health-related risks, including increase
in body weight, increased risk of diabetes and heart deceases, in-
creased risk of psychiatric illness such as depression, etc. Further, it
is not simply the quantity or duration of sleep that affects a person’s
physiological well-being, but also the quality of sleep. In particular,
sleep-disordered breathing is common in the general population [2],
and repeated episodes of apnoea (temporary suspension of external
breathing) and hypopnoea (overly shallow breathing or low respi-
ratory rate) can significantly disturb a person’s sleep and interfere
with his/her daily activities. It is thus paramount to closely monitor
a patient’s sleep, so that potential sleep problems can be quickly and
correctly diagnosed and the right treatment prescribed. We address
the sleep monitoring problem in this paper.

Existing sleep monitoring systems fall into two general cate-
gories. In the first category are vibration-sensing wristbands like
Fitbit1 and Jawbone UP2. While these are minimally intrusive de-
vices, they are mostly designed to record sleep time, i.e., the quan-

1http://www.fitbit.com/
2https//jawbone.com/up/

tity of sleep rather than the quality of sleep. In the second category,
there are full multi-sensing monitoring devices such as Philips Alice
PDx3. While accurate in measuring various vital signs such as oxy-
gen intake, airflow, etc, these are expensive and intrusive systems
with multiple body straps and tubes. (PDx requires up to 10 min-
utes to set up.) The numerous sensors attached to various body parts
tend to disturb natural sleep of a patient during monitoring (who had
enough difficulties sleeping).

In this paper, we propose an inexpensive and non-intrusive sleep
monitoring system based solely on depth video compression and
analysis. Not relying on the lighting condition of a dark sleeping
room, we use a MS Kinect camera that actively projects its own
structured infrared beams to form captured depth images of the pa-
tient. Unlike vibration-sensing wristbands, our system can quantify
the quality of one’s sleep by detecting episodes of apnoea or hy-
popnoea during the night. Yet unlike full monitoring devices, our
system is entirely non-contact, and thus is completely non-intrusive
to the patient’s sleep.

In particular, we propose a two-part solution composed of depth
video compression and analysis. For compression, we first propose
an alternating-frame video recording scheme, so that different 8 of
the 11 bits in captured depth images are extracted at different in-
stants for efficient encoding using H.264 video codec [3]. At de-
coder, the uncoded 3 bits in each frame can be recovered accurately
via a block-based search procedure. For analysis, we first estimate
parameters of our proposed dual-ellipse model in each depth image.
Apnoea or hypopnoea are then detected via a support vector machine
(SVM) [4] trained on statistics of estimated ellipse model parame-
ters over time. Experimental results show first that our depth video
compression scheme outperforms a competing scheme that records
only the eight most significant bits in PSNR at mid- to high-bitrate
regions. Further, we show also that our monitoring system can detect
hypopnoea or apnoea using our trained SVM with very high success
rate.

The outline of the paper is as follows. We first discuss related
works in Section 2. We then overview our sleep monitoring system
in Section 3. We discuss the two parts of our system, depth video
compression and sleep event detection, in Section 4 and 5, respec-
tively. Finally, we present experimental results and conclusion in
Section 6 and 7.

2. RELATED WORK

Depth image / video compression is a popular research topic due
to the now standard texture-plus-depth format (coding of color and

3http://alicepdx.respironics.eu



depth images from the same captured viewpoints) [5] for free view-
point video [6]. A large portion of these works [7, 8] proposed new
coding tools like graph transforms exploiting the piecewise smooth
(PWS) signal characteristic of depth maps; i.e. there exist sharp ob-
ject boundaries and slowly varying surfaces away from the bound-
aries. In our work, for real-time implementation at the encoder we
use H.264 [3] to encode different 8 of 11 bits captured by a Kinect
camera for different frames. At the decoder, the PWS characteris-
tic is exploited to recover the three uncoded bits. To the best of our
knowledge, we are the first to propose an efficient H.264 implemen-
tation of 8-bit depth video compression given Kinect-captured 11-bit
images and show demonstrable superior coding performance.

General pose detection from recorded images is a long-standing
problem in computer vision [9], and recently algorithms are tailored
to depth images [10] as well. Our sleep monitoring application is
unique in that only depth (no color) images are available. Further,
because the patient sleeps on a bed with similar physical distance
to the depth sensor, the lack of clear separation between foreground
objects and background means generic techniques like [10] do not
work well. However, in our application the human pose (sleeping) is
known a priori, and thus we propose a dual-ellipse model to detect
sleep events via an SVM-based analysis.

There exists two other works in the literature [11, 12] that also
used captured depth video for sleep monitoring. [11] claimed that a
Time of Flight (ToF) camera was used to detect chest and abdomen
movements for apnoea detection, but there is no description of what
ToF camera was used and how chest and abdomen movements were
deduced from collected depth measurements; for example, how to
distinguish between depth measurements of the bed and of the pa-
tient, and how to detect chest / abdomen movements when the patient
is sleeping upright versus sideway. There is also no performance
analysis of the proposal against ground truth data. This renders a
direct comparison with [11] impossible. Further, there is no depth
video recording component, meaning a doctor cannot visually in-
spect and verify the patient’s sleep afterwards.

In contrast, [12] described in detail a sleep monitoring system
with a single Kinect camera, where chest movements are detected
by tracking over time the closest depth measurement of the patient
to a virtual camera directly above the patient. We differ from [12] in
two respects. First, we propose an end-to-end system that includes
an efficient depth video coding scheme; [12] did not propose any
coding algorithm. Second, unlike [12] we propose a more accurate
dual-ellipse model, so that individual chest and abdominal move-
ments can be tracked, as typically recommended in standard sleep
medicine [1], even if the patient is sleeping sideway.

3. SYSTEM OVERVIEW

We first overview our sleep monitoring system, which we have set
up at a sleep clinic to capture depth videos of patients with suspected
sleep problems. See Fig. 1 for an illustration. The system is com-
posed of a first-generation MS Kinect depth capturing camera and
a Lenovo X220 laptop. The camera is set up at a higher elevation
above and away from the head of the patient lying down. This cam-
era location gives an un-obstructed view of the patient’s upper body
(torso), which is important for our analysis. The Kinect camera cap-
tures depth image of resolution 640 × 480 at 30fps at 11-bit pixel
precision. Because Kinect relies on active projection of structured
lights to estimate depth, it can operate in the dark, which is ideal for
monitoring sleep in a dark room.

The first part of our sleep monitoring system is the real-time cap-
turing and compression of depth video. Recorded depth video can

Fig. 1: Depth video capturing system at a sleep clinic: a MS Kinect
camera is attached to a laptop computer. Example depth and infrared
captured images are shown on the screen.

subsequently be used by doctors and patients for visual inspection
of detected sleep events—a crucial double-checking mechanism for
medical professionals and a valuable educational tool for patients.
The recorded video can also be used to detect other sleep-related
events beyond apnoea, such as irregular leg movements, frequent
turning / tossing, etc [1]. In the second part, using the recorded
depth video we track the breathing cycles of the patient by deriving
parameters of our proposed dual-ellipse model. We discuss these
components in order next.

4. DEPTH VIDEO CODING

Each depth image captured by a first-generation MS Kinect sensor
contains 11-bit precision pixels. Baseline profile for H.264—the
most prevalent and optimized profile in H.264—supports only 8-bit
precision, however4. Thus, we propose an alternating frame coding
scheme to extract different 8 of 11 available bits in each captured
pixel of different frames for encoding. At the decoder, we recover
the uncoded 3 bits using our proposed recovery scheme. The rea-
sons we can recover the uncoded 3 bits with high accuracy are: i)
depth maps are known to be PWS, and ii) in a typical sleep video,
only slow motion exists across frames. We discuss the encoding and
decoding procedures next.

4.1. Encoder Selection of 8 Coding Bits

(a) MSB frame (b) LSB frame

Fig. 2: Examples of MSB and LSB frames.

The encoder selects different 8 bits for each depth frame Zt of
time instant t for encoding as follows. If t modM = 0, then the 8

4Only High 4:4:4 Profile supports 11 to 14 bits precision.



most significant bits (MSB) of 11 captured bits are selected for en-
coding. Otherwise, the 8 least significant bits (LSB) of 11 available
bits are selected. M is the reference picture selection (RPS) param-
eter used during H.264 video encoding [3]; i.e., a P-frame Zt can
choose any one of previous frames Zt−1, . . . ,Zt−M as predictor
for differential coding. MSB frames and LSB frames are very dif-
ferent; missing details in LSBs, MSB frames are very smooth, while
LSB frames suffer from overflow due to missing MSBs. See Fig. 2
for an illustration. However, our proposed encoding scheme ensures
that each MSB or LSB frame Zt can find a similar previous frame
Zt−i as predictor for differential coding, thus achieving good coding
efficiency (shown in Section 6).

4.2. Decoder Recovery of Full 11 Bits

At the decoder, we recover the uncoded 3 MSBs in an LSB frame
as follows. We first segment an LSB frame into smooth regions, i.e.
spatial regions where adjacent pixels do not differ by more than a
pre-defined threshold δ. Pixels in the same smooth region will share
the same to-be-recovered 3 MSBs.

Next, we identify potential overflow pixels due to encoding of
LSBs only—pixels that were similar to adjacent pixels before re-
moval of 3 MSBs. Specifically, given smooth region boundary pixel
location p in depth map Zt, we check if adding one significant bit
28 would bring it closer to within δ of one of its neighbors, i.e.:

min
q∈Np

∣∣Zt(p) + 28 − Zt(q)
∣∣ ≤ δ (1)

where Np is the set of adjacent pixels to p. If this is the case, then
p is a potential overflow pixel. To check if p is an overflow pixel
(or simply an object boundary), we perform motion estimation (ME)
using the most recent MSB frame Zτ . Specifically, given a R × R
block Bp with center at p of the current frame Zt as target, we
compute:

min
v

∣∣∣∣Zτ (Bp+v)mod 25 −
⌊
Zt(Bp)

23

⌋∣∣∣∣+ µ|v| (2)

where the 5 LSBs in block Bp+v of Zτ and the 5 MSBs in block
Bp of Zt are compared—only 5 bits are common between MSB
and LSB frames. Note that we add the magnitude of the motion vec-
tor (MV) v as a regularization term. µ is a parameter that trades off
between the block differential and the regularization term. The reg-
ularization term is important, because for PWS images, there can be
multiple vectors v with very small block differences. It is reasonable
because the majority of the frames in sleep video have little motion.

Given the best MV vp computed in (2), we then check ifBp+vp

is smooth in Zτ . If so, then pixel p in Zt is indeed an overflow
bit, and we merge the smooth region of p with the corresponding
neighboring smooth region; i.e., the merged smooth region will share
the same MSBs. If not, then this is actually an object boundary, and
we copy the 3 MSBs in Bp+v of Zτ to all pixels in the smooth
region containing p.

5. SLEEP EVENT DETECTION

In this section we discuss how apnoea or hypopnoea can be detected
using the recorded depth video with full 11 bits recovered. The event
detection part is divided into three steps. In the first step, each cap-
tured depth pixel from the captured camera view is mapped to a vir-
tual camera view located horizontally from the top of the patient’s
head (head-on view). See Fig. 3 for an illustration. (To reduce the

computational time, the depth observations of the background are fil-
tered out by setting manually in the first frame a region of interest—
a rectangle that covers the body area.) Each pixel with coordinate
(u, v, d) in the virtual view is then classified into two different cross
sections of the patient’s torso based on the depth value d. In the sec-
ond step, for each cross section, the optimal ellipse that is closest
to the set of observations (u, v)’s is chosen. In the third step, we
detect apnoea or hypopnoea by correlating them with the changes in
derived ellipse parameters over time. We describe these three steps
in order next.

Fig. 3: Side view of sleep patient. Torso is divided into two cross
sections, each modeled by an ellipse.

5.1. Perspective Change

In the first step, we first map each observed depth value z at coordi-
nate (i, j) of the camera view to a new triple (u, v, d) in the head-on
view. We know that the camera coordinate x is related to a 3D world
coordinate X as follows [13]:

x = KR [I | −C]X (3)

where K, R and C are the intrinsic camera matrix, rotation matrix,
and translation matrix respectively. These parameters can be com-
puted using standard camera calibration procedures5 [14]. We thus
back-project a captured pixel (i, j, z) to a 3D world coordinate X
using an inverse of (3), then re-project from X to a virtual camera
coordinate (u, v, d).

Given the computed coordinates (u, v, d)’s in the head-on view,
we classify observations into two cross sections that correspond to
the patient’s chest and abdomen. It is recommended in standard
sleep medicine [1] to track chest and abdominal movements for de-
tection of apnoea; in central apnoea, there is a lack of respiratory
effort and hence a corresponding lack of chest and abdominal move-
ments, while in obstructive apnoea there can be very slight move-
ments in chest and abdomen but in opposite phase. Though we do
not distinguish between central and obstructive apnoea in this paper
(central apnoea takes place only 0.4% of the time), we nonetheless
follow the medical recommendation and track chest and abdominal
movements separately.

5.2. Ellipse Parameter Estimation

An ellipse in 2D space—one whose major and minor axes coincide
with the u- and v-axes—can be described as:(u

a

)2
+
(v
b

)2
= r2 (4)

with parameterization p(φ) = r(α cosφ, β sinφ). a and b are
called the major and minor radius, respectively. For simplicity, we

5Camera calibration software can be downloaded here:
http://www.vision.caltech.edu/bouguetj/calib doc/htmls/ref.html



will assume the center of the ellipse is at origin (0, 0). Thus the pa-
rameter θi of an ellipse i can be characterized by θi = (ai, bi, r),
where r is determined based on the waist measurement of the pa-
tient.

Fig. 4: Best-fitting ellipse from multiple depth observations of the
cross section. The closest ellipse point to each observation is per-
pendicular to the tangent of ellipse at that point.

5.2.1. Problem Formulation

Let oi = {oi,1, . . . ,oi,N} be the set of N observations of ellipse
i, where oi,n is a triple (u, v, d) denoting the point’s location (u, v)
in 2D space and corresponding depth value d as viewed from the
head-on view.

To estimate parameters θi of an ellipse i given observations oi,
we formulate a maximum likelihood (ML) problem—instead of find-
ing θi that maximizes Pr(θi |oi), we solve the following:

max
θi

Pr(oi | θi) (5)

We assume a jointly Gaussian noise model for our observed
depth data, as done in [15], so that if true body part i has ellipse
parameter θi, then Pr(oi|θi) is:

Pr(oi|θi) =
1

(2π) N
2
|H|

1
2

exp

[
−1

2
dθi(oi)

TH−1dθi(oi)

]
(6)

where H is the covariance matrix, and dθi(oi) is a vector composed
of minimum distances between each observation oi,n and an ellipse
of parameter θi.

Instead of solving the maximization problem in (5), we solve the
following equivalent minimization problem:

min
θi

− logPr(oi|θi)

min
θi

dθi(oi)
TH−1dθi(oi) (7)

If we now assume each observation is independent from the oth-
ers, then variance H is a diagonal matrix, and (7) can be simplified
to:

min
θi

N∑
n=1

h−1
n (dθi(oi,n))

2 (8)

In practice, h−1
n , the inverse variance of observation n, is as-

signed an appropriate value depending on how occluded the obser-
vation oi,n is likely to be. For example, oi,n at the top of the chest
away from limbs will have a small variance hn.

5.2.2. Optimization Algorithm

Before we can solve (8), we first need to properly define how min-
imum distance dθi(oi,n) between observation oi,n and ellipse with
parameter θi can be computed. To find the exact point (s, t) on the
ellipse with parameter θi that is closest to observation (u, v) involves
solving a quartic (fourth degree) equation with four possible solution
candidates, and the minimum distance point is then chosen as the fi-
nal solution [16]. This is clearly too computation-expensive for us
when the number of observations N is large.

Instead, we make the observation6 that a necessary condition for
p(φ) to be closest to oi,n = (u, v) is that p(φ) − oi,n must be
perpendicular to the tangent at p(φ); i.e.,

(oi,n − p(φ)) · p′(φ) = 0(
α2 − β2) r cosφ sinφ− uα sinφ+ v β cosφ = 0

See Fig. 4 for an illustration. We can then solve the above
equation using a Newton method, with an initial guess φ0 =

tan−1
(
αv
β u

)
.

Using the above method, we can efficiently compute dθi(oi,n)
for each observation oi,n, and hence the objective (8). To find the
optimal ellipse parameter θi, we perform a local search where each
of a and b are perturbed by a small amount±γ to see if the objective
(8) has decreased. If so, we continue the perturbation in the same
direction until the objective can no longer be decreased further.

5.3. Sleep Event Detection

We discuss next how hypopnoea is detected based on the estimation
of the parameters of a best-fitting ellipse for each cross section of a
patient’s torso. Hypopnoea is a condition where the patient experi-
ences overly shallow breathing or abnormally low respiratory rate.
Low respiratory rate means the changes of ellipse parameters are
much slower than normal.

First, we split the sequence into 10-second windows. This
size was chosen as a good tradeoff between complexity and per-
formance, since the respiratory rate of both normal breathing and
overly-shallow-breathing-hypopnoea are approximatively 3 breaths
per 10 seconds. For each 10-second window, we compute the stan-
dard deviations of all ellipse parameters. These parameters are used
to train a nonlinear SVM with a Gaussian Radial Basis Function
(RBF) kernel. Accordingly, during the test phase, we compute the
standard deviations of all ellipse parameters for each testing 10-
second window and test for the episodes of hypopnoea and normal
breathing using the trained RBF SVM.

6. EXPERIMENTATION

6.1. Experimental Setup

We captured depth videos of 6 patients, diagnosed with obstructive
sleep apnoea (OSA) [1], at a sleep clinic during October and Novem-
ber 2013. Besides our depth video capturing, each patient was also
connected to a professional-grade sleep monitoring system (expen-
sive and intrusive) that measures various vital signs. This provided
ground truth data for training our SVM and validation of our results.

6http://www2.imperial.ac.uk/˜rn/distance2ellipse.pdf



6.2. Experimental Results

We first validate our proposed block-based search procedure to re-
cover the 3 uncoded MSBs in an LSB frame. Fig. 5 shows an exam-
ple of the decoded LSB frame and the recovered LSB frame. First,
we can see in Fig. 5(a) that due to overflow, there are discontinuities
even within the same physical object. We see in the recovered LSB
frame in Fig. 5(b) that the overflow problem is correctly resolved,
resulting in a much smoother and natural looking depth image.

(a) original LSB frame (b) recovered LSB frame

Fig. 5: Examples of decoded LSB frame and recovered LSB frame.

Next we compare the compression performance of our LSB-
MSB coding scheme to the scheme that compresses only the 8 MSBs
of each depth frame using the same H.264/AVC codec. As a perfor-
mance metric we use peak signal-to-noise ratio (PSNR), calculated
as:

PSNR = 10 log10
(211 − 1)2 ·M ·N∑M

i=1

∑N
j=1[X(i, j)−Y(i, j)]2

where X and Y are twoM×N 11-bit depth images. Uncompressed
11-bit depth images were used as ground truth, and for the 8-MSB
coding scheme, three zero bits were appended to the decompressed
8-bit values.

(a) Video sequence 1. (b) Video sequence 2.

Fig. 6: Compression performance for two video sequences.

Fig. 6 shows the coding performance as PSNR averaged over
all frames of the two coding schemes for two video sequences. The
second video sequence has many background objects, hence it is
more difficult to compress. The results indicate that our LSB-MSB
coding scheme outperforms 8-MSB coding scheme for up to 10dB,
at mid- to high-bitrate regions that are of interest for event detection.

Recall from Section V that there are two ellipses of interest each
described with two radii: the chest-ellipse, with major and minor ra-
dius a1 and b1, and the abdomen-ellipse, with radii a2 and b2. All
four radii can be used for classification. Hence, we test 6 differ-
ent classification methods that are based on different combinations
of extracted features: (a1, a2), (a1, b1), (a2, b2), (a1, b2), (a2, b1),

Fig. 7: 20-sec samples of normal breathing and hypopnoea of one
single subject in upright sleeping position showing variations of the
four ellipse parameters across time. a1 and b1 are the major and
minor radiuses of the chest-ellipse, respectively; a2 and b2 are the
major and minor radiuses of the abdomen-ellipse, respectively.

and (b1, b2). For each method, during the training phase, we train 2D
RBF SVMs with a scaling factor of 1. The training data for (ai, bj),
i = 1, 2, j = 1, 2, RBF SVM is given by:

{(σail , σbjl), ψl}, l = 1, ..., L,

(σail , σbjl) ∈ R2,

ψl ∈ {hypopnoea, normal breathing},
where L is the total number of available training samples, σail and
σbjl are the standard deviations (STD) of ai and bj in a 10-second
window, respectively.

Additionally, we test the performance of a more complex clas-
sification scheme that uses all four features (a1, b1, a2, b2) and 4D
RBF SVM with the scaling factor of 1, and the following training
data:

{(σa1l , σb1l , σa2l , σb2l), ψl}, l = 1, ..., L,

(σa1l , σb1l , σa2l , σb2l) ∈ R4,

ψl ∈ {hypopnoea, normal breathing}.
Fig. 7 shows variations of the four ellipse parameters of one sin-

gle subject in upright sleeping position over a period of 20 sec. For
each parameter an example of normal breathing and an episode of
hypopnoea are shown. Given very small movement is detected dur-
ing breathing, high precision is required.

To evaluate the performance of these RBF SVMs, we use preci-
sion (P), recall (R), F-Measure (FM ), and Accuracy (ACC) which
are defined as:

P =
TP

TP + FP
,

R =
TP

TP + FN
,



Table 1: Evaluation of the trained RBF SVMs on classification of hypopnoea and normal breathing.

Metric (a1, b1) (a1, a2) (a1, b2) (a2, b1) (b1, b2) (a2, b2) (a1, b1, a2, b2)
TP 25 25 25 24 25 25 25
FP 0 2 2 0 0 3 0
TN 25 23 23 25 25 22 25
FN 0 0 0 1 0 0 0

Precision 1.000 0.926 0.926 1.000 1.000 0.893 1.000
Recall 1.000 1.000 1.000 0.960 1.000 1.000 1.000

F-Measure 1.000 0.962 0.962 0.979 1.000 0.943 1.000
Accuracy 1.000 0.960 0.960 0.980 1.000 0.940 1.000

FM = 2 · P · R
P+ R

,

ACC =
TP+ TN

TP+ FN+ FP + TN
,

respectively, where true positive (TP) denotes that a hypopnoea test-
ing sample is correctly classified into hypopnoea, false positive (FP)
denotes that a normal breathing testing sample is incorrectly classi-
fied as hypopnoea, true negative (TN) denotes that a normal breath-
ing testing sample is correctly classified as normal breathing, and
false negative (FN) denotes that a hypopnoea testing sample is in-
correctly classified as normal breathing.

In Table 1, we show the corresponding numerical performance
for all trained RBF SVMs, which indicates that our monitoring sys-
tem can detect hypopnoea with a very high success rate. Indeed, us-
ing 25 test samples, three SVMs classified all episodes of hypopnoea
correctly. The results also show that lower complexity 2D SVMs, us-
ing (a1, b1) or (b1, b2) features, classified all instances of hypopnoea
without any classification mistake.

7. CONCLUSION

Existing sleep monitoring systems are expensive and intrusive
enough that they negatively affect the quality a patient’s sleep. In
this paper, we propose a non-intrusive three-part video monitoring
system based solely on depth video recording and analysis. In the
first part, for efficient compression we propose an alternating frame
coding scheme, where different 8 of 11 available bits from captured
depth images are extracted for H.264 real-time encoding. The un-
coded 3 bits are recovered via a block-based search procedure at
decoder. Meanwhile, we show that our LSB-MSB coding scheme
outperforms 8-MSB coding scheme at mid- to high-bitrate region.
In the second part, we estimate ellipse parameters for the patient’s
chest and abdomen, and using the estimated ellipse parameters, we
detect hypopnoea via trained RBF SVMs with a very high success
rate. Experimental results confirm that our proposed sleep monitor-
ing system can be effective in detecting important sleep-disordered
breathing events.
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