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ABSTRACT Besidesz-dimensional head movement (moving one’s head left-

Given texture and depth maps of one or more reference view//9ht); z-dimensional head movement (moving one’s head front-
point(s), depth-image-based rendering (DIBR) can syithes baclf) is also natural for a sitting observer. However, fewlfw.on
novel viewpoint image by mapping texture pixels from refee the literature have formally addressed the problem of sgiting

to virtual view using geometric information provided by mer ~ Viwpoint images corresponding to largedimensional camera
sponding depth pixels. If the virtual view camera is locatleser ~ Movements. We address this problem in our paper.

to the 3D scene than the reference view camera, objects tdose
the camera will increase in size in the virtual view, and D8R
simple pixel-to-pixel mapping will result in expansion Bslthat
require proper filling. Leveraging on recent advances irplgra
signal processing (GSP), in this paper we propose to sgipcba
priate graph Fourier transforms (GFT)—adaptive to uniqgea
structures of the local pixel patches—for expansion holdil
Our algorithm consists of two steps. First, using structaresor
we compute an adaptive kernel centered at a target empty pix
to identify suitable neighboring pixels for constructidrecsparse
graph. Second, given the constructed graph with carefutigd
edge weights, to complete the target pixel we formulateenait Figure 1. Examples of disocclusion and expansion holes: asjeca
tive quadratic programming problem (with a closed form tiotu captured texture map; tn)iocclu_sion holesarg larger cont_iguous empty
in each iteration) using a smoothness prior in the GFT domain€9i0ns next to foreground object boundaries, amfansion holesre
Experimental results show that our algorithm can outperfor- smaller empty regions on the surfaces of foreground objects

painting procedure employed in VSRS 3.5 by up1e7dB.

(a) captured View (b) DIBR-synthesized view

When the virtual camera is located closer to the 3D scene
than the reference view camera, objects close to the carniltra w
increase in size in the virtual view. This means that theeafor
mentioned pixel-to-pixel mapping during DIBR from refecerto
1. INTRODUCTION virtual view is not sufficient to complete entire surfacesrer-

Free viewpoint video [1] provides users the freedom to choos dered objects, resulting iexpansion holef5]. Note that expan-
any vantage point from which to reconstruct a viewpoint imag sion holes differ from disocclusion holes in that the olgeate
for observation of a 3D scene. To enable free viewpointutext Visible in the reference view(s), birtsufficient pixel samples
maps (conventional color images) and depth maps (per-gisel reference view(s) results in holes in the virtual view. Seg E
tance between objects in the 3D scene and the capturing agmeifor an illustration of expansion and disocclusion holes.
from multiple camera viewpoints are captured and encodéukat In this paper, leveraging on recent advancegyiaph sig-
sender—a format calle@xture-plus-depthAt the receiver, anew nal processindGSP) [6], we propose to select approprigtaph
virtual viewpoint image can be synthesized usitgpth-image- Fourier transforms(GFT) for expansion hole filling in the virtual
based renderindDIBR) techniques such as 3D warping [2]. In view image. Like fixed transforms such as Discrete Cosinesgrra
a nutshell, DIBR maps each texture pixel in a reference view t form (DCT), projecting a signal onto GFT is a simple lineaeap
a pixel location in the virtual view, using geometric infation  tion, yet unlike DCT, the definition of GFT can adapt to thequie
provided by the corresponding depth pixel. Due to occlusion signal structure of each local patch for signal-adaptiveessing.
the reference view (spatial areas in virtual view that aghumted ~ Our algorithm consists of two steps. First, using structaresor
by foreground objects in the reference view), missing gikethe =~ we compute an adaptive kernel centered at a target empty pixe
virtual view (calleddisocclusion holgsare subsequently filled in  to identify suitable neighboring pixels for constructidracsparse
using inpainting algorithms [3]. For small camera movenienh graph. Second, given the constructed graph with carefutied
reference to virtual view along- or y-dimension (camera mov- edge weights, to complete the target pixel we formulate ena-it
ing left-right or top-down), this DIBR synthesis plus inpting tive quadratic programming problem (with a closed form sohlu
approach has been shown to work reasonably well [1], anckis thin each iteration) using a smoothness prior in the GFT domain
conventional approach in the free view synthesis litegatur Experimental results show that our algorithm can outpetfor-

In immersive applications such as teleconferencing, aetiew painting procedure employed in VSRS 3.5 by u@s7dB.
in a sitting position observes rendered images on a 2D displa  The outline of the paper is as follows. We first discuss relate
where the image viewpoints are adjusted according to tiskdth ~ work in Section 2 and overview our free view synthesis system
head locations of the viewer [4]. The resultingption parallax  in Section 3. We then discuss the construction of an appatepri
effect can enhance the viewer’s depth perception in the 8desc graph centered at a target pixel in Section 4. Formulatioanof

Index Terms — depth-image-based rendering, image inter-
polation, graph Fourier transform
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iterative quadratic programming problem for image coniptets
discussed in Section 5. Finally, experimentation and awichs
are presented in Section 6 and 7, respectively.

2. RELATED WORK

Increase in object size due to largalimensional virtual camera
motion is analogous to increasing the resolutisuper-resolution
(SR)) of the whole image. However, duriagdimensional camera
motion an object closer to the camera increases in size thste
objects farther away, while in SR resolution is increaseatbumly
for all spatial regions in the image. Nonetheless, SR teplet [7]
can potentially be employed for expansion hole filling. Hoare
SR techniques typically operate on regular 2D pixel gridilevim
the DIBR scenario the available pixels mapped from the esiee
view(s) are initially not on the grid (before rounding to rest
grid positions for rendering), and hence a more generalhgiap
mulation is more natural. Further, recent non-local SRnapres
such as [7] tend to be computationally expensive, while otart
polation scheme essentially performs only local filterimggl thus
is significantly more computation-efficient.

Instead of transmitting texture / depth image pairs of défe
captured viewpoints to the decoder for DIBR-based virtuew
synthesis plus interpolation, an alternative is to represaptured
texture / depth pixels as a triangular mesh at the encoderAB]
the decoder, each pixel on the 2D grid in the virtual imagaént
linearly interpolated using nodes that define the enclasiaggle.
In this paper, though we assume the popular texture-plpthde

image representation of a 3D scene, the focus is on the imad%

interpolation aspect of view synthesis. Thus in the expenits
we compare our proposal to a linear interpolation schemieisha
representative of the performance of a mesh-based repatisen

GSP is the study of signals that live on structured data kerne

described by graphs [6]. In particular, GFT has been sufidgss
used for depth map compression [9], denoising [10], etchis t

paper, we propose to use GFT for expansion hole filling, oremor

generally, image interpolation. Compared to our previoaskw
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Figure 2. Examples of depth layers and corresponding histoga) pix-

els in a depth block are classified into depth layers and emigsgls; b)
corresponding histogram of depth values for the block.

(a) depth block

visible but smaller in size. Unlike disocclusion holes, &xgion
holes can leverage on information of neighboring pixelshaf t
same object for interpolation.

To identify pixels from the same physical object that are- use
ful for interpolation, we adopt depth layeringapproach. Specifi-
cally, for a given pixel block in the synthesized view, wetfgsn-
struct a histogram containing depth values of pixels in toelk
Fig. 2(b) shows an example. Peaks in the histogram are hbsle
layers ordered from shallow depth to deep depth. Fig. 2@ysh
the depth pixels in the block with assigned layer numbers.

Interpolation is performed layer-by-layer, starting frahe
shallowest, so that when interpolation for layeis performed,
each pixel in layerj > i that is inside a convex set spanned by
ixels in layer: is treated as an empty pixel. In Fig. 2(a), layer
pixels that are marked 'X’ are treated as empty pixels durin
expansion hole filling of layer 1. This is important becausew
there is insufficient pixel sampling in the reference viewriag
DIBR background pixels can land in empty pixel locationsavef
ground objects in the virtual view, resulting in an incotreneix-
ture of foreground and background pixels. We focus our discu
sion on empty pixel interpolation for a given layiemext.

4. ADAPTIVE KERNEL TO CONSTRUCT GRAPH

on the topic [5], we introduce three improvements: i) an adapwe now discuss how to choose a subset of pixels in the samie dept
tive kernel based on structure tensor has been deployedettt se |ayer around a target empty pixplto construct a graph; the con-

suitable neighboring pixels around a target pixel for graph-

structed graph will be subsequently used for graph-based ip

SI;UCEOF_'; ii) a parametef in the graph-signal smoothness prior terpolation. The reason for adaptively choosing only a sub§
x" L"x is adjusted according to the shape of the adaptive kernepixels of the same layer is because the same physical olgect ¢
so that the amount of smoothness applied can be adapteddrasednaye distinct textural patterns that influence how pixetsutthbe

local signal characteristics; and iii) we formulate anater un-
constrained quadratic program, where each iteration canlised
in closed form efficiently. Our optimization method is an erof
magnitude faster than [5] that formulates a linear progrand
thus is conceivably implementable in real-time.

3. DIBR SYSTEM OVERVIEW

We first overview our interactive free viewpoint streamiggtem.
A sender transmits a single texture / depth map pair of onecam

captured view reference vieyy so that a receiver can synthesize

images of virtual views near the reference view via DIBRh# t
client desires to render images of virtual viewpoint fartaeay
from the reference view, a new texture / depth map pair ofurepit
view nearer the desired virtual viewpoint is transmitted. this
paper, we focus only on synthesis of virtual view images tiear
reference view but with large-dimensional camera movements.

3.1. Depth Layering for Image Interpolation

As discussed, after DIBR there exists disocclusion andresipa
holes in the synthesized image that require filling. We dedime
expansion hole as follows: a spatial area of an object'aasarin
the virtual view, whose corresponding area in the refereieae is

interpolated. For example, a red and blue striped shirtisaphat
an empty pixel inside a blue stripe should be interpolateédgus
only neighboring blue pixels. To detect present texturdigpas,
we useadaptive kerneintroduced in [11].

Figure 3. lllustration of adaptive kernel on a pixel patchihnstripes of
blue and red pixels: an ellipse is elongated along a dinegi&rpendicular
to the principal gradient, so that only similar pixels aréested for pixel
interpolation.

There are two intuitive steps in adaptive kernel. First phie-
cipal gradientin a local patch is derived via computation of the
structure tensar The structure tensos.,[p] defined on a pixel
locationp can be computed as:



5.1. Quadratic Programming Formulation

Let the total number of pixels (synthesized and empty p)xels
Aglp —1])? Agzlp —r]]Ay[p —
erw[r]( [ =x]) Zr:wm [ =] y[p2 ) the kernel ellipse beV. Without loss of generality, let th&”
;w[r]Aw[P_r”Ay[P_r] ;“’M(Ay[p_r]) synthesized pixels in the kernel be, ..., sk, and the to-be-

(1) interpolated lengthV signal, N > K, bex. Letu;’s be a set
wherer defines a neighborhood around pigelA, (p) andA,(p)  of K length<V unit vectors|0, ...,0,1,0, ..., 0], where the sin-
are the texture image gradiehtdong thez- andy-axis at pixelp gle non-zero entry is at positian Our objective is to minimize a
respectively, anav[r] is a weight assigned to neighbarWeights  weighted sum of: i) thé>-norm of the difference between inter-
are chosen so thgf’ w[r] = 1. Having computed,, [p], one  polated signak and K synthesized pixels;, and ii) smoothness
can perform eigen-decomposition on the matrix, and thewige  prior x” L"x: x
tor v that corresponds to the larger eigenvalgds the principal min HZ ulx — &H% + puxTLPx )
gradient of the patch. See Fig. 3 for an illustration. x

In the second step, an adaptive kemel ellipse centere®at thy hore , is a weighting parameter that balances the distortion and
target pixelp is defined to identify pixels of the same depth layer smoothness terms.
fo_r graph _construction. 'I_'he ellipse has major angl miqor €S Givenu,, s;, 4 andL, (5) is an unconstrained quadratic pro-
aligned with thg tensor eigenvectors a“‘,’ v2- The idea IS to gramming problem inx and can be solved efficiently in closed
construct an ellipse elongated along a direction perpetatico ¢ [12]. After solving forx, the edge weights; ; and con-
the principal gradient of the patch. In particular,deaindb be the sequently Laplaciail, can be updated using (4), éjnd then (5) is

mz,ajor/ and minor radius,e. in the eigenvector coordinate system e again. This iterative procedure continues untittBohcom-
(@), putation resource is exhausted, or solutidnconverges.

II?, 2 I\ 2
(;) + (%) =1 (2)  5.2. Graph Fourier Transform Interpretation
The optimization (5) can be alternatively interpreted dkfes.
Let @ be the eigen-matrix (eigenvectors arranged as rows in ma-
trix) of the LaplacianL. ® is known as thegraph Fourier trans-

We computez andb as:

a=10A2, b=24d\ (3)  form (GFT) for defined grapig. (5) can now be rewritten as [6]:
K
for parametep. In other words, if the principal gradient is large min HZ u/ @ 'a—sill5 + u Z AP a2 (6)
(large \2), then the ellipse is more elongated along a direction Rt i
perpendicular to the gradient. where are the GFT coefficients given signa)i.e. o = ®x,

Fig. 3 shows an example ellipse elongated to contain onky bluand ); is theith eigenvalue of Laplacial, or equivalently, the
neighboring pixels. In contrast, a classic kernel will beirgle  4th graph frequency of GF®. In words, instead of solving for

with a fixed radius, containing blue and red pixels. the signalx directly in (5), we can equivalently solve for the GFT
domain representation of, i.e. coefficientsa. From (6), one
4.1. Graph Construction can see that the smoothness texfiL"x is rewritten as a sum

of squared coefficients? each weighted by the graph frequency
A; raised to the poweh. Hence, an optimal solution™ with a
small objective function value cannot have large high-fietcy
coefficients—an optimal solution must be smooth.

The amount of smoothness applied for the optimization can
be enforcedglobally via parametey: andlocally via parameter
h. h means a signal should be smooth with respect ta-t®p
) neighbors. In this paper, we seldctto be proportional to the
o = exp {_ I1(p) — I(a)ll; } (4y ~ Major radius: of the adaptive kemel ellipse. The rationale is that

’ o2 an elongated ellipse means more pixels geometricallydaftbm
the target empty pixel is included in the kernel, and bselection

whereI(p) is the intensity for pixep, ando is a chosen param- allows to smooth over more pixels from the same side.
eter. For empty pixels in the kernel without intensity valuthe 6. EXPERIMENTATION

average of neighboring pixel intensities can be used fdalni
ization; given the derived adaptive kernel, neighboringels are
likely similar, so this initialization is reasonable.

Having identified a subset of pixels in the same depth layir su
able for interpolation of the empty pixel, we construct apirg
as follows. Each pixel in the kernel ellipse is represented mode
in the graphG. We draw an edge between pixels (nodegndq

if their geometric distancgp — q||2 is smaller than a threshotd
The edge weightvp, o between the two pixels is computed as:

We used Middlebury datasets t andl aundr y? as our multi-
view image test sequences. We used the same methodology in [5
to first generate a reference view with texture and depth maps

5. GRAPH-BASED PIXEL INTERPOLATION of lower resolution than captured images. Using texturedamdh
_ _ maps ofv,., we used DIBR to generate virtual view.
Given a constructed grapfi, we now discuss how we perform Four different methods were used to construgctIn the first

graph-based image interpolation. We first define the follgwi - method called/SRS+, we modified VSRS software version 3.5 to
terms.Adjacency matrbA. has entryA; ; containing edge weight - yse a single reference view, and then called the defaulritipg
es,; If an edge connecting nodésand j exists, and) otherwise.  scheme in VSRS to fill in all holes. For the other three methods

Degree matriXD is a diagonal matrix with non-zero entri#s,; = we first identified expansion holes and then used differerihme
>, €ij- A graph LaplacianL is defined al. = D — A. Lis  ogs to interpolate the holeki near andGFT are the linear and
used in our definition of ObjeCtive fUnCtiOn, as discussed.ne graph_based interp0|ation methods in [$I3FT is our proposed

1GradientA (p) at pixel p is computed as the difference in intensity Scheme in this paper.
from a nearest neighbey divided by the distance betwegnandq. 2http://vision.middlebury.edu/stereo/data/scenes2006




Table 1. PSNR Comparison

VSRS+ | Linear | GFT | AGFT
art 19.11 22.87 23.36 | 23.69
I aundry 19.17 21.94 22.53| 23.04
Table 2. SSIM Comparison
VSRS+ | Li near GFT AGFT
art 0.9650 | 0.9771 | 0.9792| 0.9810
laundry | 0.9651 | 0.9743 | 0.9768| 0.9784

6.1. Experimental Results

We computed the PSNR of the virtual view images interpolated

using the four methods against the ground trthSince our pro-
posal addresses filling of expansion holes only, we onlyutated

PSNR for identified expansion hole areas. The PSNR compariso [1]

is shown in Table 1. For ther t sequence, we see tHatnear ,
GFT and AGFT outperformedVSRS+ significantly: by3.76dB,

4.25dB and4.57dB respectively. This demonstrates that the cor-

rect identification of expansion holes and subsequentdatation
are important for DIBR image synthesis of virtual view wiflg-s
nificant z-dimensional camera movement.
AGFT outperformedG-T and!| i near by 0.49dB and0.81dB,
showing that by selecting kernel and smoothness prior aedyt
we can achieve better image quality.

For thel aundr y sequence, we observe similar trend. In this

case, we see thai near , G-T andAGFT outperformedvVSRS+
by 2.77dB, 3.36dB and3.85dB, respectively.

The SSIM comparison is also given in Table 2, which is a

further comfirmation of the trend we observed by PSNR.

snmad

(a) expansion holes (b) VSRS+ (c) AGFT
Figure 4. Visual comparison betwe®¥SRS+ andAG-T for ar t .

Next, we examine the constructed image quality visually. In

(a) expansion holes

(b) VSRS+
Figure 5. Expansion holes and visual comparison betw&RS+ and
AGFT for sequencé aundry.

(c) AGFT
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