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Abstract—Depth maps, characterizing per-pixel physical dis- noise and/or suffer from partially missing data. Thus a majo

tance between objects in a 3D scene and a capturing camera,challenge in depth map processing is the restoration ofhdept
can now be readily acquired using inexpensive active sensor maps from their corrupted versions.

such as Microsoft Kinect. However, the acquired depth maps . .. .
are often corrupted due to surface reflection or sensor noise ~ More generally, image denoising—or removal arditive

In this paper, we build on two previously developed works in White Gaussian noise (AWGN) from photographic images—is
the image denoising literature to restore single depth maps-i.e., one of the classical problems in image restoration and has be
to jointly exploit local smoothness and nonlocal self-sintarity extensively studied in the literature. Recent notable adea

of a depth map. Specifically, we propose to first cluster simir . ;5 fie|q include the class of nonlocal image denoising

patches in a depth image and compute an average patch, from . . .
which we deduce a graph describing correlations among adjant techniques [2], [3], [4], as well as dictionary learningsbd

pixels. Then we transform similar patches to the same graph- approaches [5], [6]. Nonlocal image denoising [2] builds
based transform (GBT) domain, where the GBT basis vectors & on a simple assumption that similar patterns are likely to
learned from the derived correlation graph. Finally, we peform  recyr throughout an image. Thus, one can first cluster simila
an iterative thresholding procedure in the GBT domain to enbrce patches in an image, in order to jointly restore them by

group sparsity. Experimental results show that for single @pth .. . . ..
maps corrupted with additive white Gaussian noise (AWGN), ar  €Xploiting their dependency (i.e., nonlocal self-sinitiarof

proposed NLGBT denoising algorithm can outperform state-6- an image). Dictionary learning [5] assumes that a signal can
the-art image denoising methods such as BM3D by up to 2.37dB be represented by the linear combination of a few atoms out

in terms of PSNR. of a possibly over-complete dictionary. The primary chade
with dictionary learning is to simultaneously construzafin an

_ ] _appropriate dictionary and identify the sparsest repitasien
Recent advances in active depth sensors such as tif§-ine given signal.

of-flight cameras and Microsoft Kinec®P have made the
acquisition of depth maps (per pixel physical distance be-
tween objects in the 3D scene and the capturing camera)
widely affordable. Acquired depth maps—3D geometrical
information of the scene projected as 2D images to the
chosen camera viewpoints—can enable a variety of novel
imaging applications, such d3epth-Image-Based Rendering
(DIBR) [1], human gesture recognitiénetc. However, due to
the limitations of current depth sensing technologiesuaedq
depth maps are often corrupted by non-negligible acqorsiti

I. INTRODUCTION

(a) Depth map (b) Texture map
Fig. 1. The depth map ofeddy and its color counterpart.

Ihttp://en.wikipedia.org/wiki/Time-of-flightcamera

2http://code.google.com/p/kineticspace/ . .
Despite the close connection between depth maps and

o color images (e.g., Kinect acquires both), they have sigili
MMSP'13, Sept. 30 - Oct. 2, 2013, Pula (Sardinia), Italy. different characteristics. An important observation iatthn-
978-1-4799-0125-8/13/$31.00 (©2013 IEEE. like typical RGB color images, depth maps do not contain



rich texture information reflecting the physical attribaitef a present by the abundance of depth discontinuities (copater
surface. In other words, a depth map is ofpeecewise smooth:  of edges in photos).

it contains sharp edges (e.g., boundaries between foredrou Given the piecewise smooth characteristic of depth maps,
objects and background), and within the edges, the surtaeesGBT has been proposed in [7] for efficient transform coding;
varying spatially only gradually due to the absence of teedu given the derived GBT basis functions do not filter across
See Fig. 1 for an illustration where the depth map exhibits tha detected edge, the GBT representation for a given depth
piecewise smooth characteristic, and how it is differeatrfr block likely has zero high-frequency components, resgliin

its color counterpart. few non-zero coefficients that required coding. In our prasi

In this paper, we propose to build on the existing imaggork [8], we have also used GBT for depth map super-
denoising techniques to jointly exploit the local smoosieresolution. This paper can be viewed as an extension of [8] to
and nonlocal self-similarity of depth maps. More specifical depth map denoising.
we first cluster similar patches in a depth image and com-There are some recent work on denoising of depth maps
pute anaverage patch, from which we can deduce a grappi0], [11], where the availability of both color and texture
describing discontinuities (e.g., edges) as well as catigls maps are assumed, and their correlations are exploited for
among adjacent pixels. Second, we transform similar patchfenoising. We do not assume the availability of color maps
to a commorgraph-based transform (GBT) domain [7], where in our work; this is a practical consideration for depth seas
the GBT basis vectors can be derived from the deduckie Mesa’s SwissRangéthat do not capture texture images
correlation graph. Finally, we perform an iterative thresing  from the same viewpoint, and for challenging environments
procedure similar to [4] to enforce group sparsity in the GBTike a dark room, where the lighting conditions are not telka
domain. From this perspective, the newly-developedlocal to capture good quality color images.

GBT (NLGBT) denoising algorithm can be viewed as a
nonlocal extension of our previous work on super-resotutio I1l. GRAPH-BASED TRANSFORM
reconstruction of depth images [8].

It should be noted that patch clustering and GBT have We first overview the conventional three-step procedure to
to work hand-in-hand because local transience and nonlog@nstruct a GBT [7] from amnweighted graph; the method
invariance are the two sides of the same coin. Unlike pri construct a GBT from aveighted graph to define a set of
vious works, NLGBT is both locally adaptive (through thdasis functions for similar patches in Section V would be a
construction of a correlation graph reflecting the edgectine ~ Straightforward extension.
embedded into the average patch) and globally consistént (v First, prominent edges in g x /n target pixel patch
a common derived GBT transform using which all similagre detected. Edge detection can be done using a number of
patches are sparsified). Experimental results have shoatn tfethods; in [7], edges are detected in a target patch based
for single depth maps corrupted with AWGN, our propose@n the difference between neighboring pixel values using a
denoising algorithm can outperform state-of-the-art imagimple thresholding technique.
denoising methods such as BM3D by up to 2.37dB in termsIn the second step, we treat each pixel in fie x /n
of PSNR. block as a node in a grap§, and connect it to its four

The outline of the paper is as follows. We first overviewr eight immediate neighbors in the patch, resulting in a 4-
related work in Section Il. We then describe the standa@d 8-connectivity graph. If there is a detected edge between
procedure to construct a GBT in Section Ill. We present otwo neighboring pixels (nodes), we eliminate their conioect
depth map denoising formulation in Section IV, and we désiven the connectivity graph, we can define an adjacency
velop our algorithm in Section V. Finally, experimentatamd matrix A, where A(i,j) = A(j,i) = 1 if pixel positions
conclusion are presented in Section VI and VI, respegctivel i and j are connected, and otherwise. We can similarly

compute the degree matri®, whereD(i,) is the number
Il. RELATED WORK of connections for nodé, andD(7, ;) = 0 for all i # j.

Denoising of photographic images have advanced rapidlyln the third step, using computed and D, we can
in recent years especially after the publication of patakdad compute thegraph Laplacian matrix L = D — A.. If we now
image denoising (including nonlocal-mean [2] and BM3D [9])project a graph signat in the graphG onto the eigenvectors
The new insight along the line of patch-based image dempisiaf the LaplacianL, it becomes the spectral decomposition
lies in that important image structures such as edges asfdthe graph signalj.e, it provides a “frequency domain”
textures can be more effectively characterized by theitotah interpretation of signak given graph suppor§. Hence, we
self-similarity than local transience (the convention@dom can construct GBT transform using eigenvectorsIof In
at the heart of transform-based image models). Under tharticular, we can stack pixels in thgn x /n patch into
context of denoising, clustering similar patches distantf a lengthn vectorx and computey = U - x, whereU is a
each other makes it possible to more accurately estimate thatrix with eigenvectors df. as rows. Fig. 2 gives an example
signal variance from a bilateral perspective [4]. Therefor of constructing GBT from & x 2 pixel block.
is reasonable to expect that patch-based models could lend
themselves to depth maps where nonlocal self-similarity iShttp:/mww.mesa-imaging.ch/prodview4k.php
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B. Group Sparsity

L x 3 = <l> :; :: ([’ s :i 111 (1) E: Instead of sparsifying each patgh separately using a
‘ X 0010 00 01 dictionaryU;, one can group a set of similar patches together
2) x4 = . and optimize the joint sparsity of the group using the same
L =100 vivi VY learned dictionaryU:
I Lo |11 00| L |00 5%
Edges ’ 00 1-1 7%% g
= )

0 0-=11 (

N N
winy [lyi = Uaillz + 73 llaillo @
Fig. 2. An example of constructing GBT fronRa 2 pixel block. The vertical =1 =1

edges separate pixel 1 and 2 from pixel 3 and 4 and a graph &rooted ot : : .
by connecting pixels on each side of the edges. The correismadjacency The motivation is that the collection of similar patches b&n

matrix A, degree matrixD, Laplacian matrixL, as well as the computed treated as different noisy observations gdréanciple manifold.

GBT U are shown on the right. This is based on the observation that similar edge strusture
naturally appear nonlocally throughout a depth image. Wis th
cast the denoising problem as manifold reconstruction with

The above discussion of GBT is based on an unweightadisy data.

graph, which can be easily extended weighted GBT as-  The key to manifold reconstruction is to discover the geom-

sociated with a weighted graph. In a weighted graph théry of the manifold. One can learn a dictionary capturirg th

edge weightw(i, j) can be any nonnegative value other thaBommon structure of a group of similar patches, and enforce

0 and 1, offering more flexibility to describe the pairwisesparse representation in this dictionary domain for theigre

relationship between nodesand j, such as the similarity so-calledgroup sparsity—to reconstruct the clean manifold

in pixel intensities. The corresponding adjacency maW¥x geometry.

is defined ad¥ (i, 5) = w(i,j) and the degree of a nodds

defined to bel; = Y~ w(i, j). We can then compute the graptC. Nonlocal GBT

Laplacian matrix ad, = D — W and construct weighted GBT  pye to the desirable characteristic of piecewise smooth-
using eigenvectors dt. ness, we further exploit the group sparsity of depth maps
in GBT domain in a nonlocal fashion. The main idea of
Nonlocal GBT is to enforce sparsity of similar patches in
the same GBT domain which well reflects the structure of
Having discussed the construction of a basic GBT, Wfe principle manifold. We find this particular GBT domain
formulate the depth map denoising problem in this sectioBy first representing the common geometry of the group via
arriVing at a forma.l problem deﬁnition we C&{lonlocal GBT an average patch by Computing the average of the similar
(NLGBT). We start by introducing the popular sparse codingatches, which computes to the average statistics. We then
in patch space, which is the foundation of our formulatiogjerive the GBT from the similarity graph built on the average
Then we elaborate on our formulation tailored for depth mapsatch. The similarity graph describes the pairwise siritjlar
which combines depth maps’ local piecewise smooth ch@fetween adjacent pixels in depth values. Hence the learned

acteristic and the nonlocal self-similarity prior by exigllg  GBT dictionaryU is dependent on the average pagchf the
group sparsity of similar patches. group:

IV. PROBLEM FORMULATION

. U=U(@). 3
A. Sparse Codin
R 9 Having constructed the GBT which is adaptive to the

Sparse coding means that a pagchcan be represented byayerage statistics of the group of similar patches, we eynplo
a weighted combination of only a few atoms out of a learngflis GBT dictionary as the dictionaryJ in Eq. (2). In this
diCtionarin. In other WOde, it means flndlng a diCtionaeray we can enforce the group Sparsity in this common GBT
U; and weight vectory; for patchy; such that: i) each patch domain, thus reconstructing each patch in the group well by
y: is well approximated byJ;«;, and ii) the sparsity ofleiflo  referencing the nonlocal similar geometry. Further, bgwaihg
is minimized. Mathematically, we can write: different sparse representations in the same GBT domain, th
texture of each individual patch is also preserved.

Another advantage of our NLGBT approach is that the GBT
dictionary can be efficiently learned from the similar pa&sh
wherer is a Lagrange multiplier trading off approximationwhich avoids complicated dictionary learning process.
error and sparsity. Thé-norm regularizer enforces sparsity In a nutshell, our NLGBT method is a hybrid of group
of the weight vectox;. sparsity and GBT representation, exploiting the groupsipar

Image denoising can be formulated as sparse coding obwadapting a nonlocal GBT dictionary into Eq. (2). Both the
given noise-corrupted observatigr. The noise, which gen- local piecewise smoothness prior and nonlocal self-siityla
erally produces high-frequency components, can be remoywtbr are taken into consideration via the nonlocal GBT
by finding a sparse representation of the signal. representation.

min |ly; — Usaill2 + 7llaillo (1)
U,;,Oci



V. ALGORITHM DEVELOPMENT approach—ransform spectrum shrinkage—to yield the best

In this section, we develop an iterative depth map dE°SSible solution. _
noising algorithm based on the NLGBT model discussed Transform spectrum shrinkage means that we represent all

in Section IV. We describe our algorithm step-by-step arfge similar patches in the derived GBT domain and sparsify
summarize it inAlgorithm 1. the transform representations hgrd-thresholding the trans-

form coefficients. Since the GBT representation of a clean
A. Patch clustering depth map is expected to be dominated by the low-frequency

For a giveny/n x /n patch (called exemplar in the visioncOmponents because of the piecewise-smooth charaderisti
literature), we first search for it& -nearest-neighbors (kNN). the high-frequency components are most likely to be gen-
kNN together with the exemplar patch is callectlaster in erated by noise. Therefore, we qttenuate the noise by hard-
the sequel. We then stack them as columns to create a dafgsholding the transform coefficients. The thresholbisas
matrix'Y. Similar to BM3D, thek” most similar patches to the! = o/ (210g(n*K)), whereo is the standard deviation of

exemplar patch are found using block-matching and Euatidel’€ noise is the patch size and’ is the number of similar
distance. patches, as per the rule from [13].

D. Image update

B. GBT dictionary learning . .

We | he GBT dicti ‘ imil hes b Finally, all the patches are reconstructed from inverse GBT

Ve learn the ictionary for similar patches by eXgiy, e sparsified transform coefficients. As every pixel
pI0|t|r_19 their common structure as elaborated in Se_ct|0n I_\édmits several estimates in overlapped patches, the deagth m
Spgmﬂcally, we compute an average patch, from V\_’h'Ch a SIfd" ypdated by weighted averaging over overlapped patches.
llarity gfaph IS constr_ucteq modeling the local neighbartho "he weights should be inversely proportional to the rank of
correlations among _plx_els in the average patch_. There ére he sparsified coefficient matrix so that highly sparse pegch
ferent flavors of S|mllar|ty graphs, such as thaeighborhood et higher priority during weighted averaging. We empitica
graph,k-nearest neighbor graph and the fully connected gra Bt the weight as; = 1 — (r;/n) for the j-th cluster, where

[12]. We choose a four-connected graph where only pairwi;;e denotes the rank of the sparsified coefficient matrix and
_is the patch size.

adjacent pixels are connected for simplicity. In particuee
construct an undirected weighted graph by treating eaal pix _ o
in the average patch as a node and connect adjacent pikeldterative regularization

(i,4) with edge weight Borrowing the iterative regularization technique in [1vf
sy l12 add filtered noise back to the denoised image at each itaratio
T J . . . .
wi;=e B, (4) to |terat|vely_ enhanc_e the quality of the noisy depth mapetas
on the previous estimate:

where |ly; — y;||? calculates the squared intensity difference R R R
in pixe|l|z' andjj'”as a measure of similarity. The parameter gD =g oy - ™), ®)
controls the sensitivity of the similarity measure to théseo wherey is the input noisy depth mag;*) is the denoised
and the range of the intensity difference. It is empiricallf to  version at thek-th iteration ands is a relaxation parameter.
20% of the sum of the noise variance and maximum intensity
difference in the patch. Algorithm 1 Image Denoising via NLGBT

With the weighted similarity graph, we calculate the corre-1: Input: One noisy depth mayp
sponding Laplacian matrix and derive the GBT basis funstion2: Initialization : ) = y;
via eigen-decomposition. Note that unlike previous works o 3: for k =1 to iter do
GBT [7], [8], the GBT we use here is aeighted GBT 4. Step A. Patch clustering
constructed from a weighted graph instead of an unweightest  Step B. GBT dictionary learning
one. The motivation is that weighted GBT bases generally: Step C. Transform spectrum shrinkage
give sparser representation of the average patch sincétérbe 7:  Step D. Image update
captures the subtle inter-pixel correlations in the patch. 8.  Step E. lterative regularization
9: end for
10: Output: The denoised depth map

With the GBT dictionary learned, we denoise the depth
map by finding a sparse solution to Eq. (2) for each cluster.
The regularizet|a;|o is associated with thg pseudo norm, VI. EXPERIMENTATION
which makes the optimization problem NP-hard. One canln this section we present and discuss the denoising per-
relax it to a convex optimization by replacing thig-norm formance of the proposed NLGBT for depth maps to support
with the [;-norm and acquire the solution via an off-theour depth map model and representation. We compare against
shelf convex optimization solver. However, the computaio several competing denoising methods and further show the
complexity of the convex optimization is a hurdle to a reakffectiveness of NLGBT by demonstrating its benefit in Depth
time implementation. We thereby adopt a simple yet effectitmage-Based Rendering.

C. Transform spectrum shrinkage




. TABLE |
A. Experimental setup DEPTH MAP DENOISING PERFORMANCECOMPARISON INPSNR ©B)

We evaluate our NLGBT denoising approach with three WITH THREE COMPETING METHODS
Middlebury depth map€ones, Teddy andSawtooth®. Additive o

white Gaussian noise (AWGN) is added to these images, with|_mage | Method | 10 | 15 | 20 | 25 | 30
NLGBT | 42.84 | 30.18 | 36,53 | 34.43 | 32.97

standard deviation ranging from 10 to 30. We compare c BM3D | 4056 | 37.49 | 35.28 | 33.81 | 32.75
our approach with three other competing methods: Bilateral| ~°"° NLM | 39.42 | 35.84 | 34.64 | 32.95| 31.62
Filtering (BF) [15], Non-Local Means Denoising (NLM) [2] BF | 33.34) 30.53 | 27.96 | 26.03 | 24.21

and Block-Matching 3D (BM3D) [9], which exploits the local, '\g;\%?; ﬁ:gg gg:gg gg:z; gi:ié gggg

nonlocal and a hybrid of local and nonlocal prior respetyive Teddy NLM | 39.57 | 36.24 | 35.17 | 33.49 | 32.22

Note that BM3D exhibits one of the best denoising perfor- NL%FBT ig-ﬁ iégg ig-g; i‘i{;ﬁ ig-gfl’
mance in the literature. : ' ' : '

BM3D | 46.04 | 43.51 | 41.84 | 40.16 | 39.13

Sawtooth
S . NLM | 41.14 | 37.56 | 38.28 | 36.54 | 35.01
B. Convergence of the iterative algorithm BE 36.36 | 30.99 | 27.62 | 25.38 | 23.61

We first demonstrate the convergence of our iterative al-
gorithm. Fig. 3 shows that the depth map quality is greatly
enhanced at the second iteration and converges fast aftlrwa
Hence, the computational complexity can be further reducgéind, GBT representation is perfect to preserve the piseewi
by controlling the number of iterations as a trade-off b&twe smooth characteristic of depth maps, which is why NLGBT

complexity and performance for a fast profile. outperforms the two nonlocal methods NLM and BM3D.
Cones Teddy
" 44,
42| ’_,»--""""4"-"'"—_‘ 42 IO Rl Gt ety
’\40" j:igzg 4o - ';igig
B4 -6-0=30 B 38 -0=30
%35 4 IR Rt LSRR 23 - g i
D R
301 2 3 4 5 6 301 2 3 4 5 6 i )
Iteration Iteration (a) NLGBT (b) BM3D
(a) Cones (b) Teddy

Fig. 3. The PSNR curves of denoised depth m&umes and Teddy
respectively with iterative enhancement at different edevel.

C. Objective quality

We then compare our approach with BF, NLM and BM3D.
Table | shows the objective quality of denoising resultsgme !
sured in PSNR) by these methods at different noise level. Our (©) NLM (d) BF
scheme produces superior results, achieving up6d0dB

gain over BF.7.74dB gain over NLM and2.37dB gain over Fig. 4. Fragment of different denoised versions of the deptp Cones
BM3D ’ corrupted by AWGN ¢=10).

D. Subjective quality

E. Application to Depth-Image-Based Rendering

We now present the subjective quality comparison amon As depth maps generally facilitate various end application

different denoising methods. Fig. 4 and Fig. 5 demonstrd tead OT being observed directly, we fu_rther investigate
fragments of different denoised versions of depth maps f e effectiveness of our mgthod by ""_pp'}"”g the denoised
Cones andTeddy respectively. It can be observed that the dep epth dmaps dto one popular image ?pphcelmon—Dgpth—lfmage—
maps denoised by our NLGBT exhibit clean sharp edges al gse Ren_ermgd(DIBR)]; A simple implementation of 3D
smooth surface, while the ones produced by BM3D are blurr&@rPN9 [1] is used to perform DIBR.

along the edges to some extent. Those produced by NLM an e report the objective quality of the DIBR-synthesized
BF still look noisy all over the image views facilitated with stereo depth maps (corrupted by AWGN

The subjective quality of the reconstructed depth maﬁ\gth 0=10) denoised by different methods in Table Il. Again

by NLGBT validates the superiority of exploiting the grour;\”‘GBT outperforms BF, NLM and BM3D by up to 2.03dB,

sparsity in GBT domain for piecewise-smooth depth mapg'.85dB and 0.92dB respectively. We also show the DIBR-

On one hand, similar structures do recur throughout dep'i}ﬁnthesmed virtual views o€ones with different denoised

maps as in Fig. 4 and Fig. 5, which provides desirable inte\erionS of the stereo depth maps in Fig. 6. It can be observed

patch references for exploiting group sparsity; One thentHnat the synthesized result with NLGBT is more pleasant

than those produced with other methods, with fewer ringing
“http://vision.middlebury.edu/stereo/data/ artifacts and corrupted boundaries. The credit mainly does



(@) NLGBT (b) BM3D

(c) NLM (d) BF

Fig. 5. Fragment of different denoised versions of the deptp Teddy
corrupted by AWGN §=10).

the well-preserved depth discontinuities by NLGBT, whic
plays a critical role in DIBR.

TABLE Il
DIBR: PERFORMANCECOMPARISON INPSNR OB) WITH THREE
COMPETING METHODS(0=10)

(d) ‘BF

(©) NLM

Fig. 6. Fragment of the DIBR-synthesized imagesGohes by different
denoised versions of the corresponding stereo depth naagsy.
VII. CONCLUSION

Image
Method | Cones| Teddy | Sawtooth [5]
NLGBT | 27.30 | 29.96 32.06
BM3D 26.71 | 29.04 31.46
NLM 27.02 | 29.54 31.21
BF 25.27 | 28.39 30.48

algorithm is capable of jointly exploiting the local smoo#ss

and nonlocal self-similarity of depth maps. When tested on
standard depth images corrupted by additive white Gaussian
noise, our algorithm has shown to outperform several compet
ing approaches including BM3D. This work seems to suggest
that the joint local-and-nonlocal image model underlyihg t
proposed NLGBT algorithm is particularly effective for ¢cha
acterizing piecewise smooth signals such as depth maps. In
the future, we plan to test the effectiveness of NLGBT on
corrupted depth images acquired directly from noisy depth
sensors such as Kinect.
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