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ABSTRACT

To lessen the ill effects of depth video quantization at ikeze
we observe thatjuantized depth maps from different viewpoints of

Transmitting from sender compressed texture and depth mBPS the same 3D scene constitute multiple descriptions (MD) of the same

multiple viewpoints enables image synthesis at receivamfany
intermediate virtual viewpoint via depth-image-baseddezing
(DIBR). We observe that quantized depth maps from diffeveaw-
points of the same 3D scene constitutes multiple descriptfiD)
of the same signal, thus it is possible to reconstruct the Gihes
in higher precision at receiver when multiple depth mapscare
sidered jointly. In this paper, we cast the precision enbarent of
3D surfaces from multiple quantized depth maps as a condrinht
optimization problem. First, we derive a lemma that allovgsta
increase the precision of a subset of 3D points with cestasimply
by discovering special intersections of quantization §@B) from
both views. Then, we identify the most probable voxel-curita
QB intersections using a shortest-path formulation. Expental
results show that our method can significantly increase ribeigion

signal. Thus, it is possible to enhance the depth precision of the
described 3D scene at receiver when multiple quantizechdaepps
are considered jointly. As a motivating analogy, considest i1lD
of scalar quantizers; an example is shown in Fig. 1(a) whezeet
are two scalar quantizers offset Byrom each other. If the decoder
receives only the quantization bin (QB) index of the left ofieer,
then one can only deduce the coded scalar to be betwesn 8.
If the decoder receives QB indices of both left and right duzans,
then one can deduce the scalar to exist initiersection of the two
QBs—concluding the scalar to be betweéeand8—enhancing the
precision from to 2.

Similarly, consider a 3D point (callegbxel in the sequel) in the
captured 3D scene that is visible from both left and right esas,
as shown in Fig. 1(b), resulting in one sample in each of the tw

of decoded depth maps compared with standard decoding sshem depth maps If only the left depth sample is considered, then de-
Index Terms— Texture-plus-depth representation, 3D recon_COder can only deduce that a voxel exists inside the one QR (bl

struction, multiple descriptions

1. INTRODUCTION
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Fig. 1. Multiple descriptions for scalar quantizers and for 3Dnece
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QB in Fig. 1(b)). If both depth samples are considered, tremoder
can deduce that a voxel exists in timersection of the two QBs,
enhancing the depth resolution of the 3D scene.

Unlike the scalar quantizer case, however, correct magobiia

Texture-plus-depth [1] has quickly become a popular format for dy- pair of left and right QBs that contain the same voxel is nrietl.
namic 3D scene representation. One reason is becauseerecaiv
use texture and depth maps transmitted from sender fromrelift
viewpoints for synthesis of novel images as seen from frebty

sen virtual viewpoints viaepth-image-based rendering (DIBR) [2].

Another reason is because mature video coding tools lik64H[2]

and HEVC [4] can be easily and modestly adjusted for comjmess both views. Then, we identify the most probable voxel-ciming
of the new video format. To reduce coding rate to reasonabde s QB intersections using a shortest-path formulation. Expental
however, input texture and depth videos are typically lpssbm-
pressed via quantization using these tools, resulting antization
errors at decoder that corrupt the fidelity of the reconstidisignal.

In this paper, we formalize the QB matching problem to enbanc
depth precision of the 3D scene at receiver as a combinhtipia
timization problem. First, we derive a lemma that allows asnt
crease the precision of a subset of 3D points with certagityply

by discovering special intersections of quantization §@B) from

results show that our proposed method significantly outper$ sin-
gle depth map in accuracy with respect to the ground truthesig

The outline of the paper is as follows. We first discuss relate
work in Section 2. We then overview our system in Section 3. We
formalize our optimization in Section 4. Finally, experint& re-
sults and conclusions are presented in Section 5 and 6 ctesghe

2. RELATED WORK

While much efforts have been invested into efficient congices
schemes for 3D visual data in texture-plus-depth formag--e.
unique characteristics of depth maps like piecewise snmesth
have been exploited to improve depth map coding efficienc§]fs-
majority of the proposals are simple extensions or modeddifino
cations of existing coding tools like H.264 [3] or HEVC [4]sitead
of a complete coding architecture overhaul. It is thus likidat

1we will assume spatial resolutions of the depth maps arecirftly
high to provide enough samples for this assumption to halel tr



the same hybrid motion-compensation / transform-baseiduais Mo

coding framework will remain in place for the foreseeableifa. WWW

Nonetheless, we stress that our proposed depth precision en WWWW I 4
hancement algorithm is applicable to any texture-plusidepding ///éé//
scheme from which we can derive an independent QB for eadh dep \/ N 7
sample in each view. For block-based coding schemes liké4.2 %

where transform coefficients of &-pixel block are quantized and
transmitted, one can derive a QB for each depth pixel in tbekol
as follows. We first identify theé<-dimensional quantization region
that corresponds to the scalar quantized coefficients ofstipixel
block. If the same quantization step size is used for eackicoe
cient, then the quantization region is a hypercube. We tbastouct

a bounding box? with sides that are either parallel or perpendicular
to the pixel domain axes, that tightly contains the quadtizgion denoted as)! andQ!, respectively.

(solvable via linear programming). The width of the bourgpiox A cdll is an intersection of two QBs. We denote the intersection

along each pixel domain axis is the size of the QB for thatlpixe of i-th QB of left camera@!) and j-th QB of right camera@”)
A J

While we focus our study of precision enhancement of 3D surby Vi.;: see Fig. 4(a). We reserve the temtersection cell (IC) to
face using quantized depth maps at the decoder only, kngaled oo iniercection of two active QBs. Note that an active QB ma

gaine_d fror_n our Su.de can be leveraged at the encoder,_saphat have multiple ICs with different active QBs from anotherwie
Srop;]late bit aI.Iocatlo.n can be ;l)lerforrr&(?d among the mg“;qded An IC is calledtrueif it contains a voxel that is part of the actual
epth maps, improving overall rate-distortion (RD) pemiance.  ap g face  Since an IC is by definition smaller than QB in size

Joint optimization of depth map °°dif‘g at encoder and degith m (higher precision), the problem of depth precision enharere is
enhancement at decoder will be considered as future work. thus the selection of true ICs within active QBs.

On the epipolar plane, the 3D surface can be divided into indi
vidual contiguoussegments; e.g., foreground and background seg-
ments. Aquantized curve is a spatially contiguous series of QBs (at
low precision) or ICs (at high precision). Fig. 3 shows QBmira
single pixel row in left and right views of theude sequence.

Fig. 3. One epipolar plane afude’s two views. Active QB is represented
by a line segment, and the intersection of two active QBs i€an

guantization granularity. The QB with index that is actyaibded is
calledactive; the captured voxel of the 3D surface must exist within
the active QB confine. Theth QB from the left and right views are

3. SYSTEM OVERVIEW
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Fig. 2. Left view for thedude sequence. (a) special case (b) general case
We consider a scenario where the most likely 3D surface is estFig. 4. Example for deterministic ICs and probabilistic ICs. Visxgblack

mated at the decoder, given quantized color / depth map frairs  dots) are connected to show the original 3D curve.

two camera viewpoints (left and right). See Fig. 2 for an egiam

The color / depth map pairs are rectified, so that a row of pikel

the left view corresponds to a row of pixels in the right vieWe 3 5  peterministic ICs

assume that the depth maps are coarsely quantized compettes t

spatial resolution. That means for each voxel on the 3D serfa We first identify ICs that can be certified as true with proligpi

there is both a color and a depth pixel sample in both the teft a 1 (calleddeterministic 1Cs) without color information. We identify

right view, if the voxel is visible from both viewpoints (no occlu- these ICs with the following lemma.

sion). Our depth resolution enhancement work is constduosed

on thisdouble-sample assumption. We further assume Lambertian

surface characteristic for the 3D scene, so that the sana visible

from both views will result in similar color (RGB) values.

Lemma 1. V; ; istruewith probability 1 if: (i) V;,; istheonly I1C of
QB @' and other cellsof Q! are not occluded by active QBsin right
view; or (ii) V;,; isthe only IC of Q7 and other cells of Q7 are not
occluded by active QBsin the left view.

3.1. QBs, ICs and Quantized Curves As an example, there are five IGstp e) in Fig. 4(a), onlya and
. . ) . esatisfy Lemma 1 and thus are deterministic ICs.
Given the depth maps are rectified, we consider one row ofgixe We outline a proof of Lemma 1 as follows. Suppose the first
in the two depth / color map pairs at a time, corresponding2Da  ¢ongjtion in Lemma 1 is true. Because other célls of Q' are vis-
epipolar plane in 3D space. Possible depth values at eaehlpea- e from the right camera (not occluded), there would be cive
tion are partitioned intguantization bins (QB). The shape of a QB QB Q! intersecting with active QB! if there is a voxel in cell/; .
on the epipolar plane is approximated by a rectangle, whd8#8W o yever, we know active QB! only intersects with active QB
depends on the spatial resolution and length depends oretita d Hence, there can be no voxelslig, k # j. Since QBQ! is activje,

2Though the size of the bounding box is larger than the hyjrercour ~ Vi.; Must be true. . )
depth enhancement algorithm can nonetheless improve gegatision of the In general, it is possible that no cells in a local area satisé
decoded depth signal. condition in Lemma 1; see Fig. 4(b) for an example. In thiecas




will use color information to disambiguate among candidzi#s in
a probabilistic manner.

4. QUANTIZED CURVE ESTIMATION

Having identified deterministic ICs, we now formulate thelgem

of estimating the most likely quantized curve. We first divigBs

on an epipolar plane into segments, so that contiguity ohtged
curve can be enforced within a segment. Each segment isefurth
divided intoprocess units (PU), each with well defined start and end
cells. Finally, we estimate a contiguoo®mximum liklihood (ML)
quantized curve for each PU using shortest-path formuiatio

4.1. Grouping QBs into Segments

(a) grouping i

Fig. 5. Grouping QBs into segments and dividing a segment into PUs.

nto a segment (b) 2 PUs of (a)

the diagonal QB is the end céll of this PU. The connecting corner
cell of the diagonal QB is the start cell of the new PU, if the {3B
not indeterminant. If it is, then the middle cell is selected

In the second case, the horizontal QB on top must be indetermi
nant, and so we pick the middle cell as the end Eebf the first PU.
At the top of this heap of horizontal QBs, by segment conssac
there will be a diagonal cell. If this cell belongs to an aetikertical
QB, then the situation is same as case one above. If not, itlneds
long to an active horizontal QB, and the situation is therstae as
case two above. This procedure is repeated until all the aethe
segment are examined.

In the end, one or more PUs with corresponding start and end
cellsV; andV, are identified within a segment. Note that some of
the Vs (V) are not ICs, which will be addressed in Section 4.4.

4.3. Maximum Likelihood Formulation

For a given PU, we now formulate the IC selection problem in a
ML formulation. We first construct a grapf: each ICV; ; is
a node that is connected to its neighboring I€s;—to the left,
right, top, down and diagonal—with eddesGiven color informa-
tion from the left and right views{Y", Y"}, our goal is to find the
ML quantized curve—a most likelgrdered set of nodes denoted by
C={V'...,V¥} V¥ € g, of some sizex:
max Pr(Y'Y"|C), st.CeC @)
whereC is the feasible set of quantized curves in a PU. &hyg C
must satisfy the following constraints:

1. V@', 3Vi.. € C for somen.

To group QBs in an epipolar plane into segments, we do the 2. vQ7, 3V, ; € C for somem.

following. First, neighboring active QBs of the left viewwéd QBs
are neighbors if they are side-by-side or diagonal from etlcbr—
are grouped together 4&" (k)}. The same procedure is performed
for active QBs of the right view, resulting ifG" (k)}. Then, for
each pair of groups that have at least one overlapping celtake

the union of them to be a new combined group. We continue this

step until no more group pairs have overlapping cells; theairing
groups are the individual segments. As an example, in Fig) 5(
all the left and right groups are merged into one segmentuseca
they have overlapping cells. A segment represents an gtyaical
object in the 3D scene, e.g. a person’s body. Hence we witireaf
contiguity within a segment when estimating a quantizedeur

4.2. Dividing Segment into Process Units

3V eC 1<k < K, IV VFT e N

Constraints 1 and 2 state that a feasible curve must inclubast
one IC in each active QB. Constraint 3 states that a feasibhec
must be contiguous within a PU.

Probabilities of elements i@ are assumed independent. Using
color matching as conditional probability, (1) becomes:

K
1 T k
%gglgPr(YkYk|V )
- @
. l T k
@glélé; log Pr(YrYi|V"Y)

We now identify one or more PUs in a segment. A PU is composed  Note that (2) is essentially a sum of node costs (or edge wsigh

of ICs only. In the following sections, we estimate an ML qized
curve for each PU independently. For aimgeterminant QB—an
active QB with at least one non-IC cell (i.e. color infornaatiis
available from only one view)—that connects PUs into a segme
we will choose the middle cell for curve reconstruction taimiize
worst-case error, as done in conventional decoding schemes

We first search for the left-most active vertical QB contagni
ICs from the left view (second blue column from the bottorft-ile
Fig. 5(a)); these are the first ICs in the first PU. We initialihe
middle cell in the QB to the left of this QB as start cEll.

For each side-by-side vertical QB to the right that contd@s
we add the corresponding ICs to the PU; seetke2 ICs in the bot-
tom left of Fig. 5(a). At the right-most QB of this PU, by segmhe
construction there are only two cases: i) an active ver@ldiag-
onal from this PU, or ii) an active horizontal QB on top of tRib
(shown in Fig. 5(a)). In the first case, the corner cell thatnests to

along a contiguous curv€. Specifically, the weight of an edge ar-
riving at V¥ is W, = —log Pr(YLY7|VF), i.e. the consistency
(color matching) of’*’s color vectors from the two viewsy(}, and
Y?). For examplelV,,=|| Y} — Y71 if we assume Laplacian prob-
ability model for color matching. Exceptions are made fdedmin-
istic ICs as arriving nodes with edge weights = 0.

4.4. Shortest Path as Estimated Quantized Curve

Given graphG and start and end cellg; and V. for each PU, we
argue that a suitable variant of a shortest-path formuiatiidl result

in an ML optimal solution for defined feasible g&t We start from
the simplest case whefié and V. are opposite corner ICs of the
PU; an example is PU2 in Fig. 6. In this caes the set of all paths

3We connect a middle cell of an indeterminant QB to its neigimgpICs
in the same way, but if none exists, we draw a single edge tedsest IC.



betweenV, andV.. The solution of (2) is then simply the shortest are shown in Table. 1, where 'sta’ refers to standard methddaur’
path fromV; to V. on G. This can be solved efficiently using any refers to proposed method.

shortest path algorithms, such as Bellman-Ford (BF) [7].

If Vs andV. are corner ICs on the same side (e.g. PU3), feasible

solution set is the set of paths froifr; to V. that must pass through
at least onentermediate cell V; of the furthest row or column (the
intermediateV; for PU3 is the three ICs in the last row). This can
be solved by calling BF twice (with starting node fix1at or V. for
each run), and choosing the union of two shortest paths+ V;
andV; — V¢, whose sum of costs is minimal among all possilgle
WhenV; or V. is not an IC (e.g. PU1), the start (end) cells of
G become the ICs that are connected/toor V. (which is outside
the PU). Becaus¥; (V.) has at most 3 connected ICs in the PU, the
number of combinations of start and points for the PU is attrios
For each combination, we need to assign at most 2 interngeck#s
to satisfy constraints 1 and 2 (at least one IC of an active @Btm
be traversed). This can be similarly solved by calling BFtiplé
times.

As a whole, the ML quantized curve can be calculated in poly-

nomial time for any PU. Combining the ML quantized curvesdtbr
PUs in all segments on all epipolar planes, we arrive @uiasmti zed
3D surface with reduced uncertainty (enhanced precision).
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Fig. 6. Example of PUs with different start/end cells (marked itioye).

5. EXPERIMENTATION

Two test sequencespher e (400 x 400) anddude (480 x 800),
are used for experiments. They are both composed of twdieetti
views with depth and color maps. $pher e, the camera baseline is
5.4 and the depth range 8.0, 10.16]; in dude, the camera baseline
is 1.0 and the depth range [$.15, 2.6].

To decode depth values, the standard method picks the center

depth values of QBs. In our method, center values of the agtiin

quantized 3D surface (composed of ICs in the solution of 2y

middle cells for indeterminant QBs) are used as decodeddept
Mean Square Error (MSE)is used as metric:

(EZ+ET)/2
1 - r 1 r T
ELZWHDI—DIH?W € :WHD -D'||%

3

®)

wheree! ande" are respectively the MSE of the left and right de-
coded depth map® is the ground-truth 12-bit depth map is the
decoded depth mapd x N is the spatial resolution of the sequence.
Depth maps with varying bit-precision (3-ki6-bit, denoted by
d3~d6 respectively) are used as inputs. Color maps with 6-t8t or
bit precision (c6 and c8) are used as side information. MSHlt®

Table L MSE Comparisons

sphere dude
sta our-c6 our-c8 sta our-c6 our-c8
d3 | 2.30e-3| 1.96e-4| 1.66e-4| 4.28e-3| 1.07e-3| 1.07e-3
d4 | 5.02e-4| 8.55e-5| 5.82e-5| 7.73e-4| 2.00e-4 | 2.00e-4
d5 | 1.18e-4| 4.61e-5| 2.51e-5| 1.86e-4| 5.36e-5| 5.36e-5
d6 | 2.86e-5| 2.38e-5| 1.37e-5| 4.28e-5| 1.69e-5| 1.69e-5

We can see that our method is able to achieve significanthehnig
precision: the MSE of proposed method is less than 10% ofathat

standard method farpher e with 3-bit input depth and 6-bit color.
Although in general lower MSE will be obtained with bettetaro

information, 6-bit and 8-bit color maps didn’t make a difface for

dude whose color tends to be locally uniform; see Fig. 2.

Some visual results are shown in Fig. 7. We can see that our so-
lution aligns with ground-truth 3D surface much better tetandard
method who simply picks the center of QBs.

*/"!"//
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Fig. 7. Example of decoded surface of proposed method (green)spats
ground-truth (black crosses) fdude with 6-bit depth and 6-bit color.

/

6. CONCLUSION

In this paper, we consider the scenario of recovering a highip
sion 3D surface represented by multi-view texture-plustidenaps.
We formulate it as a maximum likelihood problem which can be
effectively solved using a shortest-path algorithm. EBffemess of
proposed method is verified in accuracy of decoded depth.maps
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