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ABSTRACT

In free viewpoint video, a user can pull texture and depth videos cap-
tured from two nearby reference viewpoints to synthesize his chosen
intermediate virtual view for observation via depth-image-based ren-
dering (DIBR). For users who are observing the same video at the
same time but not necessarily from the same virtual viewpoint, they
have incentive to pull the same reference views so that the stream-
ing cost can be shared. On the other hand, in general distortion
of a synthesized virtual view increases with its distance tothe ref-
erence views, and so a user also has incentive to select reference
views that tightly “sandwich” his chosen virtual view, minimizing
distortion. In a previous work, reference view sharing strategies—
ones that optimally trade off shared streaming costs with synthesized
view distortions—were investigated for the case when usersare first
divided into groups, and each user group independently pulls two
reference views and shares the resulting streaming cost. Inthis pa-
per, we generalize the previous notion of user group, so thata user
can simultaneously belong to two groups, and each group shares the
streaming cost of a single view. We also aim to find a Nash Equilib-
rium (NE) solution of reference view selection, which is stable and
from which no one has incentive to unilaterally deviate. Specifically,
we first derive a lemma based on known properties of synthesized
view distortion functions. We then design a search algorithm to find
a NE solution, leveraging on the derived lemma to reduce search
complexity. Experimental results show that the stable NE solution
increases the overall cost only slightly when compared to the un-
stable optimal reference selection that gives the lowest overall cost.
Further, a larger network will give a lower average cost for each user,
and thus, users tend to join large networks for cooperation.

Index Terms— Free viewpoint video, content sharing, Nash
equilibrium

1. INTRODUCTION

In free viewpoint video [1], a user can select any virtual view from
which an image of the 3D scene is rendered for observation. Specif-
ically, given a 1D array of cameras with positionsV = {1, . . . , V },
an image of virtual viewu is typically synthesized using texture and
depth maps captured from two nearby captured views,vl and vr,
wherevl < u < vr andvl, vr ∈ V, via depth-image-based render-
ing [2]. For users who are observing the same free viewpoint video
synchronized in time—e.g., during a live video broadcast ofa public
event like a piano recital—but not necessarily from the sameview-
point, they have incentive to pull texture and depth video streams
from the same reference views, so that the streaming cost canbe
shared. On the other hand, it has been shown [3, 4] that in general
distortion of the synthesized view increases with its distance to the
reference views. Thus, a user also has incentive to select video of ref-
erence views that tightly “sandwich” his chosen virtual view, in order
to minimize visual distortion. This poses an interesting dilemma for

users: how to best select and share video streams of different ref-
erence views, so that the streaming cost and the resulting collective
synthesized view distortion is optimally traded off?

In a previous work [5], reference view sharing strategies were
studied for the case where users are first divided into groups, and
then each group independently pulls and shares the streaming cost of
two reference views, using which virtual views of the group’s users
are synthesized. While the developed algorithms are simpleand in-
tuitive, it is easy to see how this type of groupings is sub-optimal.
First, it is possible for multiple groups to be independently pulling
the same video view, when the cost of this common view can be
shared by the union of these groups. Second, members belonging
to the same group must shareboth reference views, when it may be
more optimal for them to share only one reference view, and sepa-
rately find appropriate groups to share a different second reference
view for view synthesis. By imposing the constraint that each user
group selects two reference views only for users in that group, nei-
ther of these two cases are possible.

In this paper, we generalize the previous notion of user group,
so that a user can simultaneously belong to two groups, and each
group shares the streaming cost of a single view. Doing so means
a video view is never pulled more than once, and its cost is shared
only by those who are using this view as reference for view synthe-
sis. To study a stable user grouping, we exploit tools from game
theory [6], and seek a Nash Equilibrium (NE) solution of reference
view selection, from which no one has incentive to unilaterally devi-
ate. Specifically, we first derive a lemma based on known properties
of synthesized view distortion functions. We then design a search al-
gorithm to find locally optimal groupings, leveraging on thederived
lemma to reduce search space, thus reducing computation complex-
ity. Simulation results show that the stable NE solution achieves
slightly higher overall cost than the unstable optimal reference se-
lection that gives the lowest overall cost. Furthermore, a larger net-
work has the ability to request more reference views to reduce users’
distortion without much increase of the subscription fees shared by
each user. Thus, everyone can reach a lower cost in a larger network.

The outline of the paper is as follows. We first overview related
work in Section 2. We then formulate our problem in Section 3.
We derive our lemma and corresponding optimization algorithm in
Section 4. Finally, experimental results and conclusion are presented
in Section 5 and 6, respectively.

2. RELATED WORK

As technologies for compression of texture and depth maps for free
viewpoint video become more mature [7, 8], research focus has
shifted to the streaming and distribution of this new media type. [9]
designed a multiview video compression algorithm in combination
with an observer’s head position prediction scheme, so thatthe likely
captured video views to be observed by client in the near future are
automatically pulled from server. [10, 11] studied the problem of



how smartly encoded multiview video that facilitates view-switching
can be replicated in storage-constrained distributed servers across
a network to minimize view-switching delay. [12, 13] investigated
how texture and depth videos can be unequally protected to mini-
mize the synthesized view distortion when streaming over a network
prone to packet losses. None of these prior streaming work studied
the problem of how video streams of different views can be opti-
mally selected and shared among users observing different virtual
views, however, which is the focus of this paper.

On the other hand, video sharing for single-view video, mostly
for Peer-to-Peer (P2P) video streaming, has been studied extensively
in the literature. For example, the work in [14] derived a stochastic
fluid model to analytically reveal the characteristics of P2P stream-
ing systems and exposed the key designing features to achieve a
satisfactory system performance. The work in [15] studied areal
world large-scale P2P streaming system to gain insights forsuccess-
ful deployment of such systems. The work in [16] reviewed different
overlay network structures for both P2P live streaming and video-on-
demand. However, all these works for single-view streamingcannot
be directly applied to the free viewpoint scenario, since how to se-
lect and share the reference views to address the tradeoff between
the streaming cost and the synthesized view distortion is a key issue
for live free viewpoint video distribution, which we study here.

3. PROBLEM FORMULATION

In this section, we first describe the free viewpoint video model we
chose for our problem formulation. We then describe properties of
the synthesized view distortion and subscription fee sharing.

3.1. Free Viewpoint Video Model
Let V = {1, . . . , V } be a discrete set ofcaptured views for V
equally spaced cameras in a 1D array. Each camera captures both
a texture map (RGB image) and a depth map (per-pixel physical
distances between objects in the 3D scene and camera) at the same
resolution. The texture map from an intermediatevirtual view be-
tween any two cameras can be synthesized using texture and depth
maps of the two camera views (reference views) via a depth-image-
based rendering (DIBR) technique like 3D warping [2]. DIBR es-
sentially maps texture pixels in the reference views to appropriate
pixel locations in a virtual view; such locations are derived from the
corresponding depth pixels in the reference views. Disoccluded pix-
els in the synthesized view—pixel locations that are occluded in the
two reference views—can be completed using depth-based inpaint-
ing techniques [17, 18]. Because inpainting offers only a best-guess
solution, the larger the disoccluded regions are, the lowerthe syn-
thesized view image quality will be in general.

More specifically, letu be the virtual view that a peer currently
requests for observation. We assumeu can be written asu = v+ k

K
,

v ∈ {1, . . . , V − 1} and k ∈ {0, . . . ,K}, for some large pre-
determined constantK. In other words,u belongs to an ordered dis-
crete set of intermediate viewpoints—the set of views between (and
including) camera views1 andV , spaced apart by integer multiples
of 1/K. A discrete distribution functionqu describes the fraction of
peers who currently request the virtual viewu.

3.2. Synthesized View Distortion

Typically, to construct a virtual viewu that is not itself a camera-
captured view, DIBR requires left and right reference viewsvl and
vr such thatvl < u < vr. Note thatvl andvr do not have to be the
closest captured views tou. The distortion of the synthesized view,
du(v

l, vr), varies with the choices of reference views,vl andvr. We
assume thatdu() has the following three properties.

First, further away reference viewsvl andvr to virtual viewu
induce no smaller distortion, that is,

du(v
l, vr1) ≤ du(v

l, vr2) if vr1 < vr2 , and

du(v
l
2, v

r) ≥ du(v
l
1, v

r) if vl2 < vl1. (1)

We call this themonotonicity in reference view distance for syn-
thesized view distortion. This is reasonable, since further reference
views usually result in more disoccluded pixels, lowering the quality
of the synthesized view [3, 4].

Second, given virtual viewu and left and right reference views
vl andvr, defineτ = min

(

|vl − u|, |vr − u|
)

as theminimum ref-
erence view distance betweenu andvl, vr. We assume that a smaller
τ induces no larger distortion, i.e.,

du1
(vl, vr) ≤ du2

(vl, vr) if τ1 < τ2

where τ1 = min
(

|vl − u1|, |v
r − u1|

)

and τ2 = min
(

|vl − u2|, |v
r − u2|

)

. (2)

We call this themonotonicity in minimum reference view distance.
This is also reasonable, since it is observed empirically that when
both reference views are encoded at the same quality (using the same
quantization parameter (QP)), the worst synthesized view distortion
tends to take place at the middle view [3].

Third, we assume that the rate of distortion increases with re-
spect to minimum reference view distance is no smaller if thecurrent
distortion is higher. Mathematically, we write:

∂du(v
l, vr)

∂vr
= φ(du(v

l, vr)), if |vr − u| ≤ |vl − u| (3)

whereφ() is a monotonically non-decreasing function. Similar as-
sumption applies when virtual viewu is closer to the left reference
view. We call this themonotonicity in reference view slope. One
example ofdu(vl, vr) that follows this property is a linear func-
tion, in which caseφ(y) = c for a constantc. Another example of
du(v

l, vr) is an exponential function, in which caseφ(y) = c ∗ y.
Using the chain rule, one can see that this assumption implies

convexity of distortiondu(vl, vr) in vr:

∂2du(v
l, vr)

∂vr2
=

∂φ(du(v
l, vr))

∂du(vl, vr)

∂du(v
l, vr)

∂vr
≥ 0.

The first term is non-negative sinceφ(y) is a monotonically non-
decreasing function iny. The second term is also non-negative since
du(v

l, vr) is a monotonically non-decreasing function in reference
view vr by the first assumption. Hence the second derivative is non-
negative, anddu(vl, vr) is convex in reference viewvr. An example
of distortion functiondu() satisfying the above properties is shown
in Fig. 1. The assumption of convexity in distortion function is com-
mon in classical rate-distortion (RD) analysis.

For a virtual viewu that itself is a camera-captured view, it can
also be synthesized by a pair of left and right reference views vl

andvr wherevl < u < vr. The distortiondu(vl, vr) follows the
same properties as discussed above. Alternatively, it can be perfectly
constructed with the camera-captured viewu with zero distortion.
Based on the above discussion, for any virtual viewu, letVu denote
its selected reference view set, and the corresponding distortion is:

Du(Vu) =

{

du(v
l, vr), if Vu = {vl, vr},

0, if u is an camera view andVu = {u}.
(4)
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Fig. 1. Example of synthesized view distortion as function of right reference
view vr for two virtual viewsu andu′.

3.3. Subscription Fee Sharing

We assume that the server charges subscription feeA for streaming
one video view (texture and depth). AssumingN users are close to
each other in network distance, users who request the same camera
view can request only one copy from the server, and share the view
and the subscription feeA with each other. Letnv =

∑

u
quI [v ∈

Vu] be the fraction of users utilizing viewv as reference, whereI [·]
is the indicator function. Thus, each user requesting viewv can ac-
cess viewv with the subscription payments(v) = A/(Nnv).

Based on the above discussion, given reference view selection
Vu, a user of virtual viewu has the overall costcu(Vu) that includes
two terms: synthesized view distortion and the subscription payment

cu(Vu) = Du(Vu) +
∑

v∈Vu

s(v). (5)

4. AGGREGATE PERFORMANCE OPTIMIZATION

We now derive an algorithm to find a stable NE solution for users’
reference view selections{V∗

u}. It means that user of any virtual
view u cannot deviate from the NE solutionV∗

u and further reduce
its own cost, given that users at all other virtual views follow the NE
solution{V∗

u}. Mathematically, we havecu(V∗
u) ≤ cu(Vu) for any

u given that all other virtual views follow{V∗
u}. Thus, no one has

incentive to unilaterally change his reference view selection. We first
describe a condition for reference view selection in an NE solution.
We then propose an efficient algorithm to find an NE solution{V∗

u}.

4.1. Condition for an Equilibrium Solution

Given the properties of the synthesized view distortion described in
Section 3.2, we state formally the following important lemma con-
ditioning on the selection of right reference views in the equilibrium
solution.

Lemma 1 In the equilibrium solution, suppose user of virtual view
u chooses left and right reference viewsvl andvr1 , where|vl −u| >
|vr1 − u|. Then, user of viewu′ < u with left reference viewwl,
wherewl ≤ vl, cannot choose right reference viewvr2 over viewvr1 ,
wherevr2 ∈

(

vr1 ,min{2u′ −wl, 2u− vl}
]

.
Fig. 1 illustrates an example. A similar lemma can be written

for conditioning of the selection of left reference views inthe equi-
librium solution as well. We now prove the above lemma as follows.

Proof of Lemma 1 We prove by contradiction. Suppose that in the
equilibrium solution, a user of virtual viewu′, u′ < u, with left
reference viewwl, wherewl ≤ vl, selects right reference viewvr2 ∈
(

vr1 ,min{2u′ − wl, 2u− vl}
]

over vr1 . We consider two cases: i)
wl = vl and ii)wl < vl.

Consider first the case wherewl = vl. The largest valuevr2 can
take on is2u′ − vl. Hence

vr2 ≤ 2u′ − vl

vr2 − u′ ≤ u′ − vl

That means virtual viewu′ is always closer to right reference view
vr2 than left reference viewvl. Given u′ < u, virtual view u is
also closer to right reference viewvr2 than left reference viewvl.
Further, by monotonicity in minimum reference view distance,u′ <
u means:

du′(vl, vr) ≥ du(v
l, vr) ∀vr ∈ [vr1 , v

r
2 ].

Consequently, by monotonicity in reference view slope, we have

∂du′(vl, vr)

∂vr
≥

∂du(v
l, vr)

∂vr
vr ≤ vr1 ≤ vr2 .

Givendu′ is no smaller thandu at right reference viewvr1 and in-
creases fromvr1 to vr2 at a rate no smaller thandu, we can conclude
that:

du′(vl, vr2)− du′(vl, vr1) ≥ du(v
l, vr2)− du(v

l, vr1)

> s(vr1)− s(vr2).

The last inequality stems from the fact that user of virtual view u
selects right reference viewvr1 overvr2 , meaning that the drop in dis-
tortion is larger than any potential increase in subscription fee. That
means user of virtual viewu′ can achieve a lower cost by choosing
virtual viewvr1 overvr2 . A contradiction.

We next consider the case wherewl < vl. Becausewl < vl <
u, user of virtual viewu can selectwl as left reference view for view
synthesis. From the assumption of monotonicity in reference view
distance, we have

du(w
l, vr) ≥ du(v

l, vr) ∀vr ∈ [vr1 , v
r
2 ].

Again, by monotonicity in reference view slope, we have

∂du(w
l, v)

∂v
≥

∂du(v
l, v)

∂v
vr ≤ vr1 ≤ vr2 .

Given the above two observations, we can conclude that

du(w
l, vr2)− du(w

l, vr1) ≥ du(v
l, vr2)− du(v

l, vr1)

> s(vr1)− s(vr2)

Following similar steps as in the first case, it can be shown that

du′(wl, vr2)− du′(wl, vr1) ≥ du(w
l, vr2)− du(w

l, vr1)

> s(vr1)− s(vr2). (6)

This also contradicts the assumption that user of virtual view u se-
lectsvr2 over vr1 . Since both cases are shown to be contradictions,
the lemma is proven.�

Lemma 1 shows that when a user of virtual viewu selects
left and right reference viewsvl and vr, for users in any vir-
tual view u′, u′ < u, with left reference viewwl, wl ≤ vl,
they will not select right reference viewwr in the rangeδ =
(

vr,min{2u′ − wl, 2u− vl}
]

. Lemma 1 can help reduce the
search space when we seek for the equilibrium solution.

Consider first an exhaustive search algorithm, where for each
virtual viewu′, it tries all possible left and right reference viewswl

andwr and chooses the optimal pair to minimize cost for viewu′. If
we apply lemma 1 for each virtual viewu′ and left referencewl, we



first need to find out the excluded rangeδ and then try the remain-
ing right reference views. In practice, determiningδ can itself be
computation-expensive. When|δ| is small, the saving in a reduced
search space is outweighed by the computation ofδ. Thus lemma 1
should only be selectively applied to speed up a search algorithm.

It is clear that when(2u′ − wl) or (2u − vl) is small,|δ| will
also be small. Further,u′ being close toV means there are not many
candidate right reference views in the first place. Thus, we set two
necessary conditions before applying lemma 1 to a search algorithm:
i) 2u′−wl ≥ τ1, and ii)u′ ≤ τ2, whereτ1 andτ2 are pre-determined
parameters. We detail our search algorithm next.

4.2. Efficient Algorithm for Nash Equilibrium Solution

Using lemma 1, we describe an algorithm that finds an NE solution.

Algorithm 1 Nash Equilibrium Solution Search

1: Identify range[ul, ur] that contains all peers.
2: InitializeVu = {⌊ul⌋, ⌈ur⌉}, ∀u.
3: repeat
4: for each virtual viewu′ with viewersdo
5: for each left referencewl ∈ [⌊ul⌋, ⌊u′⌋] do
6: δ = ∅.
7: if (2u′ − wl) ≥ τ1 andu′ ≤ τ2 then
8: for each virtual viewu > u′ do
9: δ = δ

⋃

(vr,min{2u′ − wl, 2u− vl}].
10: end for
11: end if
12: for eachwr ∈ [⌈u′⌉, ⌈ur⌉] \ δ do
13: if cu′({wl, wr}) is the smallest cost so farthen
14: UpdateVu′ = {wl, wr}.
15: end if
16: end for
17: end for
18: end for
19: until {Vu} is stable.

We first initialize a tight virtual range[ul, ur] that contains all
peers. The tightest reference views that sandwich this range are⌊ul⌋
and⌈ur⌉, which we use to initializeVu’s.

Then, given solution{Vu} in the last iteration, for each virtual
viewu′ with viewers, we search its optimal reference view selection
Vu′ assuming that users of other views follow{Vu}. Specifically, for
each possible left referencewl, we search its optimal right reference
wr that gives the lowest costcu′({wl, wr}). The search range for
wr can be decreased byδ, if the two conditions(2u′ − wl) ≥ τ1
andu′ ≤ τ2 are satisfied and lemma 1 is applied. The algorithm is
repeated until the solution{Vu} is stable.

5. EXPERIMENTATION

For our experiments, we used the same synthesized view distortion
function in [5]:

du(v
l, vr) = γeα(vr

−vl)(eβ∗min(u−vl,vr
−u) − 1) (7)

which meets all the properties described in Section 3. We also used
the same parameters:γ = 0.06, α = β = 0.2. For available
views for free viewpoint navigation, we assumed 21 capturedviews
and 221 virtual views. We assumed each user’s view distribution
follows a uniform distribution, and he selects a particularview with
probability 1/221. We tested our system under different network
sizeN and subscription feeA. We ran each simulation for 200 times
and will show the average results in the following discussions.
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Fig. 2. Overall cost and number of captured views pulled versus subscription
fee. In (a),NE, OS andGA are compared for fixed network sizeN = 5000.
In (b), network size was variedN = 5000, 8000 and10000.

Fig. 2(a) shows the performance of the NE solution (NE) with
the optimal reference view selection (OS) and the grouping algo-
rithm (GA) studied in [5]. OS assumes that all users cooperatively
purchase a subset of reference viewsV ′ ⊆ V, and each peer will
select the tightest left/right references fromV ′ to minimize its dis-
tortion. OS aims to find the optimalV ′ to minimize the overall cost
(i.e., the total distortion and the total subscription payment of all
users). AlthoughOS gives the global optimal reference selection,
it is not stable; it does not take into account users’ selfish tendency
to seek to reduce their own cost instead of the overall cost. In GA,
all users between two neighboring camera-captured views form a
group, and each group independently requests the tightest left and
right reference views. The users in the same group share the sub-
scription fee together. Fig. 2(a) shows the overall cost of the three
algorithms. We first observe thatGA gives the highest overall cost,
since different groups do not share reference views. We alsoobserve
thatNE results in a slightly higher overall cost thanOS. HenceNE
provides incentive for users to form stable reference selection with
only a small loss of the overall performance.

Fig. 2(b) shows the total number of requested reference views
selected by users viaNE for different network sizes. We first ob-
serve that the number of requested reference views decreases when
subscription feeA increases. This is because whenA is larger, users
request smaller number of reference views with more users for each
reference to share the fee. We observe also that the number ofre-
quested reference views increases with increased network sizes. This
is because a larger network has more users to share the cost. Since
more reference views can effectively reduce users’ distortions, each
user can have a lower cost on average in a larger network.

Using 81 captured views in the system and settingτ1 = 65 and
τ2 = 70, algorithm using lemma 1 can save more than10% in exe-
cution time comparing to exhaustive search. Experiment results also
show that algorithm with lemma 1 can reap more computation sav-
ings for large number of captured views.

6. CONCLUSION

We study the optimal reference view selection problem in a cooper-
ative free viewpoint streaming system, where a user can simultane-
ously belong to two groups and share the cost of a single reference
with each group separately. To study a stable NE reference selection,
we propose an efficient search algorithm, leveraging on the proper-
ties of the synthesized video distortion. Simulation results show that
a stable NE solution only slightly increases the overall cost, when
compared to the unstable optimal reference selection that gives the
lowest overall cost. Furthermore, a larger network has the ability
to request more reference views to reduce users’ distortionwithout
much increase of the subscription fees shared by each user.
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