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ABSTRACT

In free viewpoint video, a user can pull texture and deptle@gicap-
tured from two nearby reference viewpoints to synthesigehosen
intermediate virtual view for observation via depth-imdigesed ren-
dering (DIBR). For users who are observing the same videbeat t
same time but not necessarily from the same virtual viewpdiey
have incentive to pull the same reference views so that tearst
ing cost can be shared. On the other hand, in general d@storti
of a synthesized virtual view increases with its distancéheoref-
erence views, and so a user also has incentive to selecemeter
views that tightly “sandwich” his chosen virtual view, mimizing
distortion. In a previous work, reference view sharingtsgj@es—
ones that optimally trade off shared streaming costs witltr@sized
view distortions—were investigated for the case when userdirst
divided into groups, and each user group independentlys b
reference views and shares the resulting streaming coshisipa-
per, we generalize the previous notion of user group, soahester
can simultaneously belong to two groups, and each grougshiae
streaming cost of a single view. We also aim to find a Nash kxguil
rium (NE) solution of reference view selection, which isbdééaand
from which no one has incentive to unilaterally deviate. Gipzally,
we first derive a lemma based on known properties of syntbésiz
view distortion functions. We then design a search algoritb find

a NE solution, leveraging on the derived lemma to reduceckear
complexity. Experimental results show that the stable NiEtEm
increases the overall cost only slightly when compared ¢outh-
stable optimal reference selection that gives the lowestadlvcost.
Further, a larger network will give a lower average cost fmteuser,
and thus, users tend to join large networks for cooperation.

users: how to best select and share video streams of diffezEn
erence views, so that the streaming cost and the resultitertoe
synthesized view distortion is optimally traded off?

In a previous work [5], reference view sharing strategiesewe
studied for the case where users are first divided into groapd
then each group independently pulls and shares the strgamsh of
two reference views, using which virtual views of the graupsers
are synthesized. While the developed algorithms are siamdein-
tuitive, it is easy to see how this type of groupings is subrogl.
First, it is possible for multiple groups to be independgptlilling
the same video view, when the cost of this common view can be
shared by the union of these groups. Second, members bejpngi
to the same group must shdrath reference views, when it may be
more optimal for them to share only one reference view, apd-se
rately find appropriate groups to share a different secofetarce
view for view synthesis. By imposing the constraint thatreaser
group selects two reference views only for users in thatgroei-
ther of these two cases are possible.

In this paper, we generalize the previous notion of usermgrou
so that a user can simultaneously belong to two groups, atil ea
group shares the streaming cost of a single view. Doing s;msea
a video view is never pulled more than once, and its cost iregha
only by those who are using this view as reference for vieviteym
sis. To study a stable user grouping, we exploit tools frormegja
theory [6], and seek a Nash Equilibrium (NE) solution of refece
view selection, from which no one has incentive to unildtedevi-
ate. Specifically, we first derive a lemma based on known pti@se
of synthesized view distortion functions. We then desigeach al-
gorithm to find locally optimal groupings, leveraging on therived
lemma to reduce search space, thus reducing computatiopleom

Index Terms— Free viewpoint video, content sharing, Nash ity. Simulation results show that the stable NE solutioniexds

equilibrium
1. INTRODUCTION

In free viewpoint video [1], a user can select any virtuakwieom
which an image of the 3D scene is rendered for observatioeciSp
ically, given a 1D array of cameras with positiois= {1,...,V},

an image of virtual view, is typically synthesized using texture and
depth maps captured from two nearby captured viewsnd v",
wherev' < u < o™ andv',v” € V, via depth-image-based render-
ing [2]. For users who are observing the same free viewpodgos
synchronized in time—e.g., during a live video broadcast pfiblic
event like a piano recital—but not necessarily from the saree-
point, they have incentive to pull texture and depth videeasns
from the same reference views, so that the streaming cosbe&an

slightly higher overall cost than the unstable optimal refiee se-
lection that gives the lowest overall cost. Furthermorergédr net-
work has the ability to request more reference views to redisers’
distortion without much increase of the subscription fdegraed by
each user. Thus, everyone can reach a lower cost in a lanyesnke
The outline of the paper is as follows. We first overview retat
work in Section 2. We then formulate our problem in Section 3.
We derive our lemma and corresponding optimization algoritn
Section 4. Finally, experimental results and conclusierpaesented
in Section 5 and 6, respectively.

2. RELATED WORK

As technologies for compression of texture and depth maplsdie
viewpoint video become more mature [7, 8], research focus ha

shared. On the other hand, it has been shown [3, 4] that inrglene shifted to the streaming and distribution of this new megjzet [9]

distortion of the synthesized view increases with its distato the
reference views. Thus, a user also has incentive to setd®b vf ref-
erence views that tightly “sandwich” his chosen virtualyie order
to minimize visual distortion. This poses an interestingmima for

designed a multiview video compression algorithm in coration
with an observer’s head position prediction scheme, sdhiedikely
captured video views to be observed by client in the neardave
automatically pulled from server. [10, 11] studied the peat of



how smartly encoded multiview video that facilitates viswitching
can be replicated in storage-constrained distributedesgracross
a network to minimize view-switching delay. [12, 13] invigsited
how texture and depth videos can be unequally protected e mi
mize the synthesized view distortion when streaming ovestavork
prone to packet losses. None of these prior streaming warkest
the problem of how video streams of different views can be-opt
mally selected and shared among users observing diffeignalh
views, however, which is the focus of this paper.

On the other hand, video sharing for single-view video, mgost
for Peer-to-Peer (P2P) video streaming, has been studiedsixely
in the literature. For example, the work in [14] derived achtastic
fluid model to analytically reveal the characteristics oPP2ream-
ing systems and exposed the key designing features to achiev
satisfactory system performance. The work in [15] studieda
world large-scale P2P streaming system to gain insightsifocess-
ful deployment of such systems. The work in [16] reviewefedént
overlay network structures for both P2P live streaming dddaron-
demand. However, all these works for single-view strearcamnot
be directly applied to the free viewpoint scenario, since o se-
lect and share the reference views to address the tradewfeée
the streaming cost and the synthesized view distortion &yddsue
for live free viewpoint video distribution, which we studete.

3. PROBLEM FORMULATION

In this section, we first describe the free viewpoint videasiave
chose for our problem formulation. We then describe progeiaf
the synthesized view distortion and subscription fee slgari

3.1. Free Viewpoint Video Model

LetV = {1,...,V} be a discrete set ofaptured views for V'
equally spaced cameras in a 1D array. Each camera captutes b
a texture map (RGB image) and a depth map (per-pixel physic
distances between objects in the 3D scene and camera) airttee s
resolution. The texture map from an intermedistaual view be-
tween any two cameras can be synthesized using texture aild de
maps of the two camera viewseference views) via a depth-image-
based rendering (DIBR) technique like 3D warping [2]. DIBR e
sentially maps texture pixels in the reference views to ajppate
pixel locations in a virtual view; such locations are dedifeom the
corresponding depth pixels in the reference views. Dismtad pix-
els in the synthesized view—pixel locations that are ocetlich the
two reference views—can be completed using depth-basednitrp
ing techniques [17, 18]. Because inpainting offers only stdgeiess
solution, the larger the disoccluded regions are, the ldhersyn-
thesized view image quality will be in general.

More specifically, let: be the virtual view that a peer currently
requests for observation. We assumean be written ag = v+ %
v e {l,...,V -1} andk € {0,...,K}, for some large pre-
determined constarit’. In other wordsy, belongs to an ordered dis-
crete set of intermediate viewpoints—the set of views betw@nd
including) camera view$ and V', spaced apart by integer multiples
of 1/K. A discrete distribution functiog., describes the fraction of
peers who currently request the virtual view

3.2. Synthesized View Distortion

Typically, to construct a virtual view that is not itself a camera-
captured view, DIBR requires left and right reference viesnd
v" such that! < u < v". Note that' andv™ do not have to be the
closest captured views ta The distortion of the synthesized view,
d.(v',v"), varies with the choices of reference viewsandv™. We
assume that., () has the following three properties.

First, further away reference views$ andv™ to virtual view u
induce no smaller distortion, that is,

du(v',v7)

du (v, 0")

< dy(v', ) if o] < b, and
>

> dy (vl 0") if b <ol (1)
We call this themonotonicity in reference view distance for syn-
thesized view distortion. This is reasonable, since furthference
views usually result in more disoccluded pixels, lowering guality
of the synthesized view [3, 4].

Second, given virtual views and left and right reference views
v' andv”, definer = min (Jv' — ul, [v" — u|) as theminimum ref-
erence view distance between: andv', v”. We assume that a smaller
7 induces no larger distortion, i.e.,

Ao,y (vl7 ") < duy (Ulwr) if 7 < 7
where 71 = min (|o' = wl,lo" i)
and 72 = min (|vl —usgl, " — u2|) . 2

We call this themonotonicity in minimum reference view distance.
This is also reasonable, since it is observed empirically then
both reference views are encoded at the same quality (Ustrgpme
guantization parameter (QP)), the worst synthesized visterion
tends to take place at the middle view [3].

Third, we assume that the rate of distortion increases veith r
spect to minimum reference view distance is no smaller ittireent
distortion is higher. Mathematically, we write:

ddy, (v', ")
ovr

here¢() is a monotonically non-decreasing function. Similar as-

umption applies when virtual view is closer to the left reference
view. We call this themonotonicity in reference view slope. One
example ofd, (v',v") that follows this property is a linear func-
tion, in which cases(y) = ¢ for a constant. Another example of
d.(v',v") is an exponential function, in which cag¢y) = c * y.

Using the chain rule, one can see that this assumption implie

convexity of distortiond,, (v', v") inv":

= ¢(du(v',0")), it P —ul < ' —ul (3

O%du(v',0") _ 0p(du(v',v")) Odu(v',v")

> 0.
ovr? Ody (vt vm) ovr 0

The first term is non-negative singgy) is a monotonically non-
decreasing function ig. The second term is also non-negative since
d.(v',v") is a monotonically non-decreasing function in reference
view v" by the first assumption. Hence the second derivative is non-
negative, and,, (v', v") is convex in reference view”. An example

of distortion functiond., () satisfying the above properties is shown
in Fig. 1. The assumption of convexity in distortion functis com-
mon in classical rate-distortion (RD) analysis.

For a virtual viewu that itself is a camera-captured view, it can
also be synthesized by a pair of left and right reference sieWw
andv” wherev' < u < v". The distortiond, (v', v") follows the
same properties as discussed above. Alternatively, itegqrelectly
constructed with the camera-captured viewvith zero distortion.
Based on the above discussion, for any virtual vigdet V,, denote
its selected reference view set, and the correspondingrtist is:

du (v, 07), if VY, = {v', 07},
0, if wis an camera view and, = {u}.

Du(Vu) = { (4)



d, (/. ¥) d, (v, V)

\

Fig. 1. Example of synthesized view distortion as function of tigtierence
view v" for two virtual viewsu andu’.

3.3. Subscription Fee Sharing

We assume that the server charges subscription! fe streaming
one video view (texture and depth). AssumiNgusers are close to
each other in network distance, users who request the samer@a
view can request only one copy from the server, and sharei¢ie v
and the subscription fed with each other. Let, = 3 q.I[v €
V.| be the fraction of users utilizing viewas reference, whetg:]

is the indicator function. Thus, each user requesting viesn ac-
cess viewv with the subscription paymes{v) = A/(Nn.).

Based on the above discussion, given reference view sabecti
V., a user of virtual view: has the overall cost, (V.,) that includes
two terms: synthesized view distortion and the subscrigpiayment

cuWu) = Du(Va) + Y s(v). (5)

VEVy

4. AGGREGATE PERFORMANCE OPTIMIZATION

We now derive an algorithm to find a stable NE solution for siser
reference view selectiongV;; }. It means that user of any virtual
view u cannot deviate from the NE solutia#; and further reduce
its own cost, given that users at all other virtual viewsdalithe NE
solution{V;; }. Mathematically, we have,(V;) < c.(V.) for any

u given that all other virtual views followV;;}. Thus, no one has
incentive to unilaterally change his reference view s@ectWe first
describe a condition for reference view selection in an NEtEm.
We then propose an efficient algorithm to find an NE solufioYj }.

4.1. Condition for an Equilibrium Solution

Given the properties of the synthesized view distortiorcdbed in
Section 3.2, we state formally the following important lemon-
ditioning on the selection of right reference views in theiélrium
solution.

Lemma 1 In the equilibrium solution, suppose user of virtual view
u chooses left and right reference viewsandv?, where|v! — u| >
[v] — u|. Then, user of view,’ < u with left reference vieww!,
wherew! < !, cannot choose right reference viefivover viewov?,
wherevs € (vf, min{2u’ — w', 2u — v'}].

Fig. 1 illustrates an example. A similar lemma can be written
for conditioning of the selection of left reference viewslie equi-
librium solution as well. We now prove the above lemma aofedl.

Proof of Lemma 1 We prove by contradiction. Suppose that in the
equilibrium solution, a user of virtual view', v’ < wu, with left
reference vieww', wherew' < v', selects right reference viev§ €
(vf, min{2u’ — w', 2u —v'}] overvj. We consider two cases: i)

w! = vt andii)w! < ol

Consider first the case whete¢ = v'. The largest value} can
take on i2u’ — v'. Hence

T l

/
< 2u—vw
/ / l
vy —u < U —w

That means virtual view.’ is always closer to right reference view
v than left reference view'. Givenu' < w, virtual view u is
also closer to right reference viewj than left reference view'.
Further, by monotonicity in minimum reference view distand <

u means:

dy (', 07) > du(0',07) Yo" e o], uh].

Consequently, by monotonicity in reference view slope, aeech

Ad, (v',v") S Ady, (v, v")
ov” - ovr
Givend, s is no smaller thani,, at right reference view{ and in-

creases from to v at a rate no smaller thaf,, we can conclude
that:

du(

v <oy < g,

l

T rr
v,V

v,U;

> du(v',v3) — du(
> s(vy) — s(vg).

The last inequality stems from the fact that user of virtualww
selects right reference view overwvj, meaning that the drop in dis-
tortion is larger than any potential increase in subsaipfee. That
means user of virtual view' can achieve a lower cost by choosing
virtual view v overwvs. A contradiction.

We next consider the case wheré < v'. Becausar' < o' <
u, user of virtual viewu, can selectv’ as left reference view for view
synthesis. From the assumption of monotonicity in refeseview
distance, we have

du(w',0") > dy(v',07)

) = dur (v, 07) )

Vo € [uT,vg).

Again, by monotonicity in reference view slope, we have
ddy, (v, v) S ad,(v',v)

v <oy < og.

ov ov
Given the above two observations, we can conclude that
du(wlw;') — du(wlw{') > du(vl7 vy) — du(vlw{')

> s(vy) — s(vy)

Following similar steps as in the first case, it can be showh th

I r

> du(w',v5) — du(w',v])
> s(v]) — s(v3). (6)

This also contradicts the assumption that user of virtualvvi se-
lectsvy overvi. Since both cases are shown to be contradictions,
the lemma is proveri]

Lemma 1 shows that when a user of virtual viewselects
left and right reference views' and v", for users in any vir-
tual view v/, v’ < wu, with left reference vieww', w' < !,
they will not select right reference view" in the ranged =
(v",min{2«’ — w',2u —v'}]. Lemma 1 can help reduce the
search space when we seek for the equilibrium solution.

Consider first an exhaustive search algorithm, where foh eac
virtual view «//, it tries all possible left and right reference views
andw” and chooses the optimal pair to minimize cost for viéwlf
we apply lemma 1 for each virtual view! and left referencev’, we

dy (W', v3) = dyr (W', v7)



first need to find out the excluded rangend then try the remain-
ing right reference views. In practice, determinifigan itself be
computation-expensive. Whed| is small, the saving in a reduce:
search space is outweighed by the computatiofi Gthus lemma 1
should only be selectively applied to speed up a searchitigor

It is clear that wher(2u’ — w') or (2u — v') is small,|§| will
also be small. Furthet,’ being close td” means there are not man
candidate right reference views in the first place. Thus, eteévgo
necessary conditions before applying lemma 1 to a searohitilig:
i) 20’ —w! > 71, andii)u’ < 7o, wherer; andr; are pre-determined
parameters. We detail our search algorithm next.

4.2. Efficient Algorithm for Nash Equilibrium Solution
Using lemma 1, we describe an algorithm that finds an NE swiuti

Algorithm 1 Nash Equilibrium Solution Search
1: Identify rangelu’, u"] that contains all peers.
2: Initialize V,, = {|v'], [u"]}, Vu.

3: repeat

4:  for each virtual viewu’ with viewersdo

5 for each left reference)’ € [[u!], |v]] do

6: 6 =0.

7 if (2u’ —w") > 7 andu’ < 7 then

8 for each virtual vieww > v’ do

9 =6 U (v, min{2u’ — w',2u —v'}].
10: end for

11: end if

12: for eachw” € [[v'], [u"]] \ 6 do

13: if c.r({w', w"}) is the smallest cost so fénen
14: UpdateV,, = {w',w"}.

15: end if

16: end for

17 end for

18: end for

19: until {V, } is stable.

We first initialize a tight virtual rangéu’, »"] that contains all
peers. The tightest reference views that sandwich thiserargj ' |
and[u"7, which we use to initializ&’,’s.

Then, given solutio{ V., } in the last iteration, for each virtual

Overall Cost

Number of captured views pulled
8

8 s

o= Zlle

10 15 2 o 15 20

(a) overall cost (b) capturecf views pulled
Fig. 2. Overall cost and number of captured views pulled versusaigiion

fee. In (a),NE, OS andGA are compared for fixed network si2é = 5000.
In (b), network size was varietd = 5000, 8000 and10000.

Fig. 2(a) shows the performance of the NE solutibiE) with
the optimal reference view selectio®S) and the grouping algo-
rithm (GA) studied in [5]. CS assumes that all users cooperatively
purchase a subset of reference viewsC V, and each peer will
select the tightest left/right references frarhto minimize its dis-
tortion. OS aims to find the optimal’ to minimize the overall cost
(i.e., the total distortion and the total subscription pawtmof all
users). AlthoughOS gives the global optimal reference selection,
it is not stable; it does not take into account users’ selfstidéncy
to seek to reduce their own cost instead of the overall cosGA|
all users between two neighboring camera-captured views
group, and each group independently requests the tightftsird
right reference views. The users in the same group shareutie s
scription fee together. Fig. 2(a) shows the overall coshefthree
algorithms. We first observe th@A gives the highest overall cost,
since different groups do not share reference views. Weadiserve
that NE results in a slightly higher overall cost th&s. HenceNE
provides incentive for users to form stable reference seleavith
only a small loss of the overall performance.

Fig. 2(b) shows the total number of requested referencesview
selected by users vilE for different network sizes. We first ob-
serve that the number of requested reference views desredssn
subscription feed increases. This is because whéifis larger, users
request smaller number of reference views with more usersdich
reference to share the fee. We observe also that the number of

view u’ with viewers, we search its optimal reference view selectio quested reference views increases with increased netizesk & his

V., assuming that users of other views foll¢w, }. Specifically, for
each possible left referened, we search its optimal right reference
w” that gives the lowest cost ({w',w"}). The search range for
w” can be decreased Wy if the two conditions(2u’ — w') > 7

is because a larger network has more users to share the cost. S
more reference views can effectively reduce users’ distwst each
user can have a lower cost on average in a larger network.

Using 81 captured views in the system and setting= 65 and

andu’ < 7 are satisfied and lemma 1 is applied. The algorithm is., — 7. algorithm using lemma 1 can save more thaf in exe-

repeated until the solutiofi,, } is stable.

5. EXPERIMENTATION

For our experiments, we used the same synthesized viewrtéisto
function in [5]:

(x(’urf’ul)(66*min(u7’ul,v7‘7u) _ 1) (7)
which meets all the properties described in Section 3. Weuded
the same parameters; = 0.06, « = 8 = 0.2. For available
views for free viewpoint navigation, we assumed 21 captuied's
and 221 virtual views. We assumed each user’s view distabut
follows a uniform distribution, and he selects a particwi@w with

du(v',0") = e

probability 1/221. We tested our system under different network

size N and subscription fed. We ran each simulation for 200 times
and will show the average results in the following discussio

cution time comparing to exhaustive search. Experimenttsalso
show that algorithm with lemma 1 can reap more computation sa
ings for large number of captured views.

6. CONCLUSION

We study the optimal reference view selection problem inapeo-

ative free viewpoint streaming system, where a user canlsines

ously belong to two groups and share the cost of a singlearder
with each group separately. To study a stable NE refereneetiss,

we propose an efficient search algorithm, leveraging on topgr-

ties of the synthesized video distortion. Simulation ressthow that
a stable NE solution only slightly increases the overalk,ca$ien

compared to the unstable optimal reference selection thes ghe
lowest overall cost. Furthermore, a larger network has tiktya

to request more reference views to reduce users’ distontithout

much increase of the subscription fees shared by each user.
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