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ABSTRACT

In free viewpoint video, texture and depth maps from two aame
captured viewpoints are transmitted, so that at receivarpwel

virtual view chosen by the client can be synthesized via ldept

image-based rendering (DIBR). When irrecoverable padetds
occur during transmission—typically affecting less inpot spa-
tial regions in the video given unequal error protection RYEs
deployed—appropriate error concealment strategies neusséd at
decoder to minimize resulting visual degradation in thetlsysized

view. Towards this goal, we propose a new optimization frame

work based on visual saliency to combine two different cairoent
techniques. First, given a pixel in the virtual view is tyglg con-
structed as a convex combination of corresponding pixetlserieft
and right captured views, weighted pixel blending (WPBYjests
the weights in the linear sum to reflect the expected errooutec
blocks that contain the corresponding pixels. Second, pkam

to yield good concealment results due to inherent data dahay
across views. Depending on factors such as whether the svaage
jointly compressed across views via inter-view predictiwrninde-
pendently compressed, loss patterns observed in the gaegture
and depth maps can be uncorrelated or highly correlated.

In the case where losses are uncorrelated across views, give

a pixel in the virtual view is typically constructed as a cexwv
combination of corresponding pixels in the left and righptcaed
views [6], a concealment strategy callegighted pixel blending
(WPB) first estimates the distortion on a per-block basigHertwo
received views, and then readjusts the weights in the ligear to
reflect the expected error in blocks that contain the coording
pixels. It has been shown [7] experimentally that WPB perfor
well when packet losses across views are independent.
In the case when losses are highly correlated across views, e

due to inter-view prediction of video data [3], a reasonaiuleceal-

based patch matching (EPM) finds the most similar patchelsein t MeNt strategy igxemplar-based patch matching (EPM) [8], which

known spatial region to complete missing pixels in the unkmo
region. To choose between candidates constructed usintythe
techniques when filling a given pixel patch in the synthebiziew,

finds the most similar patches in the known spatial regioheftyn-
thesized image to complete missing pixels in the unknowioreg
Given these two complementary concealment strategiehjspa-

we first compute a weighted sum of expected error and visudP€ We Propose a unifying framework based on visual sali¢acy

saliency for each candidate patch. The candidate with trelem
sum (one with small expected error and visual saliency, abeen
if errors do occur, they do not stand out visually) is seleédiar

pixel completion. Experimental results show that our sohean
outperform the use of co-located blocks from a previous &doy

up t00.7dB in PSNR and improve subjective visual quality.

Index Terms— free viewpoint video, visual saliency, error con-

cealment

1. INTRODUCTION

Free viewpoint video [1] can dramatically enhance a viesvdepth
perception in the observed 3D scene by enabiintjon parallax[2],
where the viewpoint from which to render an image on a 2D digpl
is continuously adjusted according to the current headtipasof
the observer. The representation and coding of free viewpadeo
have been studied extensively in recent years [3, 4]. Inquéat, the
depth-image-based rendering (DIBR) approach [5], where a novel
virtual view image is synthesized using texture and deptpsrat

two nearby captured views, has been widely adopted. In this p

per, we study the complementary problem of error concealfioen
images synthesized using DIBR.

Error concealment in free viewpoint video is more challeqgi
than single-view video, due to the complex relationshipiveen
synthesized view quality and information loss in texture aepth
maps from two captured views. At the same time, it holds psemi
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combine them for the general scenario when both correlatédin-
correlated losses are possible. The use of visual salismgiivated
by the observation that an inappropriate concealment etieitds to
be visually annoying and therefore of high visual salierfly Fur-
ther, since unequal error protection (UEP) is often empldageideo
streaming, when irrecoverable packet losses occur duramgmis-
sion, they typically affect less important (less visualglient) spa-
tial regions in the video. Thus, to choose between candidzie-
structed using the two techniques when filling a given pixath
in the synthesized view, for each candidate patch we firspcbena
weighted sum of expected error and visual saliency. Theidatel
with the smaller sum is selected for pixel completion. Expental
results show that our scheme can outperform the use of edeldc
blocks from a previous frame by up @07dB in PSNR.

The rest of this paper is organized as follows. We discuss re-

lated works in Section 2, followed by an overview of our syste
and problem formulation in Section 3 and 4, respectively. tiiém
present experimental results in Section 5 followed by a leian.

2. RELATED WORK

As the compression technologies for multiview video [10] 4dd
free viewpoint video [12, 4] mature, research in 3D video oami-
cation has been gradually shifting to the streaming andiligion
aspects [13, 14]. For example, toward the goal of loss essilj,
[15, 16] proposed to exploit the flexibility in reference tpie se-
lection (RPS) [17] in H.264 video coding standard [18] to @
a visually important block in a current texture or depth feaos-



ing a reference frame further in the past as predictor, sbttea
probability of correct decoding can be improved. The erram-c
cealment problem—how to best recover lost information iaan-

ing video given packet losses have already occurred [195-rbaer
been studied in the context of free viewpoint video, howevEs

the best of the authors’ knowledge, we are the first to addhess
important problem in a formal manner.

Visual saliency for video—the likelihood that an observell w
look at a particular spatial area during video playback—beasn
studied extensively in the visual science literature [ZDje obvious
practical use of visual saliency for video streaming is wadit
allocation, so that more visually salient spatial regioresencoded
with more bits (higher quality) than other regions [21]. Retty
visual saliency has also been used for error concealmerihgies
view video [9], so that even if an error-concealed block isng;, the
error does not stick out visually. Our current work can besabn
ered as a non-trivial application of the low-saliency pfijrto error
concealment in free viewpoint video.

3. SYSTEM OVERVIEW

We assume a single-sender / single-receiver streamingeotre,
where sender transmits texture and depth maps capturediéfom
(view 0) and right view (viewl), so that the receiver can synthe-
size a novel image from a freely chosen intermediate virtigk
v,0 < v < 1, via DIBR [5]. Because two reference images from
relatively close viewpoints are used for view synthesispdcluded
regions—spatial locations in virtual view that are notbisifrom ei-
ther the left or the right view—tend to be small, and low-cdemjiy
algorithms such as [22] can perform hole-filling satisfaityo

As done in our previous work [16], we assume also a low end-to

end delay application requirement (e.g., video conferagjciThus,
a retransmitted packet will inevitably be late for its plagk dead-
line, and forward error correction (FEC) is a more suitatdeket
loss protection strategy than automatic repeat requesQjARke
the 2D video streaming system in [9], we assume sender pesfor
unequal error protection (UEP), so that the more importemiré
visually salient) spatial regions of 3D video (both textarel depth
maps) are protected with stronger FEC code. Hence, a tyjical
recoverable packet loss event will affect only the lowesady re-
gion. Important spatial regions can be automatically deteasing
saliency analysis such as [20]. We will assume that the itapor
regions take up no more thaf to 25% of each image.

4. PROBLEM FORMULATION

We first overview our optimization methodology. For eachepix
patch in the virtual view, we can construct two possible odaugs
for robust view synthesis. The first candidate is constdiatie
weighted pixel blending (WPB), where corresponding pixels in the
left and right captured views are weighted appropriatelyindu
pixel blending, taking into consideration of the expectewms in
the transmitted texture and depth maps. The second caedilat
constructed viaexemplar-based patch matching (EPM), where the
most similar patch in the already synthesized portion ofvileal
view is identified and copied. Between these two candiddtes,
patch with the smaller weighted sum of expected error plesali
saliency value is selected as the winner for pixel comptetigve
next discuss the construction of the two candidates in order

4.1. Weighted Pixel Blending

In a majority of the cases, a synthesized pigelj) in the virtual
view v has two corresponding pixeléi, 5°) andi, j'), in the left
(view 0) and right (view 1) captured views. Pixgl j) in virtual
view v is assigned intensit$; (¢, j) that is a convex combination of
the two corresponding pixels [6]:

P(i5) = (1= 0) XJ(6,5°) +v X (i,5") (1)
where the weight§l — v) andv reflect the distance between the
virtual view v to each of the two reference views.

In general, corresponding pixels? (i, j°) and X{ (i, ') can
be corrupted by packet losses. le8ti, j°) ande! (4, °) be the es-
timated errors at pixel locatiof¥, j°) of the respective texture and
depth maps of view. e (¢, j°) ande! (4, ;) can be computed at de-
coder recursively depending on observable packet loss®/Ed],
as reviewed in Appendix. Givedf (i, 5°) ande? (4, 5°), we can esti-
mate the distortion of left pixet} (i, j°) as follows:

9 (i, 5%) = L (i, 1) + | X706, 1) — X734, 5°)] (2)

In words, (2) states that the estimated distortifii, ;°) is tex-
ture errorel (i,1) plus the largest difference between texture pixel
X?(i,4°) and horizontally shifted pixeX? (i, 1), where the range
of I depends on depth erref (i, °). This means that giveef and
€2, distortiond? is small only if location(s, j°) points to the interior
of an object and the object’s surface texture is smooth (g&owing),
which agrees with intuition. Right estimated distortidif(z, j') can

be computed similarly.

Weightsw? andw; are thus selected based on estimated distor-
tiond? (i, j°) andd; (i, j*) of the corresponding left and right pixels.
Specifically,S; (4, j) is now the adaptively blended pixel:

¢ (i, §) = wi XP(6,5°) +wy X/ (i,57) ©)
where weights are computed basedreliability of the two corre-
sponding pixelsy® andr:

wd = 7”0(1 - )
t (1 —v) +rlv
1
w = . (4)

(1 —wv)+rlv

Weights defined using (4) have the following propertiesefgadilt to
(1 —v) andw in (1) when reliabilityr® = r; ii) converge tol and
0 when7? > r!; and iii) sum tol. Reliability ¥ is computed using
distortiond; as follows:

1
Cdv4d

v

®)
with parameterl > 0, so thatr” is well defined even ifl; = 0.

4.2. Exemplar-Based Patch Matching

We follow similar notation as [8]. Denote the recovered oegi
(source region) and the missing region (target region) efitiage

Z by ® andZ — ¢ = Q, respectively. Further, denote the contour of
the target region by<2. For a square patclr, with centerp on the
contourd2, we want to identify a similar patctir, with centerq in

®, so that the filled-in pixels i, matches the pixels i¥ .



The order in which patches in the target regiors filled isvery  average pixel saliency. Models to estimate texture anchdeqpbrs

important. As done in [8], we define a priorify(p) as follows: due to error propagation for differentially coded video;tsas from
H.264 [18], are given in the Appendix.
P(p)=C(p)D(p) (6) A sample saliency image is shown in Fig. 1, as calculated by

. [9]. In the correlated loss experiment, MBs losses occusigull-
whereC (p) and D(p) are the confidence and data terms, respecignequsly in the same corresponding locations in both feftright
tively. C(p) and D(p) are computed as: views. In the uncorrelated loss experiment, MB losses wane r
D C(q) n domly and independently inflicted upon low saliency regiahdif-

acYpne D(p) = VI - np| ) ferent time instants in each view. Simulations include égssf5%,

C(p) =
(p) [Vl « 10%, 20% and30% of frame MBs for both texture and depth maps.

where| VU, | is the area off,. C(p) is initialized to bel if p € @,
and0 otherwise. n, is the normal to contous(2, and VI is the
isophote (direction and intensity) at poipt C(p) essentially com-
putes the amount of confidence in pixels in palch that have al-
ready been recovered. Data tefip) is a “function of the strength
of isophotes (linear structures) hitting the fraff2 at each itera-
tion” [8], and is used to encourage propagation of linearcitires.
See [8] for details.

4.3. Low-Saliency Prior for Candidate Selection

Having described the two methods of constructing candigate
els in the synthesized image, we now describe a proceduneiéo o
missing pixel patches to fill, and to select one of two canteisldor
each patch. We first perform regular DIBR-based pixel blegdas
described in (1), for pixels with corresponding pixels mavizero
estimated distortiong? andd;. Because of the UEP applied to dif-
ferent spatial regions as described in Section 3, it measistiie  Fig. 1. Saliency values computed fo6 x 16 blocks forkendo frame 11,
regions with high saliency plus a subset of regions with laliepcy ~ view 1. Higher saliency values are shown as brighter.

will be synthesized.

The synthesized region and missing region will be the source In all, four error concealment strategies were considefiue
regionZ and target regiof as described in Section 4.2. We com- baseline for comparison consists of copying co-locatedksidrom
pute the priority term for each possible sizé x 16 square patch the previous frame when a MB loss is encountered. The secuhd a
W, with centerp on the contous(?, selecting one with the highest third strategies use only EPM and only WPB, respectivelyfilto
priority for filling first. We compute the two candidate setuts for ~ missing patches of the synthesized image as described ioSéc2
filling patch ¥y, ¥}, and ¥} as described in Section 4.1 and Sec-and 4.1. EPM uses a search window of gizex 64. Our proposed
tion 4.2. For each candidate, we compute the expected tiistor Strategy selects between EPM and WPB candidate patchesheith
D() for each solution. For WPB, it is the average distortion @f th aid of a low saliency prior, using an empirically selecteih (8).
synthesized pixels in the patch, where distortion for egokesized Experiments were conducted for multiview sequeniseado
pixel is the weighted sum of estimated distortialfsandd; of the (1024 x 768 pixels) andAkko & Kayo (640 x 480 pixels) using
two corresponding pixels in left and right views. For EPMsithe  the MPEG View Synthesis Reference Software (VSRS v3.5).[23]
average distortion of synthesized pixels in the copiedtpéig. For Kendo, views 1 and3 were corrupted through MB losses and

Having computed the expected distortions for the candiglate ~ used for synthesis of the central viewForAkko & Kayo, views
select the candidate patch with the smaller weighted sunistdrd 47 and49 were used to synthesize viel8. In both cases, the losses

tion and visual saliency: were introduced in0 randomly selected frames among the figt
frames, and the original central view was used as grount.trut
n;ian} D(93) + AZ(0Y) (8) In Table 1 and 2 the average PSNR for each error concealment
ge{l,

strategy for uncorrelated and correlated losses, respégtare pre-
sented at various loss rates. The average PSNR is computed co
sidering only the frames that are affected by losses. Natith
an error-free scenario, the average PSNR f@5i83dB for Kendo
5. EXPERIMENTATION and29.02dB for Akko & Kayo. As observed in Table 1, WPB can
effectively conceal uncorrelated errors, providing perfance supe-
The proposed framework is evaluated through synthesizeajéem rior to co-located copying and EPM. This is due to the fact izen
quality, in terms of both PSNR comparisons and visual inspec losses are uncorrelated, a projected pixel from one of thes/iill
We assume that packet losses manifest themselves as Iésseggenerally be un-corrupted and can be weighted heavily by WPB
isolated macroblocks (MB) rather than contiguous regioms b  When errors are correlated, WPB has performance similaoto ¢
application of Flexible Macroblock Ordering for error fégsice. We  located block copying as seen in Table 2. In this case, EPM can
further assume that losses occur only in the low-salieneyspE#f  outperform co-located and WPB, since it avoids the use ofikamn
both the texture and depth maps of both the left and right siew neously loss-corrupted corresponding pixels. The prapeseeme
due to application of unequal error protection. Low-saieregion  successfully combines WPB and EPM. Note that since thesarer
of each frame consisted of the macroblocks with the loWw8$%§ of inflicted only in low-saliency regions due to UEP, the lowieacy

where Z (¥, s7) is the computed saliency of candidate pate,
andX > 0 is a pre-set parameter.



prior aids in selecting the appropriate candidate, outyperihg both
WPB and EPM, even when the MB loss pattern favors one of thes
strategies. Our scheme can outperform the use of co-lobidekls
by as much a8.76 dB, the use of EPM by as much as8 dB and

WPB by0.73 dB, in specific scenarios.

Table 1. _Uncorrelated losses

Kendo
5% 10% 20% 30%
Co-located 35.48dB 35.33dB 35.03dB 34.72dB
EPM 35.64dB 3555dB 35.26dB 35.09dB (b)
WPB 35.72dB 35.62dB 35.49dB 35.35dB Fig. 2. Framell from Kendo (a) using co-located blocks, PSNR.70 dB
Proposed 35.74dB 35.64dB 35.68dB 35.48 dB and (b) using proposed scheme, PSNR39 dB.
Akko and Kayo
5% 10% 20% 30%
Co-located 28.70dB 28.54dB 28.12dB 27.64 dB
EPM 28.88dB 28.64dB 28.25dB 27.74dB
WPB 28.87dB 28.75dB 28.35dB 28.00 dB
Proposed 28.88dB 28.78dB 28.46dB 28.22dB
Table 2._Correlated losses
Kendo 9 . S
5% 10% 20% 30% @) (b)
Co-located 35.50dB 35.30dB 35.07dB 34.66 dB Fig. 3. Frame3 from Akko & Kayo (a) using co-located blocks, PSNR
EPM 35.68dB 35.62dB 35.48dB 35.29dB 26.87 dB and (b) using proposed scheme, PSNRI8 dB.
WPB 35.57dB 35.37dB 35.12dB 34.69 dB
Proposed 35.69dB 35.70dB 35.62dB 35.42dB
Akko and Kayo can achieve better concealment quality than WPB or EPM alane
5% 10% 20% 30% terms of PSNR. Tests also show gains in subjective visuditgua
Formal subjective evaluations are subject of future studie
Co-located 28.70dB 28.36dB 27.92dB 27.61dB
EPM 28.77dB 28.56dB 28.30dB 27.91dB
WPB 28.69dB 28.33dB 27.99dB 27.59dB 7. APPENDIX: COMPUTING RECURSIVE ERROR AT
Proposed 28.81dB 28.59dB 28.41dB 27.99dB DECODER

For Subjective Comparisons’ synthesized frames from oH pr We firSt estimate texture.erre{bm fOI’ a MBm in fl‘am.et Containing
posed scheme are compared to those from the co-locatedatoncecorresponding texture pixel, ;°) in view 0. Depending on whether
ment strategy. FoKendo, shown in Fig. 2, uncorrelated losses at Packet containing MBr is correctly received or not, we write, .

20% rate were used. Fa&kko & Kayo, shown in Fig. 3, cor-

related losses at 30% rate were chosen. The figures predeiit de

crops of areas with more significant quality differencesr Bath
sequences, the proposed scheme presents noticeableosujseral
quality. Artifacts have been eliminated from the backgbwamd

swordsman irkendo, while errors around the neck, arm, ball and

others ofAkko & Kayo have been significantly reduced.

6. CONCLUSION

Error concealment for free viewpoint video to minimize acheesef-
fects to synthesized view quality due to irrecoverable patdsses
is a challenging problem. In this paper, we first estimateettier

for a texture or depth pixel in differentially coded view ngia set of
recursive equations. We use visual saliency to combine teaip
ous error concealment techniques, weighted pixel blenfivigB)

and exemplar-based patch matching (EPM), into one franiewor
that the concealment candidate with the smaller weighted si
expected error and visual saliency can be chosen to conpless-
corrupted patch. Experiments show that using our framewank

as:
if MB m is correctly received
0.W.

9)

+
(&
€t,m — { Em
6t,'m
Suppose the packet containing MB is correctly received. If
MB m is intra-coded, theraz,jm = 0. Otherwise, given motion
vector (MV) v, points to an off-grid reference block in a previ-

ous framery,m, e:fm is computed as a weighted sum of errors of a
neighborhood of on-grid blocks in reference framg.:

0 if MB m is intra

10
D k€vr,m MkCr ik OW. (10)

62Tm(7—t7m7 Vt,m) = {

If packet containing MBm is not correctly received, then the
errore, ,,, is approximated as the error of block in the same location
in previous frame — 1, plusan estimate of the frame-to-frame block
differences:

Crm = €t—1,m +0 (12)

See [16] for further detalils.
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