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ABSTRACT

In free viewpoint video, texture and depth maps from two camera-
captured viewpoints are transmitted, so that at receiver, anovel
virtual view chosen by the client can be synthesized via depth-
image-based rendering (DIBR). When irrecoverable packet losses
occur during transmission—typically affecting less important spa-
tial regions in the video given unequal error protection (UEP) is
deployed—appropriate error concealment strategies must be used at
decoder to minimize resulting visual degradation in the synthesized
view. Towards this goal, we propose a new optimization frame-
work based on visual saliency to combine two different concealment
techniques. First, given a pixel in the virtual view is typically con-
structed as a convex combination of corresponding pixels inthe left
and right captured views, weighted pixel blending (WPB) readjusts
the weights in the linear sum to reflect the expected error in code
blocks that contain the corresponding pixels. Second, exemplar-
based patch matching (EPM) finds the most similar patches in the
known spatial region to complete missing pixels in the unknown
region. To choose between candidates constructed using thetwo
techniques when filling a given pixel patch in the synthesized view,
we first compute a weighted sum of expected error and visual
saliency for each candidate patch. The candidate with the smaller
sum (one with small expected error and visual saliency, so that even
if errors do occur, they do not stand out visually) is selected for
pixel completion. Experimental results show that our scheme can
outperform the use of co-located blocks from a previous frame by
up to0.7dB in PSNR and improve subjective visual quality.

Index Terms— free viewpoint video, visual saliency, error con-
cealment

1. INTRODUCTION

Free viewpoint video [1] can dramatically enhance a viewer’s depth
perception in the observed 3D scene by enablingmotion parallax [2],
where the viewpoint from which to render an image on a 2D display
is continuously adjusted according to the current head position of
the observer. The representation and coding of free viewpoint video
have been studied extensively in recent years [3, 4]. In particular, the
depth-image-based rendering (DIBR) approach [5], where a novel
virtual view image is synthesized using texture and depth maps of
two nearby captured views, has been widely adopted. In this pa-
per, we study the complementary problem of error concealment for
images synthesized using DIBR.

Error concealment in free viewpoint video is more challenging
than single-view video, due to the complex relationship between
synthesized view quality and information loss in texture and depth
maps from two captured views. At the same time, it holds promise
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to yield good concealment results due to inherent data redundancy
across views. Depending on factors such as whether the images are
jointly compressed across views via inter-view predictionor inde-
pendently compressed, loss patterns observed in the various texture
and depth maps can be uncorrelated or highly correlated.

In the case where losses are uncorrelated across views, given
a pixel in the virtual view is typically constructed as a convex
combination of corresponding pixels in the left and right captured
views [6], a concealment strategy calledweighted pixel blending
(WPB) first estimates the distortion on a per-block basis forthe two
received views, and then readjusts the weights in the linearsum to
reflect the expected error in blocks that contain the corresponding
pixels. It has been shown [7] experimentally that WPB performs
well when packet losses across views are independent.

In the case when losses are highly correlated across views, e.g.,
due to inter-view prediction of video data [3], a reasonableconceal-
ment strategy isexemplar-based patch matching (EPM) [8], which
finds the most similar patches in the known spatial region of the syn-
thesized image to complete missing pixels in the unknown region.
Given these two complementary concealment strategies, in this pa-
per we propose a unifying framework based on visual saliencyto
combine them for the general scenario when both correlated and un-
correlated losses are possible. The use of visual saliency is motivated
by the observation that an inappropriate concealment choice tends to
be visually annoying and therefore of high visual saliency [9]. Fur-
ther, since unequal error protection (UEP) is often employed in video
streaming, when irrecoverable packet losses occur during transmis-
sion, they typically affect less important (less visually salient) spa-
tial regions in the video. Thus, to choose between candidates con-
structed using the two techniques when filling a given pixel patch
in the synthesized view, for each candidate patch we first compute a
weighted sum of expected error and visual saliency. The candidate
with the smaller sum is selected for pixel completion. Experimental
results show that our scheme can outperform the use of co-located
blocks from a previous frame by up to0.7dB in PSNR.

The rest of this paper is organized as follows. We discuss re-
lated works in Section 2, followed by an overview of our system
and problem formulation in Section 3 and 4, respectively. Wethen
present experimental results in Section 5 followed by a conclusion.

2. RELATED WORK

As the compression technologies for multiview video [10, 11] and
free viewpoint video [12, 4] mature, research in 3D video communi-
cation has been gradually shifting to the streaming and distribution
aspects [13, 14]. For example, toward the goal of loss resiliency,
[15, 16] proposed to exploit the flexibility in reference picture se-
lection (RPS) [17] in H.264 video coding standard [18] to encode
a visually important block in a current texture or depth frame us-



ing a reference frame further in the past as predictor, so that the
probability of correct decoding can be improved. The error con-
cealment problem—how to best recover lost information in stream-
ing video given packet losses have already occurred [19]—has never
been studied in the context of free viewpoint video, however. To
the best of the authors’ knowledge, we are the first to addressthis
important problem in a formal manner.

Visual saliency for video—the likelihood that an observer will
look at a particular spatial area during video playback—hasbeen
studied extensively in the visual science literature [20].One obvious
practical use of visual saliency for video streaming is unequal bit
allocation, so that more visually salient spatial regions are encoded
with more bits (higher quality) than other regions [21]. Recently
visual saliency has also been used for error concealment of single-
view video [9], so that even if an error-concealed block is wrong, the
error does not stick out visually. Our current work can be consid-
ered as a non-trivial application of the low-saliency prior[9] to error
concealment in free viewpoint video.

3. SYSTEM OVERVIEW

We assume a single-sender / single-receiver streaming architecture,
where sender transmits texture and depth maps captured fromleft
(view 0) and right view (view1), so that the receiver can synthe-
size a novel image from a freely chosen intermediate virtualview
v, 0 ≤ v ≤ 1, via DIBR [5]. Because two reference images from
relatively close viewpoints are used for view synthesis, disoccluded
regions—spatial locations in virtual view that are not visible from ei-
ther the left or the right view—tend to be small, and low-complexity
algorithms such as [22] can perform hole-filling satisfactorily.

As done in our previous work [16], we assume also a low end-to-
end delay application requirement (e.g., video conferencing). Thus,
a retransmitted packet will inevitably be late for its playback dead-
line, and forward error correction (FEC) is a more suitable packet
loss protection strategy than automatic repeat request (ARQ). Like
the 2D video streaming system in [9], we assume sender performs
unequal error protection (UEP), so that the more important (more
visually salient) spatial regions of 3D video (both textureand depth
maps) are protected with stronger FEC code. Hence, a typicalir-
recoverable packet loss event will affect only the low-saliency re-
gion. Important spatial regions can be automatically detected using
saliency analysis such as [20]. We will assume that the important
regions take up no more than20 to 25% of each image.

4. PROBLEM FORMULATION

We first overview our optimization methodology. For each pixel
patch in the virtual view, we can construct two possible candidates
for robust view synthesis. The first candidate is constructed via
weighted pixel blending (WPB), where corresponding pixels in the
left and right captured views are weighted appropriately during
pixel blending, taking into consideration of the expected errors in
the transmitted texture and depth maps. The second candidate is
constructed viaexemplar-based patch matching (EPM), where the
most similar patch in the already synthesized portion of thevirtual
view is identified and copied. Between these two candidates,the
patch with the smaller weighted sum of expected error plus visual
saliency value is selected as the winner for pixel completion. We
next discuss the construction of the two candidates in order.

4.1. Weighted Pixel Blending

In a majority of the cases, a synthesized pixel(i, j) in the virtual
view v has two corresponding pixels,(i, j0) and(i, j1), in the left
(view 0) and right (view 1) captured views. Pixel(i, j) in virtual
view v is assigned intensitySv

t (i, j) that is a convex combination of
the two corresponding pixels [6]:
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where the weights(1 − v) andv reflect the distance between the
virtual viewv to each of the two reference views.
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In words, (2) states that the estimated distortiond0t (i, j
0) is tex-

ture errore0t (i, l) plus the largest difference between texture pixel
X0

t (i, j
0) and horizontally shifted pixelX0

t (i, l), where the range
of l depends on depth errorǫ0t (i, j

0). This means that givene0t and
ǫ0t , distortiond0t is small only if location(i, j0) points to the interior
of an object and the object’s surface texture is smooth (slowvarying),
which agrees with intuition. Right estimated distortiond1t (i, j

1) can
be computed similarly.

Weightsw0
t andw1

t are thus selected based on estimated distor-
tiond0t (i, j

0) andd1t (i, j
1) of the corresponding left and right pixels.

Specifically,Sv
t (i, j) is now the adaptively blended pixel:
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where weights are computed based onreliability of the two corre-
sponding pixels,r0 andr1:
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Weights defined using (4) have the following properties: i) default to
(1− v) andv in (1) when reliabilityr0 = r1; ii) converge to1 and
0 whenr0 ≫ r1; and iii) sum to1. Reliabilityrv is computed using
distortiondvt as follows:

r
v =

1

dvt + d̄
(5)

with parameter̄d > 0, so thatrv is well defined even ifdvt = 0.

4.2. Exemplar-Based Patch Matching

We follow similar notation as [8]. Denote the recovered region
(source region) and the missing region (target region) of the image
I by Φ andI − φ = Ω, respectively. Further, denote the contour of
the target region byδΩ. For a square patchΨp with centerp on the
contourδΩ, we want to identify a similar patchΨq with centerq in
Φ, so that the filled-in pixels inΨp matches the pixels inΨq.



The order in which patches in the target regionΩ is filled is very
important. As done in [8], we define a priorityP (p) as follows:

P (p) = C(p)D(p) (6)

whereC(p) andD(p) are the confidence and data terms, respec-
tively. C(p) andD(p) are computed as:

C(p) =

∑

q∈Ψp∩Φ
C(q)

|Ψp|
D(p) =

|∇I⊥p · np|

α
(7)

where|Ψp| is the area ofΨp. C(p) is initialized to be1 if p ∈ Φ,
and0 otherwise.np is the normal to contourδΩ, and∇I⊥p is the
isophote (direction and intensity) at pointp. C(p) essentially com-
putes the amount of confidence in pixels in patchΨp that have al-
ready been recovered. Data termD(p) is a “function of the strength
of isophotes (linear structures) hitting the frontδΩ at each itera-
tion” [8], and is used to encourage propagation of linear structures.
See [8] for details.

4.3. Low-Saliency Prior for Candidate Selection

Having described the two methods of constructing candidatepix-
els in the synthesized image, we now describe a procedure to order
missing pixel patches to fill, and to select one of two candidates for
each patch. We first perform regular DIBR-based pixel blending, as
described in (1), for pixels with corresponding pixels having zero
estimated distortionsd0t andd1t . Because of the UEP applied to dif-
ferent spatial regions as described in Section 3, it means that the
regions with high saliency plus a subset of regions with low saliency
will be synthesized.

The synthesized region and missing region will be the source
regionI and target regionΩ as described in Section 4.2. We com-
pute the priority term for each possible size16 × 16 square patch
Ψp with centerp on the contourδΩ, selecting one with the highest
priority for filling first. We compute the two candidate solutions for
filling patchΨp, Ψ1

p andΨ2
p as described in Section 4.1 and Sec-

tion 4.2. For each candidate, we compute the expected distortion
D() for each solution. For WPB, it is the average distortion of the
synthesized pixels in the patch, where distortion for each synthesized
pixel is the weighted sum of estimated distortionsd0t andd1t of the
two corresponding pixels in left and right views. For EPM, itis the
average distortion of synthesized pixels in the copied patch Ψq.

Having computed the expected distortions for the candidates, we
select the candidate patch with the smaller weighted sum of distor-
tion and visual saliency:

min
g∈{1,2}

D(Ψg
p) + λZ(Ψg

p) (8)

whereZ(Ψps
g) is the computed saliency of candidate patchΨg

p,
andλ > 0 is a pre-set parameter.

5. EXPERIMENTATION

The proposed framework is evaluated through synthesized image
quality, in terms of both PSNR comparisons and visual inspection.

We assume that packet losses manifest themselves as losses of
isolated macroblocks (MB) rather than contiguous regions due to
application of Flexible Macroblock Ordering for error resilience. We
further assume that losses occur only in the low-saliency parts of
both the texture and depth maps of both the left and right views,
due to application of unequal error protection. Low-saliency region
of each frame consisted of the macroblocks with the lowest75% of

average pixel saliency. Models to estimate texture and depth errors
due to error propagation for differentially coded video, such as from
H.264 [18], are given in the Appendix.

A sample saliency image is shown in Fig. 1, as calculated by
[9]. In the correlated loss experiment, MBs losses occurredsimul-
taneously in the same corresponding locations in both left and right
views. In the uncorrelated loss experiment, MB losses were ran-
domly and independently inflicted upon low saliency regionsat dif-
ferent time instants in each view. Simulations include losses of5%,
10%, 20% and30% of frame MBs for both texture and depth maps.

Fig. 1. Saliency values computed for16 × 16 blocks forKendo frame 11,
view 1. Higher saliency values are shown as brighter.

In all, four error concealment strategies were considered.The
baseline for comparison consists of copying co-located blocks from
the previous frame when a MB loss is encountered. The second and
third strategies use only EPM and only WPB, respectively, tofill
missing patches of the synthesized image as described in Section 4.2
and 4.1. EPM uses a search window of size64 × 64. Our proposed
strategy selects between EPM and WPB candidate patches withthe
aid of a low saliency prior, using an empirically selectedλ in (8).

Experiments were conducted for multiview sequencesKendo
(1024 × 768 pixels) andAkko & Kayo (640 × 480 pixels) using
the MPEG View Synthesis Reference Software (VSRS v3.5) [23].
For Kendo, views1 and3 were corrupted through MB losses and
used for synthesis of the central view2. ForAkko & Kayo, views
47 and49 were used to synthesize view48. In both cases, the losses
were introduced in10 randomly selected frames among the first20
frames, and the original central view was used as ground truth.

In Table 1 and 2 the average PSNR for each error concealment
strategy for uncorrelated and correlated losses, respectively, are pre-
sented at various loss rates. The average PSNR is computed con-
sidering only the frames that are affected by losses. Note that in
an error-free scenario, the average PSNR for is35.83dB for Kendo
and29.02dB forAkko & Kayo. As observed in Table 1, WPB can
effectively conceal uncorrelated errors, providing performance supe-
rior to co-located copying and EPM. This is due to the fact that when
losses are uncorrelated, a projected pixel from one of the views will
generally be un-corrupted and can be weighted heavily by WPB.
When errors are correlated, WPB has performance similar to co-
located block copying as seen in Table 2. In this case, EPM can
outperform co-located and WPB, since it avoids the use of simulta-
neously loss-corrupted corresponding pixels. The proposed scheme
successfully combines WPB and EPM. Note that since the errors are
inflicted only in low-saliency regions due to UEP, the low-saliency



prior aids in selecting the appropriate candidate, outperforming both
WPB and EPM, even when the MB loss pattern favors one of these
strategies. Our scheme can outperform the use of co-locatedblocks
by as much as0.76 dB, the use of EPM by as much as0.48 dB and
WPB by0.73 dB, in specific scenarios.

Table 1. Uncorrelated losses

Kendo
5% 10% 20% 30%

Co-located 35.48 dB 35.33 dB 35.03 dB 34.72 dB
EPM 35.64 dB 35.55 dB 35.26 dB 35.09 dB
WPB 35.72 dB 35.62 dB 35.49 dB 35.35 dB
Proposed 35.74 dB 35.64 dB 35.68 dB 35.48 dB

Akko and Kayo
5% 10% 20% 30%

Co-located 28.70 dB 28.54 dB 28.12 dB 27.64 dB
EPM 28.88 dB 28.64 dB 28.25 dB 27.74 dB
WPB 28.87 dB 28.75 dB 28.35 dB 28.00 dB
Proposed 28.88 dB 28.78 dB 28.46 dB 28.22 dB

Table 2. Correlated losses

Kendo
5% 10% 20% 30%

Co-located 35.50 dB 35.30 dB 35.07 dB 34.66 dB
EPM 35.68 dB 35.62 dB 35.48 dB 35.29 dB
WPB 35.57 dB 35.37 dB 35.12 dB 34.69 dB
Proposed 35.69 dB 35.70 dB 35.62 dB 35.42 dB

Akko and Kayo
5% 10% 20% 30%

Co-located 28.70 dB 28.36 dB 27.92 dB 27.61 dB
EPM 28.77 dB 28.56 dB 28.30 dB 27.91 dB
WPB 28.69 dB 28.33 dB 27.99 dB 27.59 dB
Proposed 28.81 dB 28.59 dB 28.41 dB 27.99 dB

For subjective comparisons, synthesized frames from our pro-
posed scheme are compared to those from the co-located conceal-
ment strategy. ForKendo, shown in Fig. 2, uncorrelated losses at
20% rate were used. ForAkko & Kayo, shown in Fig. 3, cor-
related losses at 30% rate were chosen. The figures present detail
crops of areas with more significant quality differences. For both
sequences, the proposed scheme presents noticeable superior visual
quality. Artifacts have been eliminated from the background and
swordsman inKendo, while errors around the neck, arm, ball and
others ofAkko & Kayo have been significantly reduced.

6. CONCLUSION

Error concealment for free viewpoint video to minimize adverse ef-
fects to synthesized view quality due to irrecoverable packet losses
is a challenging problem. In this paper, we first estimate theerror
for a texture or depth pixel in differentially coded view using a set of
recursive equations. We use visual saliency to combine two previ-
ous error concealment techniques, weighted pixel blending(WPB)
and exemplar-based patch matching (EPM), into one framework, so
that the concealment candidate with the smaller weighted sum of
expected error and visual saliency can be chosen to completea loss-
corrupted patch. Experiments show that using our framework, one

(a) (b)
Fig. 2. Frame11 from Kendo (a) using co-located blocks, PSNR34.70 dB
and (b) using proposed scheme, PSNR35.39 dB.

(a) (b)
Fig. 3. Frame3 from Akko & Kayo (a) using co-located blocks, PSNR
26.87 dB and (b) using proposed scheme, PSNR27.48 dB.

can achieve better concealment quality than WPB or EPM alone, in
terms of PSNR. Tests also show gains in subjective visual quality.
Formal subjective evaluations are subject of future studies.

7. APPENDIX: COMPUTING RECURSIVE ERROR AT
DECODER

We first estimate texture erroret,m for a MBm in framet containing
corresponding texture pixel(i, j0) in view 0. Depending on whether
packet containing MBm is correctly received or not, we writeet,m
as:

et,m =

{

e+t,m if MB m is correctly received
e−t,m o.w.

(9)

Suppose the packet containing MBm is correctly received. If
MB m is intra-coded, thene+t,m = 0. Otherwise, given motion
vector (MV) vt,m points to an off-grid reference block in a previ-
ous frameτt,m, e+t,m is computed as a weighted sum of errors of a
neighborhood of on-grid blocks in reference frameτt,m:

e
+
t,m(τt,m, vt,m) =

{

0 if MB m is intra
∑

k∈vt,m
αkeτt,m,k o.w. (10)

If packet containing MBm is not correctly received, then the
errore−t,m is approximated as the error of block in the same location
in previous framet−1, plus an estimate of the frame-to-frame block
differenceδ:

e
−
t,m = et−1,m + δ (11)

See [16] for further details.
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