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ABSTRACT

Using texture and depth maps of a single reference viewpoint, depth-
image-based rendering (DIBR) can synthesize a novel viewpoint im-
age by translating texture pixels of the reference view to a virtual
view, where synthesized pixel locations are derived from the associ-
ated depth pixel values. When the virtual viewpoint is located much
closer to the 3D scene than the reference view (camera movement
in the z-dimension), objects closer to the camera will increase in
size in the virtual view faster than objects further away. A large in-
crease in object size means that a patch of pixels sampled from an
object surface in the reference view will be scattered to a larger spa-
tial area, resulting in expansion holes. In this paper, we investigate
the problem of identification and filling of expansion holes.We first
propose a method based on depth histogram to identify missing or
erroneously translated pixels as expansion holes. We then propose
two techniques to fill in expansion holes with different computation
complexity: i) linear interpolation, and ii) graph-based interpolation
with a sparsity prior. Experimental results show that proper identi-
fication and filling of expansion holes can dramatically outperform
inpainting procedure employed in VSRS 3.5 (up to4.25dB).

Index Terms— depth-image-based rendering, image interpola-
tion, graph-based transform

1. INTRODUCTION

With the advent of depth sensors such as time-of-flight (ToF)cam-
eras [1] and Microsoft Kinect, availability of depth maps (per-pixel
distance between captured objects in the 3D scene and capturing
camera) has become commonplace. Armed with texture (conven-
tional RGB or YUV images) and depth maps from the same cam-
era viewpoint—a format known astexture-plus-depth [2], a user can
synthesize a new virtual viewpoint image usingdepth-image-based
rendering (DIBR) techniques [3] such as 3D warping [4]. In a nut-
shell, DIBR is a pixel-to-pixel mapping from reference to virtual
view: each texture pixel in the reference view is mapped to a synthe-
sized pixel in the virtual view, where the synthesized location is de-
rived from the corresponding depth pixel in the reference view. Due
to disocclusion (pixel locations that were not visible in the reference
view), missing pixels in the virtual view are subsequently filled in
using depth-based inpainting algorithms [5, 6]. For relatively small
camera motion along thex- or y-dimension (camera moving left-
right or top-down), this DIBR synthesis plus inpainting approach
has been shown to work reasonably well [7], and is the conventional
approach in the 3D view synthesis literature.

In immersive applications such as teleconferencing [8], a viewer
in a sitting position observes a real-time synthesized image on a 2D
display, whose rendering perspective is adaptively changed in re-
sponse to the up-to-date tracked head position of the viewer. The

resultingmotion parallax effect can enhance the viewer’s depth per-
ception in the 3D scene [9]. Besidesx-dimensional head movement
(moving one’s head left-right),z-dimensional head movement (mov-
ing one’s head front-back) is also natural for a sitting observer to
make, inducing perspective change. Yet, to the best of the authors’
knowledge, no DIBR-based view synthesis work in the literature has
formally addressed the problem of synthesizing virtual view corre-
sponding to large camera motion in thez-dimension. We address
this problem in our paper.

When the virtual viewpoint is located much closer to the 3D
scene than the reference view, objects closer to the camera will in-
crease in size in the virtual view faster than objects further away. A
large increase in object size means that a patch of pixels sampled
from an object surface in the reference view will be scattered to a
larger spatial area, resulting inexpansion holes. To further compli-
cate matters, in-between these dispersed pixels there can be scatter-
ing of synthesized pixels from a further-away object (larger z dis-
tance), that should have been occluded by the closer object if a suf-
ficient number of closer object pixels were rendered.

In this paper, we investigate the problem of identification and
filling of expansion holes in the virtual view. We first propose a
method based on depth histograms to identify missing or erroneously
synthesized pixels as expansion holes. We then propose two tech-
niques to fill in expansion holes with different computationcomplex-
ity: i) linear interpolation, and ii) graph-based interpolation with a
sparsity prior. Experimental results show that proper identification
and filling of expansion holes can dramatically outperform inpaint-
ing procedure employed in VSRS 3.5 (up to4.25dB).

The structure of the paper is as follows. We first discuss related
work in Section 2. We then overview our interactive DIBR viewsyn-
thesis system in Section 3. We present our methodology to identify
and to fill in expansion holes in the virtual view in Section 4 and 5,
respectively. Finally, experimental results and conclusions are pre-
sented in Section 6 and 7, respectively.

2. RELATED WORK

It is known that texture-plus-depth format [2]—representation of the
3D scene in one or more texture and depth map pairs from different
viewpoints—can enable low-complexity rendering of freelychosen
viewpoint images at decoder via DIBR [4]. While the traditional
approach [3] advocates transmission of two (or more) pairs of tex-
ture and depth maps from neighboring viewpoints for synthesis of
an intermediate virtual view, recent investigations [10, 11] show that
transmission of a single texture-depth map pair can be more rate-
distortion (RD) optimal,if the resulting larger disocclusion holes
can be smartly handled. We will also assume availability of asin-
gle texture-depth map pair from the same reference viewpoint for



DIBR-based view synthesis in our work. Nonetheless, we notethat
synthesizing an intermediate virtual view using two texture-depth
map pairs will not eliminate the expansion hole problem if camera
movement in thez-dimension is significant, though the number and
sizes of expansion holes will in general be smaller.

Increase in size of a closer object in the virtual view due to sig-
nificantz-dimensional camera motion can be solved using conven-
tional image super-resolution (SR) [12] in rectangular pixel grid. For
example, texture and depth maps in the reference view can be super-
resolved into a finer rectangular grid of sufficiently high resolution
(one where all possible expansion holes in the virtual view will be
covered), then performing DIBR to see which of the super-resolved
pixels actually land on the virtual view pixel grid. Unlike this SR ap-
proach which requires computation of a possibly very large number
of super-resolved pixels in the reference view (and only a smaller
subset get mapped to the grid points in the virtual view), ourap-
proach is aparsimonious one: only grid samples identified as ex-
pansion hole pixels in the virtual view—empty pixels that require
filling—are interpolated, leading to a lower complexity relative to
the aforementioned SR approach.

Besides linear interpolation (with low complexity), we also
advocate an interpolation method based ongraph-based transform
(GBT), which uses the eigenvectors of a defined graph Laplacian
matrix to provide a Fourier-like frequency interpretation[13], for
expansion hole filling. Unlike previous fixed transform based in-
terpolation like DCT [14] defined on rectangular pixel grid,GBT
is adaptive to a more general setting where anyn unknown pixels
can be interpolated using anym known pixels, all connected via a
weighted graph. Compared to non-local image interpolationmeth-
ods [15], the complexity of our GBT interpolation is boundedby
the few number of pixels within the neighborhood of an expansion
hole used to construct the graph. While GBT has been used for
compression of depth maps [16, 17], this is the first work in the
literature of using GBT for image patch interpolation.

3. INTERACTIVE FREE-VIEWPOINT SYSTEM

We first describe the system model for our interactive free viewpoint
streaming system. The goal is for the server to transmit a minimum
number of bits to the client, so that the client can interactively select
a viewpoint of his/her choosing for DIBR-based image rendering of
the 3D scene. Like [10, 11], we assume the server transmits texture
and depth maps of only one camera-captured viewpoint (called refer-
ence view in the sequel) to the client to cover a defined neighborhood
of virtual views. If the client moves outside the current neighbor-
hood to a new one, a new pair of texture and depth maps (differen-
tially coded from the previously transmitted pair) will be transmitted
to cover the new neighborhood of virtual views. In this paper, we
focus only on synthesis of virtual view images in the neighborhood
with significantz-dimensional camera movements.

3.1. Hole Filling in DIBR Synthesized Image

In 3D warping, we often observeholes in the virtual view; i.e., a
pixel in the virtual view that has no corresponding pixel in the ref-
erence view. There are two main kinds of holes. The first kind is
disocclusion holes: the corresponding pixel in the reference view is
occluded by a pixel of another object closer to the camera. Disoc-
clusion holes can be filled using depth-based image inpainting tech-
niques [5, 6], and are outside the scope of this paper. The second
kind is expansion holes. We define an expansion hole as follows:

a spatial area of an object’s surface in the virtual view, whose cor-
responding area in the reference view is visible but smallerin size.
Unlike disocclusion holes, expansion holes can leverage oninforma-
tion of neighboring pixels with similar depth (indicating they are of
the same object) for interpolation.

We first identify pixels in the virtual view as expansion holes
using a method based on depth histogram. We then propose two
methods for pixel interpolation: i) linear interpolation,and ii) graph-
based interpolation with a sparsity prior. We discuss thesenext.

4. EXPANSION HOLE IDENTIFICATION

We perform the following procedure to identify expansion holes in
the DIBR-synthesized virtual view image. Denote(x, y) the co-
ordinate of a pixel in the reference view andt(x, y) and d(x, y)
the texture and depth values at that coordinate, respectively. When
rendering from reference view to virtual view, a rendering func-
tion F(x, y) = (x′, y′) maps a pixel(x, y) in reference view to
(x′, y′) in virtual view. The inverse mapping functionF ′(x′, y′) =
(x, y) maps from(x′, y′) in virtual view to(x, y) in reference view.
Both F andF ′ can be easily derived from standard 3D warping
equations [3]. We denote the distance between two pixelsi andj:
H((xi, yi), (xj , yj)) = |xi − xj |+ |yi − yj |.

(a) texture block (b) disparity block
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Fig. 1. Example of texture and disparity block, and constructed
depth histogram.

We first divide the virtual view into non-overlappingb×b blocks.
For a given block, we next decompose it into depth layers as follows:
i) construct a histogram of depth values of the synthesized pixels in
the block, ii) separate depth pixels into layers by identifying local
minima in the histogram and using them as layer-dividing bound-
aries. Fig. 1 shows an example texture and disparity1 block, and
corresponding depth histogram. We next process each layer in order
of increasing depth values (closest layer to the camera first).

When processing a layerl, all synthesized pixels of high layers
l + 1, . . . are treated as empty pixels; this affords us an opportunity
to erase a synthesized background pixel from an expansion hole of
the foreground object. We examine each empty pixel in the block as
follows. As shown in Fig. 2, we divide the neighborhood of an empty
pixel (markedX in Fig. 2) into four quadrants. In each quadrant, we
find the synthesized pixeli at (x′

i, y
′

i) that is closest to the empty
pixel in distanceH(). It is possible that there are no synthesized
pixels in a particular quadrant. After we acquired a maximumset
of four nearest pixels in the four quadrants, we check if eachpair of
nearest pixels in neighboring quadrants,i andj, are nearby pixels
in the reference view. Specifically, using inverse mapping function

1There is a one-to-one correspondence between depth and disparity,
where disparity is inversely proportional to depth. Thus, disparity map can
be equivalently processed instead of depth map.



Fig. 2. Expansion Holes on a Depth Layer

F ′, we check ifH(F ′(x′

i, y
′

i),F
′(x′

j , y
′

j)) < n, wheren is a pre-
set distance threshold. If we find two or more neighboring pairs
among an empty pixel’s nearest pixel set, we declare that this empty
pixel belongs to an expansion hole. The parametern determines
the sensitivity of this method. We setn = 2 in our experiments to
balance the false positives and false negatives.

The intuition behind this method is that if the set of closestpix-
els in the virtual view are nearby pixels in the reference view, then
the empty pixel in the virtual view is very likely to be insidethe con-
vex set spanned by the closest pixels in the reference view. After
identifying expansion hole empty pixels, we interpolate them using
one of two methods described next.

5. EXPANSION HOLE PIXEL INTERPOLATION

Having identified expansion hole empty pixels, we now discuss how
we interpolate them using two methods: linear interpolation and
graph-based interpolation with sparsity prior.

5.1. Linear Interpolation

For linear interpolation, for each identified empty pixel inan ex-
pansion hole, we search for the three nearest synthesized pixels i,
j, k and construct a linear plane that connects their texture val-
ues,t(xi, yi), t(xj , yj), t(xk, yk) given their coordinates(xi, yi),
(xj, yj), (xk, yk). The empty pixel is interpolated using the con-
structed plane and its own pixel coordinate. The advantage of this
method is that it is simple and has low computation complexity.

5.2. Graph-based Interpolation with Sparsity Constraint

We next describe a more complex method using GBT for interpola-
tion. We first discuss how GBT basis functions are derived. Wethen
discuss how the optimization is formulated and performed given the
derived GBT basis functions.

5.2.1. Constructing a Graph-based Transform

We first overview the procedure to construct a GBT [16], whichis
a signal-adaptive block transform. We begin by defining a graph G
connecting pixels in the block (nodes in the graph), where anedge
connecting pixeli andj has edge weightei,j . Next, we define the
degree matrixD and adjacency matrixA from the constructed graph
G. Adjacency matrixA has entryAi,j containing edge weightei,j
if edge connectingi andj exists, and0 otherwise. Degree matrix
D is a diagonal matrix with non-zero entriesDi,i =

∑
j
ei,j . A

graph Laplacian L = D − A can then be defined. Finally, we

perform eigen-decomposition onL, i.e., find eigen-vectorsφi’s such
thatLφi = ρiφi, whereρi is the i-th graph frequency. The basis
vectors of the GBT areφi’s. If we now project a signals in the graph
G onto the eigen-vectorsφi’s of the LaplacianL, it becomes the
spectral decomposition of the signal; i.e., it provides a “frequency
domain” interpretation of signals given graph supportG.

The performance of GBT-based interpolation depends to a large
extent on how the graphG is constructed. We propose to constructG
for empty pixels and synthesized pixels in a depth layerl as follows.
First, we draw an edge from each pixel to itsk nearest pixels in
terms of coordinate distanceH(). Next, we assign an edge weight
ei,j between pixelsi andj, if i andj are connected, as follows:

1. If i andj are both synthesized pixels, thenei,j is assigned a
weight inverse proportional to their texture value difference.

2. If one of i and j is an empty pixel, thenei,j is assigned a
weight inverse proportional to their coordinate distanceH().

5.2.2. Linear Program Formulation

Without loss of generality, let theN synthesized pixels in a patch
be s1, . . . , sN , and the interpolated length-M signal,M > N , be
ŝ = [ŝ1, . . . , ŝM ] = Φw, where columns ofM × M matrix Φ,
φj ’s, are theM GBT basic vectors as derived earlier, andw is the
coefficient vector for signal interpolation. Letui’s be a set ofN
length-M unit vectors,[0, . . . , 0, 1, 0, . . . , 0], where the single non-
zero entry is at positioni. Our objective is to minimize a weighted
sum of: i) thel1-norm of the difference between interpolated signal
ŝ and original signals at theN synthesized pixel locations, and ii)
weightedl0-norm of the coefficient vectorw (low frequencieswl

has weightλl and high frequencieswh has weightλh):

min
w

‖

N∑

i=1

u
T
i Φw − si‖1 + λl‖wl‖0 + λh‖wh‖0 (1)

As typically done in the literature for sparse signal recovery, we
can swap thel0-norm above with al1-norm:

min
w

‖

N∑

i=1

u
T
i Φw − si‖1 + λl‖wl‖1 + λh‖wh‖1 (2)

(2) can now be easily rewritten as a linear programming (LP)
formulation [18], and can thus be solved using any one of a setof
known LP algorithms [19].

6. EXPERIMENTATION

6.1. Experimental Setup

We usedart andlaundry in Middlebury’s 2005 datasets2 as our
multiview image test sequences. ForArt, we used the fifth view
of the sequence as the ground truth for virtual viewv0, which was
resized to1104 × 1384 so that the pixel rows and columns were
multiples of 8. Then, we used DIBR to generate the reference view
vr for our experiment, wherevr is further away from the camera
than v0. Since pixels are moving towards each other during this
view-switch, there would be no expansion holes. We used a standard
inpainting algorithm to fill the disocclusion holes to complete vr.
Similar procedure was performed forlaundry.

Using texture and depth maps ofvr, we used DIBR again to gen-
erate virtual viewv0. We used one of the following three methods

2http://vision.middlebury.edu/stereo/data/scenes2006/



Table 1. PSNR Comparison of VSRS Inpainting, Linear Interpola-
tion and GBT Interpolation for the identified expansion holeareas.

method VSRS+ Linear GBT
art PSNR(dB) 19.11 22.87 23.36

laundry PSNR(dB) 19.17 21.94 22.53

for filling of expansion holes. In the first method we callVSRS+,
we modified VSRS software version 3.5 as follows. Because we are
generating the virtual view from a single pair of texture anddepth
maps from the reference view, we skipped the step of blendingtwo
virtual view images synthesized from two different reference views
after DIBR, and proceeded directly to the inpainting part ofVSRS,
which called an OPENCV inpainting algorithm. We note that the
VSRS software is not designed for synthesis of virtual view images
with significantz-dimensional camera movements. Nonetheless, we
used VSRS as one benchmark comparison because: i) it is a wellac-
cepted and commonly used view synthesis software, and ii) tothe
best of the authors’ knowledge, there are no other well accepted
DIBR-based view synthesis strategies for virtual view withsignif-
icantz-dimensional camera movement.

linear andGBT are the linear and graph-based interpolation
methods as described in Section 5.

6.2. Experimental Results

After generating the virtual view images using the three methods, we
calculated the PSNR of the virtual view images interpolatedusing
the aforementioned three interpolation methods against the ground
truth v0. Since we proposed identification and interpolation of the
expansion hole area, we will only calculated the PSNR of the iden-
tified expansion hole areas. The PSNR comparison is shown in Ta-
ble 1. For theart sequence, we see that bothLinear andGBT
outperformedVSRS+ significantly: by3.76dB and4.25dB, respec-
tively. This demonstrates that the correct identification of expan-
sion holes and subsequent interpolation are important for DIBR im-
age synthesis of virtual view with significantz-dimensional cam-
era movement. Further, we see thatGBT outperformedlinear
by 0.49dB, showing that using graph-based interpolation, we can
achieve better image quality than simple linear interpolation.

For thelaundry sequence, we observe similar trend. In this
case, we see thatLinear andGBT outperformedVSRS+ by2.77dB
and3.36dB, respectively.

(a) expansion holes (b) VSRS+ (c) GBT

Fig. 3. Expansion holes and visual comparison betweenVSRS+ and
GBT for sequencelaundry.

Next, we examine the generated image quality visually. In
Fig. 3, we show an example patch of the DIBR-synthesized image

before filling of expansion holes, and after filling of expansion holes
usingVSRS+ andGBT, respectively, for thelaundry sequence.
The resolution of the patch is320 × 320. First, we see visually in
Fig. 3(a) that the presence of expansion holes is everywhereand is
a significant problem. Note also that the nature of expansionholes
is very different from disocclusion holes (e.g., right of the deter-
gent bottle), which are larger contiguous regions. Second,we see
in Fig. 3(b) that applying inpainting algorithm naively to fill in all
missing pixels indiscriminately do not lead to acceptable quality for
expansion hole areas. Finally, we see in Fig. 3(b) that usingGBT,
expansion holes can be filled in a visually pleasing manner.

(a) expansion holes (b) VSRS+ (c) GBT

Fig. 4. Expansion holes and visual comparison betweenVSRS+ and
GBT for sequenceart.

Similarly, we show example image patch with expansion holes
before and after filling in Fig. 4 for theart sequence. The resolu-
tion of this patch is75 × 150. We again see thatGBT can signifi-
cantly improve visual quality of the DIBR-synthesized image. What
is interesting in this image set is that usingGBT, we were able to
erase erroneously synthesized background pixels in the foreground
expansion hole areas before performing interpolation, leading to bet-
ter performance.

7. CONCLUSION

When the viewer’s chosen virtual viewpoint for image rendering via
DIBR involves significant camera motion in thez-dimension rel-
ative to the reference viewpoint (camera moving closer to the 3D
scene), objects closer to the camera will increase in size faster than
objects further away. Because insufficient number of pixel samples
are available in the reference image, expansion holes will appear in
the DIBR-rendered image in the virtual view. Unlike disocclusion
holes that are filled using inpainting methods (extrapolation), expan-
sion holes can be filled by interpolating from neighboring synthe-
sized pixels of the same object surface. In this paper, we propose
a procedure to correctly identify them in the virtual viewpoint im-
age, then fill them using one of two methods: i) linear interpolation,
and ii) graph-based interpolation with a sparsity prior. Experimen-
tal results show that up to4.25dB gain can observed over inpainting
method employed in VSRS 3.5.
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