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ABSTRACT

Visual saliency is a probabilistic estimate of how likely a given spa-
tial area in an image or video is to attract human visual attention rel-
ative to other areas. Bottom-up saliency models aggregate low-level
image features like luminance and color contrast, flicker, 2D motion,
etc. to construct a plausible saliency map. In this paper, weintro-
duce 3D motion (object movements towards or away from the ob-
server) into bottom-up video saliency modeling. Given availability
of per-pixel depth maps, we first propose a novel algorithm toesti-
mate 3D motion vectors (3DMVs) for arbitrarily shaped sub-blocks
in texture-plus-depth videos. We then derive two feature channels
from 3DMVs to be incorporated into a widely accepted bottom-up
saliency model. Experiments on subjective quality of Region-of-
Interest (ROI) based video coding show that our enriched saliency
model with 3DMV channels is more accurate in estimating human
visual attention.

Index Terms— 3D motion estimation, visual saliency compu-
tation, ROI-based video coding

1. INTRODUCTION

Visual saliency estimates how likely a given local spatial area in an
image or video frame is to attract human visual attention relative to
other areas. Many models compute saliency maps in a bottom-up
manner by aggregating low-level image features, such as luminance
and color contrast, flicker, 2D motion, etc. Although the accuracy of
different models varies, in general many models predict observers’
gaze tendency reasonably well [1]. Accurate saliency maps can
be used for Region-of-Interest (ROI) based image and video com-
pression [2], subjective multimedia quality assessment [3], saliency-
cognizant error concealment in loss-corrupted video [4], etc.

While 2D motion (object movements alongx- or y-dimension)
has been previously used as an input feature for saliency mapcompu-
tation (moving objects tend to attract human visual attention [5]), 3D
motion—movement along thez-dimension towards or away from
the observer—has never been considered in saliency computation.
From a biological viewpoint, an object moving towards the observer
presents a potential physical threat, and hence should typically trig-
ger immediate attention due to innate survival instinct. One reason
why 3D motion has not been considered in visual saliency computa-
tion is simply technological: it is difficult to estimate 3D motion in
conventional 2D videos composed of texture frames only.

With the advent of depth-sensing cameras such as Microsoft
KinectR©, depth video—per-pixel distance between captured objects
in the 3D scene and the capturing camera—can now be readily ac-
quired along with texture video (RGB or YUV images) from the
same viewpoint. In this paper, we introduce 3D motion into bottom-
up video saliency modeling for texture-plus-depth videos.We first
estimate 3DMVs for arbitrarily shaped sub-blocks. Then we derive

two feature channels from the computed 3DMVs, which are sub-
sequently incorporated into a widely accepted bottom-up saliency
model [6, 7]. Extensive experiments on subjective quality of Region-
of-Interest (ROI) based video coding show that our enrichedsaliency
model with added 3DMV channels is more accurate in estimating
human visual attention.

The outline of the paper is as follows. We first discuss related
work in Section 2. Then we present the proposed algorithm to esti-
mate 3DMVs. We discuss how 3DMVs are used for saliency model-
ing in Section 4. Finally, experiments and conclusion are presented
in Sections 5 and 6, respectively.

2. RELATED WORK

Although motion estimation has been extensively studied for texture
videos, only a few works study motion estimation for texture-plus-
depth videos [8, 9]. However, they are designed for video compres-
sion through 2D motion vector sharing [10]. In this paper we pro-
pose a joint 3D motion estimation method to recover the physical
object motion in 3D space, which is especially useful for high-level
video analysis tasks, such as saliency modeling, action recognition
and scene understanding.

Generally speaking, there are two classes of saliency modeling
approaches for images and videos: bottom-up and top-down. The
bottom-up methods [6, 11] are stimuli-driven. They aggregate low-
level visual stimuli into a plausible overall visual saliency map. The
top-down approaches [12] are semantic-driven; e.g. humansnatu-
rally recognize and are attracted to human faces. A recent overview
of saliency modeling can be found in [13]. While for simplicity we
assume a baseline bottom-up saliency model when incorporating 3D
motion in this work, a future extension can involve a hybrid model
that combines bottom-up and top-down visual cues.

3. COMPUTING 3D MOTION VECTORS

In this section, we present a novel 3D motion estimation method to
estimate the 3D motion of blocks with the help of depth information.
While 2D motion estimation methods compute object motion along
x- andy-dimension, we conjecture thatz-motion deserves a much
larger role in visual saliency computation. The reason is biological:
an object coming towards a viewer represents a potential physical
threat (e.g., a predator), and hence should draw immediate attention
due to innate self-preservation instincts.

Our inputs are a texture video (8-bit RGB or YUV) and a depth
video of the same resolution taken from the same viewpoint. A
N ×N blockB = {Bt,Bd} refers to a texture blockBt as well as
the corresponding depth blockBd. As a convention, only luma com-
ponent is used for texture block matching, and the previous frame is
used as the reference frame.



3.1. Sub-block Partitioning

Assuming pixels of different objects usually have different motions,
a block containing multiple objects may fail to find a good match in
the reference frame. Thanks to the depth information, such blocks
could be easily divided into two pixel groups, leading to twoarbitrar-
ily shaped sub-blocks (e.g., foreground and background sub-blocks).
Each sub-block then gets assigned its own 3DMV. By sub-blockpar-
titioning, we can improve the accuracy of block matching especially
near object boundaries.

To partition current blockBc = {Bt
c,B

d
c} into at most two sub-

blocks masked by matrixM ∈ {0, 1}N×N , we use only the depth
informationBd

c . Specifically, if the standard deviation of values in
B

d
c is smaller than a pre-defined thresholdTs, we returnM = 1,

indicating thatBc should not be partitioned. Otherwise, pixels in
B

d
c are divided into two groups (represented by0s and1s inM) by

the mean depth value inBd
c . In the end, a morphological closing

operation (dilation followed by erosion) is performed onM so that
pixels in one sub-block form a contiguous region. This process is
both efficient and effective; see Fig. 1 for an illustration.

Since an unpartitioned block can be viewed as a special case
with M = 1, sub-block (with associatedM) is the basic processing
unit of proposed 3D motion estimation method.

Fig. 1. Arbitrary-shaped sub-block partition withN = 16. Sub-
blocks with maskM 6= 1 are marked in red and blue.

3.2. 3D Motion Estimation

After partitioning, 3D motion estimation is performed on each sub-
block to estimate its 3DMV. To contain complexity, we restrict the
block search to a 3D window consisting of a conventional 2D spa-
tial search window and a 1D depth search window. Different from
existing methods [8, 9], our method is a joint 3D motion estimation,
which uses variable block size adaptive to depth change.

3.2.1. 3DMVs in Physical Units

Our 3D motion estimation is aimed at recovering the true motion in
3D space over a constant frame interval∆t. So the 3DMVmv =
(mvx,mvy ,mvz) should be measured inphysical distance. Al-
though the acquiredmvz is the difference in depth values (in meters)
between the current and reference sub-blocks, the acquiredx- andy-
componentsmvpxlx andmvpxly are typically in unit of pixels.

The inconsistency of units can be solved by well-accepted pin-
hole imaging model. In Fig. 2, assuming a 3D point(X0, Y0, Dc)
moves to(X0, Y0 +∆Y,Dc), we have the following relation based

Dc

 Dr

F

Y

X

Z

Rr

Rc

ΔR

ΔY

(X0, Y0, Dc) 

(X0, Y0+ΔY, Dc) 

(X0, Y0, Dr) 

(Rc, C0) 

(Rc+ΔR, C0) 

(Rr, C0) 

C

R

Image Plane 3D Space

Fig. 2. Perspective pinhole imaging model. A 3D point(X,Y, Z)
maps to the image plane indexed by row (axisR) and column (axis
C). F is the focal length in unit of pixels, which is given in the
camera intrinsic matrix.

on similar triangles:

mvy

mvpxly

=
∆Y

∆R
=

Dc

F
(1)

Therefore, motion in image planemvpxly can be converted to the
physical motionmvy by:

mvy =
Dc

F
mvpxly (2)

whereDc = depth(Bd
c ) is the mean depth of the current sub-block.

Similarly, we havemvx = Dc

F
mvpxlx .

3.2.2. Joint 3D Search

Unlike motion in thex- or y-dimension,z-motion means an object
has moved closer to or further away from the camera, resulting in
object resizing from reference frame to current frame. Hence, an
accurate block matching in 3D motion estimation should haverefer-
ence blocks with varying sizeL.

Fortunately, checking all block sizes in reference frame isnot
necessary. In Fig. 2, assuming a 3D point(X0, Y0, Dc) moves to
new position(X0, Y0, Dr), according to similar triangles we have:

∵ Y0 =
Rc

F
Dc =

Rr

F
Dr

∴
N

L
=

Rc

Rr

=
Dr

Dc

∴ L =
Dc

Dr

N
(3)

Assume the depth change within frame interval∆t is below a thresh-
oldD0, i.e. the depth of reference blockDr ∈ [Dc−D0, Dc+D0].
By replacingDr with Dc ± D0, we get the range ofL, the size of
reference block in integers, below:

L ∈ [Nmin, Nmax] =

[

round(
N

1 + D0

Dc

), round(
N

1− D0

Dc

)

]

(4)

Alg. 1 summarizes our joint 3D search for candidate sub-blocks
given the current blockBc = {Bt

c,B
d
c } located at(r, c). To find the

best match, we check reference blocks within a 2D search window
in reference depth frameFd

r and texture frameFt
r. Different from

conventional methods, the size of reference blocksL varies from



Algorithm 1 Joint Search with 3D Window

Input: Bc = {Bt
c,B

d
c} at (r, c), Fd

r , Ft
r

Output: S
1: S ← ∅
2: Dc ← depth(Bd

c )
3: for L = Nmin toNmax do ⊲ refer to (4)
4: for all (i, j) in 2D search windowdo
5: ˜

Bd
r ← L× L block ofFd

r at (i, j)

6: B
d
r ← rescale( ˜

Bd
r )

7: Dr ← depth(Bd
r )

8: if |N
L
Dc −Dr| ≤ Td then ⊲ refer to (3)

9: B̃t
r ← L× L block ofFt

r at (i, j)
10: B

t
r ← rescale(B̃t

r)
11: mvx ←

Dc

F
(c− j) ⊲ refer to (2)

12: mvy ←
Dc

F
(r − i)

13: mvz ← Dc −Dr

14: mv← (mvx,mvy ,mvz)
15: put{Bt

r,mv} into S
16: end if
17: end for
18: end for
19: return S

Nmin to Nmax. For sub-block masking, we rescale the reference
block from L × L to N × N . From (3), we know thatN

L
Dc is

the expected depth value for a reference block with sizeL. So the
1D depth search window rejects any reference blocks with|N

L
Dc −

Dr| > Td. The survivors are candidate sub-blocks, whose texture
informationBt

r and corresponding 3DMVmv are stored in setS .
In the special case when the video has been captured at a high

frame rate relative to the speed of 3D motion in the scene, we only
need to checkL = N sinceD0

Dc

→ 0.

3.2.3. Matching Criterion

Given the set of candidate sub-blocksS , the 3DMVmv
∗ for current

sub-blockBc is the one with the smallest matching error:

mv
∗(Bc) = argmin

{Bt
r
,mv}∈S

err(Bt
r,mv) (5)

where

err(Bt
r,mv) =

1

card(M)
||Bt

c −B
t
r||1 + λ||mv−mvp||2 (6)

There are two terms in the error function balanced byλ. The first
term is the Mean-Absolute-Difference (MAD) for texture blocks,
wherecard(M) is the number of1’s in Bc’s sub-block maskM.
The second term||mv−mvp||2 is a regularization term to enforce
a piece-wise smooth motion field, wheremvp is the 3DMV predic-
tor. The predictor is the Laplacian-weighted average of 3DMVs of
causal neighboring sub-blocks. In the example in Fig. 3:

mvp =

∑8

i=1 wi ·mv
∗(Bi)

∑8
i=1 wi

wi = exp(−τ |depth(Bd
c )− depth(Bd

i )|)

(7)

Our assumption is that 3DMVs of sub-blocks from the same ob-
ject (neighboring sub-blocks with similar depth) should have strong
correlation. The regularization term effectively removescandidate
blocks with irregular 3DMVs. The output 3DMVmv

∗(Bc) is pro-
portional to absolute physical velocity in the 3D space.
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Fig. 3. 3DMV prediction using
causal sub-blocks (B1 toB8).
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Fig. 4. Quantified 3D direc-
tions (black arrows).

4. 3D MOTION IN SALIENCY MODELING

In this section we derive two feature channels from 3DMVs. They
are combined with conventional low-level feature channelsinto an
enriched saliency map.

4.1. 3D Motion Magnitude (3DMM)

It is commonly accepted that objects with larger motion drawmore
attention from observers. Thus, the most straightforward way to
compute conspicuity for a given 3DMV(mvx,mvy ,mvz) is to
compute its Euclidean norm:

√

mv2x +mv2y +mv2z .
Euclidean norm treats the vector components equally. However,

as discussed in the Introduction, an object moving towards the ob-
server (mvz < 0) should be weighted more heavily. We thus modify
it into the following:

3DMM =
√

mv2x +mv2y + α ·mv2z

α =

{

1 if mvz ≥ 0

9 if mvz < 0

(8)

By calculating 3DMM for each sub-block, we can get a conspicuity
mapCM3dmm for each frame.

4.2. 3D Direction Self-information (3DDS)

Like previous work [14, 15] that assumes “surprise” elements draw
more attention, here we assume a 3DMV with an unusual motion
direction should be more salient. First, we uniformly divide the 3D
motion field into27 directions (see Fig. 4). For each frame we clas-
sify 3DMV directions of all sub-blocks into the 27 bins, and use the
normalized histogram as an approximation of probability mass func-
tionPr(·) of motion directions. By calculating the self-information,
we can give higher conspicuity to uncommon directions.

3DDS = − log(Pr(bin(mv))) (9)

Similarly, a conspicuity mapCM3dds can be constructed for
each frame using 3DDS.

4.3. Feature Integration

Itti’s model [6, 7] is a well-known framework for bottom-up saliency
modeling, where a conspicuity map is calculated for each fea-
ture channel. There are several channels in Itti’s model forvideo
saliency detection [7]: intensity (I), color (C), orientation (O), 2D
motion (M) and temporal flicker (F). The proposed 3DMM and
3DDS serve as additional channels to the existing framework.



In Itti’s model, maxnorm N (·) is the most popular approach
to fuse conspicuity maps:

N (CM) = (1−m)2CM (10)

wherem is the normalized mean value of local maxima withinCM.
Like [6], the final saliency mapSM is obtained by combining con-
spicuity maps of all channels:

SMItti =
∑

i={I,C,O,M,F}

N (CMi)

SM3dmv = N (SMItti) +N (CM3dmm) +N (CM3dds)

(11)

whereSM3dmv andSMItti are respectively the saliency map with
and without proposed 3DMV channels. They are further normalized
to [0, 1] for experiments. In this paper, we make use of the imple-
mentation of Itti’s model for video from [16].

5. EXPERIMENTATION

We verify the effectiveness of our proposed saliency model via ex-
tensive subjective experiments. The results show that our model is
statistically more accurate in estimating human visual attention.

5.1. ROI-based Video Coding

To test the accuracy of saliency maps, we encoded the texturevideo
with adaptive quality based on saliency value. All frames are intra-
coded using H.264/AVC reference software JM version 18.4 [17].
The quantization parameter (QP) of each macro-block is inverse-
proportionally determined by its mean saliency value, i.e.small QP
(high quality) for high saliency regions.

Four sequences:lovebird, toy forward, toy f side, toy f backare
used for our experiments (see Table. 1), wherelovebird is the stan-
dard test sequence [18] and the rest are captured using a combina-
tion of a RGB camera and a PMD Time-of-Flight (ToF) depth cam-
era [19] with proper view mapping. All sequences have the frame
rate 30fps. Two ROI-encoded videos with the same bit-rate (4
mbps) are produced (bySMItti andSM3dmv respectively) for each
sequence, resulting in4× 2 = 8 ROI-encoded videos for subjective
experiments.

5.2. Subjective Experiments

As recommended by ITU-R BT.500 [20], 20 participants (15 male
and 5 female, of age 22-34) took part in the experiments. All partici-
pants had normal or corrected to normal sight, and were naiveabout
the task of the experiment. A 23-inch LG monitor with resolution
1920×1080 and brightness 250cd/m2 was used for display. The
ambient light in the room was 250-300lux. The distance between
the participant and monitor was approximately 40cm.

For each sequence, participants were asked to watch the original
sequence first. After that, two ROI-encoded videos (one based on
SM3dmv, the other onSMItti) were displayed twice, side by side
on the screen in random order. An answer sheet was given to each
participant to record the vote on which one is visually closer to the
original sequence.

Participants’ votes are shown in Table. 1, along with thep-values
of the two-sidedχ2-test [21]. The null hypothesis is that votes for
SM3dmv andSMItti come from distributions with the same mean.
Under this hypothesis, the expected number of votes for eachcase is
10. In our experiments, the extremely smallp-values reject the null
hypothesis and suggest that ROI-encoded videos based onSM3dmv

Table 1. Subjective Experiment Results
Sequence lovebird toy forward toy f side toy f back
Resolution 1024 × 768 640 × 480 640× 480 640× 480
Duration 2× 5s 2× 4s 2× 4s 2× 4s
SMItti 0 1 1 0
SM3dmv 20 19 19 20
p-value 8× 10−6 6× 10−5 6× 10−5 8× 10−6

(a) lovebird

(b) toy forward

(c) toy f side

(d) toy f back

Fig. 5. Sample saliency maps of 4 sequences. Columns from left to
right: RGB frame,SMItti, SM3dmv. For gray-scale saliency maps,
higher intensity means higher saliency value

are statistically preferred. The strong preference indicates a higher
probability that human gaze falls into high quality (small QP, high
saliency) regions in ROI-encoded videos based onSM3dmv than
those based onSMItti. Therefore enriched saliency mapSM3dmv

is more accurate in terms of predicting human gaze, i.e. estimating
human visual attention.

Sample saliency maps are also shown in Fig. 5. Comparing with
SMItti, blocks withz-motion towards the camera are effectively
detected inSM3dmv with proposed 3DMV channels.

6. CONCLUSION

In this paper, we propose a novel method to estimate 3DMVs for
texture-plus-depth videos, from which we further derive two feature
channels for bottom-up video saliency modeling. Subjective experi-
ments involving ROI-based video coding show that proposed 3DMV
significantly improves the accuracy of human attention estimation.
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