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ABSTRACT

Visual saliency is a probabilistic estimate of how likelyigem spa-
tial area in an image or video is to attract human visual titiemel-
ative to other areas. Bottom-up saliency models aggregatéevel
image features like luminance and color contrast, flickerption,
etc. to construct a plausible saliency map. In this paperinive-
duce 3D motion (object movements towards or away from the ob
server) into bottom-up video saliency modeling. Given kamlity

of per-pixel depth maps, we first propose a novel algorithrasti-
mate 3D motion vectors (3DMVs) for arbitrarily shaped subeks

in texture-plus-depth videos. We then derive two featur@nolels
from 3DMVs to be incorporated into a widely accepted bottam-
saliency model. Experiments on subjective quality of Regit
Interest (ROI) based video coding show that our enricheiérsa}
model with 3DMV channels is more accurate in estimating huma
visual attention.

Index Terms— 3D motion estimation, visual saliency compu-
tation, ROI-based video coding

1. INTRODUCTION

Visual saliency estimates how likely a given local spatialaain an
image or video frame is to attract human visual attentioatied to

other areas. Many models compute saliency maps in a botl:om-uD

manner by aggregating low-level image features, such amamoe
and color contrast, flicker, 2D motion, etc. Although thewaecy of
different models varies, in general many models predicenfess’
gaze tendency reasonably well [1]. Accurate saliency maps ¢
be used for Region-of-Interest (ROI) based image and video-c
pression [2], subjective multimedia quality assessmédnsiency-
cognizant error concealment in loss-corrupted video [#}, e

While 2D motion (object movements along or y-dimension)
has been previously used as an input feature for saliencycorapu-
tation (moving objects tend to attract human visual attenfs]), 3D
motion—movement along the-dimension towards or away from
the observer—has never been considered in saliency cotigouta
From a biological viewpoint, an object moving towards thesafver
presents a potential physical threat, and hence shouldaiypirig-
ger immediate attention due to innate survival instinct.e@eason
why 3D motion has not been considered in visual saliency coaap
tion is simply technological: it is difficult to estimate 3Dation in
conventional 2D videos composed of texture frames only.

With the advent of depth-sensing cameras such as Microso
Kinect®, depth video—per-pixel distance between captured object
in the 3D scene and the capturing camera—can now be readily a
quired along with texture video (RGB or YUV images) from the
same viewpoint. In this paper, we introduce 3D motion inttidro-
up video saliency modeling for texture-plus-depth videdée first
estimate 3DMVs for arbitrarily shaped sub-blocks. Then weve

two feature channels from the computed 3DMVs, which are sub-
sequently incorporated into a widely accepted bottom-uiersay
model [6, 7]. Extensive experiments on subjective qualitR@gion-
of-Interest (ROI) based video coding show that our enrictaigtncy
model with added 3DMV channels is more accurate in estirgatin
human visual attention.

The outline of the paper is as follows. We first discuss relate
work in Section 2. Then we present the proposed algorithnstie e
mate 3DMVs. We discuss how 3DMVs are used for saliency model-
ing in Section 4. Finally, experiments and conclusion aesented
in Sections 5 and 6, respectively.

2. RELATED WORK

Although motion estimation has been extensively studiedeiture
videos, only a few works study motion estimation for textphes-
depth videos [8, 9]. However, they are designed for videoprest
sion through 2D motion vector sharing [10]. In this paper we-p
pose a joint 3D motion estimation method to recover the maysi
object motion in 3D space, which is especially useful fohhigvel
video analysis tasks, such as saliency modeling, actiovgretion
and scene understanding.

Generally speaking, there are two classes of saliency rimgdel
approaches for images and videos: bottom-up and top-dovine. T
ottom-up methods [6, 11] are stimuli-driven. They aggtedaw-
level visual stimuli into a plausible overall visual saligrmap. The
top-down approaches [12] are semantic-driven; e.g. humanhs
rally recognize and are attracted to human faces. A recentigw
of saliency modeling can be found in [13]. While for simptycive
assume a baseline bottom-up saliency model when incorpgr3D
motion in this work, a future extension can involve a hybriddal
that combines bottom-up and top-down visual cues.

3. COMPUTING 3D MOTION VECTORS

In this section, we present a novel 3D motion estimation oeto
estimate the 3D motion of blocks with the help of depth infation.
While 2D motion estimation methods compute object motiamgl

z- andy-dimension, we conjecture thatmotion deserves a much
larger role in visual saliency computation. The reasonadgogical:

an object coming towards a viewer represents a potentiadigdly
threat (e.g., a predator), and hence should draw immediatetian
fiue to innate self-preservation instincts.

s Our inputs are a texture video (8-bit RGB or YUV) and a depth
gideo of the same resolution taken from the same viewpoint. A
N x N blockB = {B*, B9} refers to a texture blocB* as well as
the corresponding depth blo. As a convention, only luma com-
ponent is used for texture block matching, and the previcarsé is
used as the reference frame.



3.1. Sub-block Partitioning

Assuming pixels of different objects usually have diffaramtions,
a block containing multiple objects may fail to find a good afain

Image Plane Y 3D Space

(Xo» Yo+AY, Do)
X -~

- AY

-~
X0, Yo, D) _ (X, Yo, D)
Ve -~

—

the reference frame. Thanks to the depth information, slmtkb R
could be easily divided into two pixel groups, leading to @vbitrar- ¢ P G
ily shaped sub-blocks (e.g., foreground and backgrounebfadks). F o~
Each sub-block then gets assigned its own 3DMV. By sub-bpack =
titioning, we can improve the accuracy of block matchingeesaly -7
near object boundaries. ‘ T 2
To partition current blocB. = {B%, B2} into at mosttwo sub-  ». R R
blocks masked by matrivd € {0,1}V*Y, we use only the depth | |
informationBZ. Specifically, if the standard deviation of values in
BY is smaller than a pre-defined threshdlg, we returnM = 1, (s
indicating thatB. should not be partitioned. Otherwise, pixels in
B¢ are divided into two groups (representeddsyandls in M) by Fig. 2. Perspective pinhole imaging model. A 3D po{tX,Y, Z)
the mean depth value iBZ. In the end, a morphological closing maps to the image plane indexed by row (akjsand column (axis
operation (dilation followed by erosion) is performed®hso that  C). F is the focal length in unit of pixels, which is given in the
pixels in one sub-block form a contiguous region. This pssces  camera intrinsic matrix.
both efficient and effective; see Fig. 1 for an illustration.
Since an unpartitioned block can be viewed as a special case
with M = 1, sub-block (with associatelil) is the basic processing 0On similar triangles:
unit of proposed 3D motion estimation method.
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Therefore, motion in image plarm,v;jx‘ can be converted to the
physical motionmnuv, by:

muy = % mv?‘;’cl @)

whereD,.. = depth(B2) is the mean depth of the current sub-block.
Similarly, we havenv, = Zemop*.

3.2.2. Joint 3D Search

Unlike motion in thex- or y-dimension,z-motion means an object
has moved closer to or further away from the camera, reguitin
object resizing from reference frame to current frame. léermm
accurate block matching in 3D motion estimation should hafer-
ence blocks with varying siz&.

Fortunately, checking all block sizes in reference framaads
necessary. In Fig. 2, assuming a 3D pdial, Yo, D.) moves to
new position(Xo, Yo, D,), according to similar triangles we have:

Fig. 1. Arbitrary-shaped sub-block partition witN" = 16. Sub-
blocks with maskM # 1 are marked in red and blue.

3.2. 3D Motion Estimation

After partitioning, 3D motion estimation is performed orckaub- R. R,

block to estimate its 3DMV. To contain complexity, we resttthe Yo = De= = Dr

block search to a 3D window consisting of a conventional 2B-sp N R. D, D. ®3)
tial search window and a 1D depth search window. Differeoinfr ST T R _ D. L= D_TN

existing methods [8, 9], our method is a joint 3D motion estiion,

which uses variable block size adaptive to depth change. Assume the depth change within frame intexalis below a thresh-

old Dy, i.e. the depth of reference bloék. € [D. — Do, D+ Do].

3.2.1. 3DMVs in Physical Units By replacingD.. yvi;h D. + Dy, wg get the range of, the size of

reference block in integers, below:

Our 3D motion estimation is aimed at recovering the true amoii

3D space over a constant frame interdel. So the 3SDMVmv = . N

(mv,, mv,, mv.) should be measured iphysical distance Al- L € [Numin, Ninax] = mund(l + Do )’mund(l _ &) “)

though the acquirethv. is the difference in depth values (in meters) De De

between the current and reference sub-blocks, the acquHi@utly- Alg. 1 summarizes our joint 3D search for candidate subksloc

componentsnvy™ andmol™ are typically in unit of pixels. given the current blocB. = {B, B2} located atr, ¢). Tofind the
The inconsistency of units can be solved by well-acceptad pi best match, we check reference blocks within a 2D searchamind

hole imaging model. In Fig. 2, assuming a 3D paiafo, Yo, D.) in reference depth framBg and texture framdt. Different from

moves to( Xo, Yo + AY, D.), we have the following relation based conventional methods, the size of reference blotksaries from




Algorithm 1 Joint Search with 3D Window B,
t pd d ot B ] By
Input: B, ={Bg,B¢}at(r,c), Fg, FL o B
Output: S B, o
1: S+ 0 B
2: D, + depth(B2) B N
3: for L = Nmin t0 Npmax do > refer to (4) Bs 7
4 for all (7, 5) in 2D search windovdo
5: B¢ « L x L block of F¢ at (4, 7)
6: B « 7“680@56((113?) Fig. 3. 3DMV prediction using Fig. 4. Quantified 3D direc-
7: Dy < depth(By) causal sub-blocksR; to Bg).  tions (black arrows).
8 if [X£D. — Dy| < Ty then > refer to (3)
o: Bt < L x L block of Ft at (i, j)
10: Bt « ,«escale(ﬁg) 4. 3D MOTION IN SALIENCY MODELING
11 mus + 2 (c— j) > refer to (2) _ _ _
12: . &(T — ) In this section we derive two feature channels from 3DMVseyrh
132 mvy - 5 -D are combined with conventional low-level feature chanmeis an
" my < (mcvz m;y mos) enriched saliency map.
15: put{B¢ mv}into S
16: end if 4.1. 3D Motion Magnitude (3DMM)
17: end for ) ) ) )
18: end for It is commonly accepted that objects with larger motion draore
19: return S attention from observers. Thus, the most straightforwaay o

compute conspicuity for a given 3DM\{muv,, mv,, mv.) is to
compute its Euclidean normy/muvz + mv + mo?.

Ninin 10 Nmax. For sub-block masking, we rescale the reference ~ Euclidean norm treats the vector components equally. Herev
block from L x L to N x N. From (3), we know that%Dc is as discussed in the Introduction, an object moving towardsob-

the expected depth value for a reference block with iz&So the ~ server nv. < 0) should be weighted more heavily. We thus modify

1D depth search window rejects any reference blocks it —  itinto the following:
D,| > T,. The survivors are candidate sub-blocks, whose texture
informationB¢ and corresponding 3DMYav are stored in seS. 3SDMM = \/mvg +mo2 + a - mu?
In the special case when the video has been captured at a high )
frame rate relative to the speed of 3D motion in the scene,mie o 1 ifmu, >0
need to checl. = N since 52 — 0. 19 ifmu. <0
3.2.3. Matching Criterion By calculating 3DMM for each sub-block, we can get a congpjcu

Given the set of candidate sub-blocksthe 3DMVmv* for current mapCMiamm for each frame.

sub-blockB¢. is the one with the smallest matching error:
4.2. 3D Direction Self-information (3DDS)

mv*(Be) = argmin err(BE, mv) (5)
{Bf,mv}es Like previous work [14, 15] that assumes “surprise” eleraairaw
where more attention, here we assume a 3DMV with an unusual motion
1 direction should be more salient. First, we uniformly de&ithe 3D

W(M)HBE — Bi||1 + A||mv — mv||2 (6) motion field into27 directions (see Fig. 4). For each frame we clas-
sify 3DMV directions of all sub-blocks into the 27 bins, anskuhe
There are two terms in the error function balancedbyhe first  normalized histogram as an approximation of probabilitgsfanc-
term is the Mean-Absolute-Difference (MAD) for texture tks,  tion Pr(-) of motion directions. By calculating the self-informatjon
wherecard(M) is the number ofi’s in B.'s sub-block maskMl.  we can give higher conspicuity to uncommon directions.
The second terrfimv — mvy||2 is a regularization term to enforce

err(By, mv) =

a piece-wise smooth motion field, whatevy, is the 3DMV predic- 3DDS = — log(Pr(bin(mv))) (9)
tor. The predictor is the Laplacian-weighted average of 33\of o o
causal neighboring sub-blocks. In the example in Fig. 3: Similarly, a conspicuity magCMsaq. can be constructed for

each frame using 3DDS.
Z?:l w; - mv*(Bj)

8
D1 Wi (7)  4.3. Feature Integration

d d
wi = exp(—7|depth(Bc) — depth(By))) Itti's model [6, 7] is a well-known framework for bottom-uplgncy
Our assumption is that 3DMVs of sub-blocks from the same obimodeling, where a conspicuity map is calculated for each fea
ject (neighboring sub-blocks with similar depth) shoulddnatrong  ture channel. There are several channels in Itti's modeVideo
correlation. The regularization term effectively remowasididate  saliency detection [7]: intensityZ], color (), orientation (), 2D
blocks with irregular 3DMVs. The output 3DMYhv™*(B.) is pro-  motion (M) and temporal flicker X). The proposed 3DMM and
portional to absolute physical velocity in the 3D space. 3DDS serve as additional channels to the existing framework

mvp =



In Itti's model, maznorm N (-) is the most popular approach
to fuse conspicuity maps:

Table 1. Subjective Experiment Results

Sequence| lovebird toy_forward | toy-fside | toy-f_back
N(CM) = (1 —m)>CM (10) Resolution | 1024 x 768 | 640 x 480 | 640 x 480 | 640 x 480
Duration 2 X bs 2 X 4s 2 X 4s 2 X 4s
wherem is the normalized mean value of local maxima witivI. SMiisi 0 1 1 0
Like [6], the final saliency ma@M is obtained by combining con- _ SMasdmv 20 19 19 20
- . p-value 8x10°° 6x107° 6x107° | 8x10°°
spicuity maps of all channels:

SMit; =

>

i={Z,C,O0,M,F}
SMSdmv - N(SMItti) + N(CMSdmm) +N(CM3dds)

N(CM;)
(11)

whereSM;q4m, andSMyy; are respectively the saliency map with
and without proposed 3DMV channels. They are further nazedl

to [0, 1] for experiments. In this paper, we make use of the imple-
mentation of Itti's model for video from [16].

(a) lovebird

5. EXPERIMENTATION

We verify the effectiveness of our proposed saliency modekx-
tensive subjective experiments. The results show that mdems
statistically more accurate in estimating human visuaraion.

(b) toy_forward
5.1. ROI-based Video Coding

To test the accuracy of saliency maps, we encoded the texitlge
with adaptive quality based on saliency value. All framesiatra-
coded using H.264/AVC reference software JM version 187}.[1
The quantization parameter (QP) of each macro-block isréeve
proportionally determined by its mean saliency value,sraall QP
(high quality) for high saliency regions.

Four sequencesovebird toy_forward, toy_f_side toy_f_backare
used for our experiments (see Table. 1), wHerebird is the stan-
dard test sequence [18] and the rest are captured using ar@mb
tion of a RGB camera and a PMD Time-of-Flight (ToF) depth cam-
era [19] with proper view mapping. All sequences have then&a
rate 30 fps. Two ROIl-encoded videos with the same bit-rate (4
mbps) are produced (b Mit; andSMsamy respectively) for each
sequence, resulting i x 2 = 8 ROI-encoded videos for subjective
experiments.

(c) toy_f_side

(d) toy_f_back

Fig. 5. Sample saliency maps of 4 sequences. Columns from left to
right: RGB frame SMi:+i, SMamv. FOr gray-scale saliency maps,

o ) higher intensity means higher saliency value
5.2. Subjective Experiments

As recommended by ITU-R BT.500 [20], 20 participants (15enmal
and 5 female, of age 22-34) took part in the experiments. ddiip-
pants had normal or corrected to normal sight, and were radigat
the task of the experiment. A 23-inch LG monitor with resmnt
1920x1080 and brightness 25@1/m? was used for display. The
ambient light in the room was 250-300x. The distance between
the participant and monitor was approximatelyc0.

For each sequence, participants were asked to watch thealrig

are statistically preferred. The strong preference irtdica higher
probability that human gaze falls into high quality (smaP,(iigh
saliency) regions in ROIl-encoded videos basedSisq.,. than
those based o8M;.+;. Therefore enriched saliency m&Mzamy
is more accurate in terms of predicting human gaze, i.emesiig
human visual attention.

Sample saliency maps are also shown in Fig. 5. Comparing with
sequence first. After that, two ROIl-encoded videos (onedase SMy;, blocks with z-motion towards the camera are effectively
SMiamv, the other orSMit;) were displayed twice, side by side detected ifSM3q.,, With proposed 3DMV channels.
on the screen in random order. An answer sheet was given ko eac
participant to record the vote on which one is visually ctdsethe
original sequence.

Participants’ votes are shown in Table. 1, along withpthalues
of the two-sidedy>-test [21]. The null hypothesis is that votes for In this paper, we propose a novel method to estimate 3DMVs for
SMamy andSMy; come from distributions with the same mean. texture-plus-depth videos, from which we further derive feature
Under this hypothesis, the expected number of votes foreashis  channels for bottom-up video saliency modeling. Subjeatixperi-

10. In our experiments, the extremely smadValues reject the null  ments involving ROI-based video coding show that propo$zid'3
hypothesis and suggest that ROI-encoded videos bas8tVbja .y significantly improves the accuracy of human attentiomesstion.

6. CONCLUSION
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