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Abstract—Given texture and depth maps of a single reference object near the camera will enlarge in size in the virtualwie
viewpoint, one can synthesize a novel viewpoint image via pth-  An enlargement in object size means that pixel samples of
image-based rendering (DIBR) by mapping texture pixels frm 0 gpject surface in the reference view will be scattered to
reference to virtual view. When the wrtua] viewpoint is much | tial durina DIBR ltina d :on hol
closer to the 3D scene than the reference view (camera movente 'a'9€r Spatial aréa during » Fesuiting érpansion NOIEs.
in the z-dimension), objects close to the camera will enlarge We focus on the problem of expansion hole completion in the
in size in the virtual viewpoint image. An object’s enlargenent DIBR-synthesized image in this paper.
during DIBR means that its pixel samples in the reference vie Specifically, we propose the following two-step procedure
will be scattered to a larger spatial area, resulting in expasion ¢ eypansion hole filling in DIBR-synthesized images. We
holes. Following our previous work, we investigate the prolem of . .
expansion hole completion. We first assume a previously prased 'St @ssume our previously proposed method based on depth
method based on depth histogram is used to identify missingro histograms [3] is executed to identify missing or erronépus
erroneously translated pixels as expansion holes. We themgpose synthesized pixels as expansion holes. We then propose a new
a new graph-based interpolation technique to fill in expansin  graph-based interpolation technique to fill in expansiole$io
_holes. U_nllke our previous work_, nonlocal but similar plxelpa;ch Unlike our previous work [3] that leverages only on local
information are |ncorp0rated into a new graph construction . . . . . .
before a graph-based interpolation procedure with sparsig prior ~Patch information for interpolation, we incorporate in &b
is executed, resulting in enhanced performance. Experimeal honlocal but similar patch information (similar taonlocal
results show that our new procedure of expansion hole filing means algorithm (NLM) in [4] for image denoising) into a
can outperform inpainting procedure employed in VSRS 3.5 by new graph construction, before a graph-based interpaolatio
up to 4.02dB. procedure with sparsity prior is executed, resulting in en-

|. INTRODUCTION hanced performance. Experimental results show that our new

Recent advances in depth sensing technologies suchpeascedure of expansion hole filling can outperform inpaigti
Microsoft Kinect means that depth maps (per-pixel distangeocedure employed in VSRS 3.5 by up4®2dB.
between captured objects in the 3D scene and capturindgrhe structure of the paper is as follows. We first discuss
camera) can now be affordably captured along with cologlated work in Section Il. We then overview our DIBR view
images (texture maps). Given texture and depth maps fraynthesis system in Section Ill. We overview our previously
the same camera view, a user can synthesize a new virtpedposed methodology to identify expansion holes in the
viewpoint image viadepth-image-based rendering (DIBR) [1]:  virtual view in Section IV, and discuss our graph-basedrinte
each texture pixel in the reference view is mapped to a pixeblation technique in Section V. Finally, experimentatamd
location in the virtual view, where the mapped location isonclusions are presented in Section VI and VII, respelgtive
derived from the corresponding depth pixel in the reference
view. Missing pixels in the virtual viewdjsoccluded spatial
locations that were not visible in the reference view) anmco  Texture-plus-depth format [5]—representation of a 3D scen
pleted using depth-based inpainting algorithms [2]. Foalémin texture and depth maps from one or more viewpoints—can
camera motion along the- or y-dimension, this approach of enable low-complexity rendering of freely chosen viewpoin
DIBR synthesis plus inpainting works reasonably well. images at decoder via DIBR [1]. We assume a virtual view-

If the camera motion implied by the chosen virtual viewpoint image is synthesized from just one texture / depth map
point is along thez-dimension, however, the view renderingpair from one single camera view, which has been shown
process becomes more complexdimensional camera motionin previous work [6] to lead to good rate-distortion (RD)
is possible, for example, in immersive applications such aerformance, assuming that the larger disocclusion hales i
video conferencing, where a viewer observes real-time sythe synthesized image can be inpainted appropriatelyeddst
thesized images on a 2D display, whose rendering perspecti disocclusion holes, the focus of this paper is on expansio
changes according to the tracked head position of the vieweole filling due to largez-dimensional camera motion.

An observer’s head moving back and forth then corresponds tdeExpansion hole filling can be posed as a super-resolution
z-dimensional camera movements. When the virtual viewpoi(8R) problem, solved using conventional image SR algo-
is located much closer to the 3D scene than the reference viethms [7] on rectangular pixel grid. For example, textunel a

II. RELATED WORK



depth maps in the reference view can be super-resolved intfBh We then propose a graph-based interpolation procedure
finer rectangular grid of sufficiently high resolution (onkave with a sparsity prior for expansion hole filling.

all possible expansion holes of original resolution in tiveual IV. EXPANSION HOLE IDENTIFICATION

view will be covered), then performing DIBR to see which
of the super-resolved pixels land on the virtual view pixel

grid. U_nhke this SR approach Wh'(.:h requires computatlon (i\:/r,y) the coordinate of a pixel in the reference view. When
a possibly very large number of pixels in the reference vie : . . ) L
rendering from reference view to virtual view, a projection

(and _onIy a.smaller subset get mappgd to. the gl’ld' po'msf'l?nctlon F(x,y) = (2',y") maps a pixel(z,y) in reference
the virtual view), our approach is parsmonious one: only . ; , ST . . o

) . o . . . view to location(z’, y’) in virtual view. The inverse projection
grid samples identified as expansion hole pixels in the airtu

H ! / AN / AN H H
view are interpolated, leading to lower complexity relatio functmn]f (@) = (o, y.) maps from(z’, y 2 in virtual view
X to (x,y) in reference view. BothF and 7' can be easily
the aforementioned SR approach.

We advocate an image interpolation method based 8ﬁnved from standard 3D warping equations [1].

graph-based transform (GBT), which uses the eigenvectors

of a defined graph Laplacian matrix to provide a Fourier o
like frequency interpretation. Unlike previous fixed triorm .
based interpolation like DCT [8] defined on rectangular pix |
grid, GBT is adaptive to a more general setting where al
n unknown pixels can be interpolated using amy known )

pixels, all connected via a weighted graph. Further, urdike
previous work [3] where only local information are used for
interpolation, we leverage on the self-similarity chaesistic

of natural images (as done in NLM [4]) and search fofi9- 1. Example of texture / disparity block and construadegth histogram.
nonlocal similar patches when constructing a graph forebett ) o ) o )
performance. We will show in Section VI that Ieveragin% We first divide the virtual view into blocks df x b pixels.

nonlocal information does improve performance over [3]. For & given block, we decompose it intepth layers as
follows: i) construct a histogram of depth values of the bgnt
[1l. I NTERACTIVE FREE-VIEWPOINT SYSTEM

] ) . ) sized pixels in the block, ii) separate depth pixels intcelay

We first describe a system model for our interactive frag, jgentifying local minima in the histogram and using them
viewpoint streaming system. The server transmits a textur@g |ayer-dividing boundaries. Fig. 1 shows an example textu
depth map pair from oneeference camera viewpoint to the ang disparity block, and corresponding depth histogram. We
client, so that the client can freely select a virtual vieWo next process each layer in order of increasing depth values
near the camera viewpoint for DIBR-based image rendering @ﬂosest layer to the camera first). When processing a layer
the 3D scene. Selecting a virtual viewpoint far away from thg, synthesized pixels of high layels+ 1,... are treated as
reference viewpoint will trigger server’s transmissioreaiew empty pixels; this allows us to erase a synthesized backgrou
texture / depth map pair of a different reference view. I1$ thhyixe| during expansion hole filling of a foreground object.
paper, we focus only on synthesis of virtual view images & th e examine each empty pixel in the block as follows. As
neighborhood with large-dimensional camera movements. shown in Fig. 2, we divide the neighborhood of an empty pixel
A. Hole Filling in DIBR Synthesized Image (markedX in Fig. 2) into four quadrants. In each quadrant, we

After 3D warping, we likely observéoles in the virtual find an available pixel that is closest to our target emptgpix

VI_eW' .l'e" a plxel n the_VIrtual view that has n.O cgrrespmlgd IThere is a one-to-one correspondence between depth aratitfisphere
pixel in the reference view. There are two main kinds of holegsparity is inversely proportional to depth. Thus, difiyamap can be

The first kind isdisocclusion holes: the corresponding spatial equivalently processed instead of depth map.
region in the reference view is occluded by an object closer
to the camera, but become exposed after projecting to the

We briefly review the procedure in [3] to identify expansion
les in the DIBR-synthesized virtual view image. Denote
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(a) texture block (b) disparity block  (c) depth histogram

virtual view. Disocclusion holes can be filled via depth-dxhs
image inpainting techniques [2], and are outside the scdpe o o

: N . : o O N 00 OO
this paper. The second kind é&pansion holes. We define an P I P [ F 00 @0
expansion hole as follows: a spatial area of an object'saserf - ° < 0e 0o
in the virtual view, whose corresponding area in the refegen —>O 000
view is _visible but smaller in size. l_JnIike di_socclusio_n bsl _ I e |@ mo F! 0000
expansion holes can leverage on information of neighboring
pixels with similar depth (indicating they are of the same o o (0]
object) for interpolation.

We first identify pixels in the virtual view as expansion virtual view reference view

holes using a method based on depth histogram, as done in Fig. 2. Expansion Holes on a Depth Layer



reference view virtual view

is d; from centroidc,, thenw; ; is:

. similar patch 1
, _lldi—djll2
2O wij=e % 2)
14 ’ !

similar patch 2 U R R
@%@ e TR wherec? is a parameter to control the sensitivity of ; to
fo! oK the distance difference.
e - target patch u;,; 1s the photometric difference between pixelin P, and

pixel j in Py, i.e., the pixel intensity difference in exponential
form as written in (2) with parameter?. An empty expansion
hole pixel needs an intensity value far ; to be properly

(if one exists). We then map these closest pixels back to t %ﬁned; we simply copy the corresponding pixel value from

. g . . . . he most similar patch over for the sake of defining;, as
reference view using"’, to see if any pairs araeighboring done in [10].w; ; andwu, ; constitute the two considerations
pixels, i.e., their Euclidean distance is less than a thuleish T bJ

. . . . spatial and photometric distances) typically used in lloca
n. If two or more pairs of neighboring pixels are found, w - : .
LS . . image filtering such as bilateral filter [113; ; measures the
declare the target empty pixel is an expansion hole pixel. 2 b .
The intuition behind this method is that if the set 0]patch—level similarity betweer®, and Py, similarly done in
intuimor " IS ! - .~ ~other nonlocal methods [4]. Fig. 3 shows an example where a
closest pixels in the virtual view are neighboring pixelstie

. o : S target patch ob pixels is connected to two similar patches.
reference view, then the empty pixel in the virtual view isye We also draw local edges between centroid and pixels in the
likely to be inside the convex set spanned by the closestspixg

in the reference view. After identifying empty expansioreho ame patch, where the edge weight is composed only of two

el int late th . h-based inter tterms:wiyj and u; ;. w; ; is then the difference irabsolute
m)éfhsddwtfe:sncreitr)pe?jizxt em using a graph-based interpola spatial difference, as done in [11].

Having constructed a graghfor target and similar patches,
V. EXPANSION HOLE PIXEL INTERPOLATION we next overview the procedure to construct a GBT [12],
) ) ) _ ~which is a signal-adaptive block transform. We first defire th
We now discuss how we fill expansion hole pixels using gegree matrixD and adjacency matri from the graphg.
graph-based interpolation procedure with sparsity pNde  Adjacency matrixA has entryA, ; containing edge weight
first discuss how GBT basis functions are derived from @ - it edge connectingi and j exists, and0 otherwise.

carefully constructed graph. We then discuss how the opfiegree matrixD is a diagonal matrix with non-zero entries
mization is formulated and performed given the derived GBF. . _ S .ei . A graph Laplacian L = D — A can then be
i, 5 €i,g-

basis functions. defined. Finally, we perform eigen-decomposition bpi.e.,

find eigenvectors;'s such thatL¢; = p;¢;, wherep; is the

i-th graph frequency. The basis vectors of the GBT @rs.
We first d_|scuss how to construct a graﬁhconnecfung B. Linear Program Formulation

correlated pixels locally and globally. First, among exgian , ) )

hole pixels of the first unprocessed depth layer in an image, w, Vithout loss of generality, let théV synthesized (known)

identify abx b target patch P, with a missing pixel at its center PIX€lS in G be si,..., sy, and the interpolated lengtht

(centroid) ¢;, where P, has the fewest number of missing®9nahM > N, bes,: [51,..+,5m] = dw, where columns of

pixels among patches of same size. We then globally seafth< matrix®, ¢;'s, are thell GBT basis vectors as derived

for similar patches P,'s of the same size a#;, where by earlier, andw is the code vector for signal interpolation. Let

similar we mean thé,-norm of the pixel-wise patch difference:'S be @ set ofV length-1 unit vectorso, ..., 0, 1,0, ..., 0],
|P, — P,|» is no larger than a threshold. As shown in where the single non-zero entry is at positiofOur objective

Fig. 3, a similar patch can be nonlocal from the same virtul§l ©© Minimize a weighted sum of: i) tha-norn? of the
view image (as done in NLM [4]), or from the reference vie ifference between interpolated sigraand original signak

image. To control the complexity required, the search isedofit eV synthesizeq pixel locations, and ii) weightgenorm
via random sampling [9] with a Gaussian kernel centered g the code vectow:

Fig. 3. Connecting pixels of similar patches to target patch

A. Constructing a Graph-based Transform

the target patctP,. AR
Given a small set of similar patch@y’s, we draw an edge i Z”“i ow —sifl1 + Alwlo ®)
between corresponding pixelsn P, andj in P,, where the =1
edge weight; ; is a multiplication of three terms: As typically done in the literature for sparse signal recgye
we replace thelp-norm above with al;-norm for ease of
€ij = Wij Wi,jVij (1) computation: N
w; ; is the difference irrelative spatial distance betweeni in min Y lufow —sifl + Awlh (4)
P, andj in P;, i.e., difference in distance from each pixel to i=1

Its respectlve patch_centr0|d._ For example,. if pn‘.@h Farget 2];-norm is chosen here for complexity reason; the derived miizition
Py is d; from centroide, and its corresponding pixeglin P;  can then be computed efficiently using linear programming.



TABLE |

PSNR GOMPARISON FOR EXPANSION HOLE FILLING First, we see visually in Fig. 4(a) that the presence of ex-

method VSRS+ | GBT | NLGBT pansion holes is everywhere and is a significant problem.
aLF F’SNR(dej 19.56 | 23.36 | 23.58 Note also that the nature of expansion holes is very difteren
moebi us PSNR(AB) | 19.47 | 23.15] 2333 from disocclusion holes (e.g., right of the brush), whick ar

(4) can now be easily rewritten as a linear programmirlgr9er contiguous regions. Second, we see in Fig. 4(b) that
(LP) formulation, and can thus be solved using any know#PPlying inpainting algorithm naively to fill in all misgn
LP algorithms. Then the interpolated signal will be used @/xels indiscriminately does not lead to acceptable qyétit

update the graph weights. This procedure will be carried o@fPansion hole areas. Finally in Fig. 4(c) the image shoas th
iteratively until convergence. NLGBT can achieve better performance in texture interpolation

with the help of nonlocal information.
VI. EXPERIMENTATION

A. Experimental Setup VII. CONCLUSION

. - , When the observer’'s chosen virtual viewpoint for image
We usecar t andnoebi us in Middlebury’s 2005 datasets rendering via DIBR involves large camera motion in the

as our mult|v_|ew image test sequences. We use th.e S3fension relative to the reference viewpoint (camera mgvi
methodology in [3] to first generate a reference viewwith closer to the 3D scene), objects closer to the camera will
texture and depth maps of lower resolution than captur '

) Using text d denth ¢ d DIBR t rease in size significantly. Because insufficient nundger
'mages. Lsing texiure and depth maps iwe used & 0 pixel samples are available in the reference image, expansi
generate virtual viewy. We used one of the following three

methods for filling of expansion holes. In the first method Wholes in the DIBR-rendered image will appear. In this paper,

o : e propose a graph-based interpolation procedure to fill in
call VSRS+, we modified VSRS software version 3.5 to use 3Xpansion holes. Unlike our previous work, we search for

smgle reference VIEW. we r_10te that th_e VSRS s_oftw_are_ 1S Qnlocal but similar pixel patches and incorporate thero int
des_lgned_for synthesis of virtual view Images with signiiica a new graph construction, before performing a graph-based
z-(::mens_m?r?l camera rr?é\_/remeiﬁw“?BT_tE our groposed interpolation procedure with sparsity prior. Experimémnt
scheme in this paper, a is the algorithm in [3]. sults show that our new procedure of expansion hole filling
B. Experimental Results can outperform inpainting procedure employed in VSRS 3.5

We calculated the PSNR of the virtual view images inteRY Up t04.02dB.

polated using the aforementioned three interpolation odth REFERENCES

against the ground truthp. We only calculated the PSNR [q
of the identified expansion hole areas. The PSNR comparison
is shown in Table I. For thart sequence, we see that both[z]
GBT andNLGBT outperformed/SRS+ significantly: by3.8dB
and 4.02dB, respectively. This demonstrates that the correct
identification of expansion holes and subsequent intetipola 3!
are important for DIBR image synthesis of virtual view with
significant z-dimensional camera movement. Further, we see
thatNLGBT outperformedsBT by 0.18dB, showing that using (4]
nonlocal information, we can achieve better image qudtity.

the moebi us sequence, we observe a similar trend. [5]

(6]
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(b) VSRS+
Fig. 4. Visual comparison betwearSRS+ and NLGBT for sequencart .

(a) holes [°]

(c) NLGBT

Next, we examine the generated image quality visually. [%10]
Fig. 4, we show an example patch of the DIBR-synthesized
image before filling of expansion holes, and after filling o4l
expansion holes usingSRS+ and NLGBT, respectively, for

theart sequence. The resolution of the patch2i® x 200. [12]
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