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Abstract—Transmitting texture and depth maps from one or

I,(x + v,y) in the synthesized imadeof virtual view v,

more reference views enables a user to freely choose virtual where the horizontal pixel displacementis deduced from

viewpoints from which to synthesize images for observatiorvia
depth-image-based rendering (DIBR). In each DIBR-synthaged
image, however, there remain disocclusion holes with missj
pixels corresponding to spatial regions occluded from viewn
the reference images. To complete these holes, unlike preus
schemes that rely heavily (and unrealistically) on the avéability
of a high-quality depth map in the virtual view for inpaintin g of
the corresponding texture map, in this paper a new Joint Textire-
Depth Inpainting (JTDI) algorithm is proposed that simultane-
ously fill in missing texture and depth pixels. Specifically,we
first use available partial depth information to compute priority
terms to identify the next target pixel patch in a disoccluson
hole for inpainting. Then, after identifying the best-matched
texture patch in the known pixel region via template matchirg
for texture inpainting, the variance of the corresponding cepth
patch is copied to the target depth patch for depth inpaintirg.
Experimental results show that JTDI outperforms two previous

inpainting schemes that either does not use available depth

information during inpainting, or depends on the availability
of a good depth map at the virtual view for good inpainting
performance.

I. INTRODUCTION

the corresponding depth pixé},(x, y) in reference view. In
practice, pixels of an object closer to the camera have farge
displacements during a viewpoint change than pixels of the
background. This means that there may exist one or more spa-
tial region of the background, occluded by a foregroundatbje
in the reference view, that become exposed in the virtual vie
from the large displacement of the foreground object duang
viewpoint change. See Fig. 1 for an illustration. The holthwi
no corresponding pixels in the reference view is commonly
called adisocclusion hole Devising a strategy to properly
fill in missing pixels in a disocclusion hole—a process ahlle
inpainting or image completionn the literature [6], [7], [8],

[9], [10]—is paramount in constructing a visually pleasing
virtual viewpoint image.

This work proposes a new Joint Texture-Depth Inpainting
(JTDI) algorithm that simultaneously fills in missing teseu
and depth pixels in the disocclusion holes. Though a similar
template matching framework introduced in [11] is used to
copy texture pixels from the known region to the unknown
region, we derive a new priority term to order filling of pixel
patches using available partial depth information. Furthe
unlike [6], [7], [8] whose inpainting performance depends

With the advent of sensing technologies, videos of a dyeavily on the availability of a complete and good-quality
namic 3D scene can now be captured economically by a laiggpth map in the virtual view for texture inpainting, in JTDI
array of closely-spaced camerasg, more than 100 camerasg more realistic DIBR view synthesis scenario is assumed
are used in [1]). Beside conventional colerd, RGB) images, \where depth pixels in the disoccluded regions are also njssi
depth images (per-pixel distance between physical objactsand challenging to complete. So a joint inpainting alganith
the 3D scene and a capturing camera) from the same camgrgequired to carefully fill in missing pixels in both texeur
viewpoints can also be acquired using active depth sensgfi depth maps. Experimental results show that our proposal

like time-of-flight cameras [2]. Transmitting both textumad

outperforms [11] and [7] by up t0.33dB and0.83dB in PSNR

depth maps from multiple viewpoints—a format known agf the disoccluded texture regions, respectively. Furtigr
texture-plus-depttor video-plus-deptfj3]—enables a user to gemonstrate that subjective quality of the inpainted aisas
freely select virtual viewpoints from which to synthesizgyso visibly improved.

novel images for observation viepth-image-based rendering  The outline of the paper is as follows. The overview of
(DIBR) [4]. It has been shown [5] that allowing a user tQelated works is presented in Section Il. Then an overview of
interactively select different viewpoints from which tosgive pIBR view synthesis system is given in Section IlI, followed
a 3D scene can greatly enhance the user's depth perceptioghiiscussion of JTDI algorithm in Section IV. Finally, expe

the scene, improving his overall visual experience.

imental results and conclusion are presented in Sectiondv an

In summary, during a horizontal viewpoint change from

camera-captured view to virtual view v, DIBR copies each

Ipixel relocation from a reference view image to a virtualwienage is a

color pixel I,(z,y) in reference viewu to its new location pure horizontal shift if the camera images are properlyifiedta priori.
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Il. RELATED WORK i Toe

The growing popularity of free viewpoint video means
an increased research interest in inpainting of disoamfusi ===~
holes in DIBR-synthesized images. There are in general tw
classes of inpainting algorithms: partial differentiauatjons
(PDEs)-based schemes like [12] and exemplar-based (teample
matching) schemes [11], [6], [7], [8], [9], [10]. It is knovthat >
PDEs-based schemes do not handle large disocclusion hol™ ;
well—common if the spacing between neighboring camera“.. . . @ = . = 008
is large, or if the virtual view image is synthesized using @ ©
one texture/depth map pair of a single camera view. Thus
inpainting research for DIBR-synthesized images has be@a 1. (a) DIBR synthesizedloe image with (b) disocclusion holes and (c)
focusing on exemplar-based approach. rounding holes

The pioneer inpainting work for regular color images with

no depth information is [11], which proposed to usenplate intermediate synthesized view quality, if representatibfree

matchlngto fill in missing plx_els;|.e_., copying a flxed-sm_a viewpoint video such as [13] is employed at encoder.
pixel patch from a known spatial region to an unknown region.

Numerous subsequent works [6], [7], [8], [9], [10] kept the 1. SYSTEM OVERVIEW
template matching framework in [11] but modified the defini-

tion of the priority term (used to determine the order in WhiCqy hesis system. To enable synthesis of novel images at
missing pixel patches should be filled) and/or the critecia farbitrarily chosen viewpoints at decoder, texture-plegtt

template matching, using available depth information. Thg a1 [3] dictates the transmission of texture and deptpsna
underlying assumption for the majority of these Wo_rks ([6](:apturing the same 3D scene by one or more closely spaced
[7], [8]), however, is that a complete and good-quality #€pl-ameras. The selected viewpoint is synthesized at thevegcei
map at the target virtual view is available, or can be easiy, 5 procedure known as DIBR [4]. DIBR is a pixel-to-pixel
pre-computec prio_ri, for_the_ said computation of the priority mapping such that the reference image pixels are first pegjec
term and/or matching criteria. back to the world coordinates using depth map and then re-
We argue that this assumption is not realistic for practica}ojected to the virtual image coordinate. This processss a
DIBR view synthesis systems; disoccluded pixel locations known as 3D image warping [14].
the target virtual view with missing texture informationiwi e major drawback when synthesizing novel viewpoint
also have depth information missing. Further, though depfjages via DIBR is generation of holes. There are two
maps are known to be piecewise smooth, the missing degiflnmon types of holes. disocclusion holés a spatial region
pixels can be more complex than a constant backgroufifht is occluded by a closer object in the reference view, but
depth value, meaning simple signal extrapolation stra&giecome visible in the virtual view. Disocclusion holes tadly
extending the depth signal of the neighboring backgrouggcyr at foreground object boundaries.rdunding holeis a
pixels will not always be correct. Thus, in this paper Wgjye| |ocation in the virtual view that is visible in a referee
propose a new algorithm to jointly inpaint texture and depiflew, but due to rounding to integer 2D grid positions during
pixels in disoccluded regions, whenge first leverage on 3p warping, it was left unfilled. Figure 1 shows examples of
available depth information to fill in texture pixels, theseu poth disocclusion and rounding holes. Rounding holes tend t
inpainted texture information to fill in depth pixel/e found pe small and can be filled easily using conventional filtering

experimentally that this mutual assistance approach mw@echniques [4]. The focus of our paper is on the filling of
texture and depth information very effective in joint inpng  §isocclusion holes.

of both maps.

The recovery of correct depth information at the virtual IV. ALGORITHM DEVELOPMENT
view is itself important for the case when the reconstructedWe first overview Criminisi's template matching algorithm
virtual view is used to synthesize other virtual views. Tisis for inpainting of regular color images in [11]. We then
indeed the proposal in [13], where a second reference vieliscuss the two modifications we propose to the base template
is first synthesized from the first reference view (with thenatching algorithm, so that texture and depth patches can be
help of transmittechuxiliary informationfrom sender to help jointly inpainted.
complete the target image), so that novel intermediatealirt ] o ] .
views between the two reference views can be synthesized fiaOverview of Criminisi's Template Matching Algorithm
DIBR. Thus, our proposal of jointly inpainting texture and We first define the following terms. The source region
depth maps at the virtual view can also contribute to bettéknown pixel region) is defined aB = I — (), wherel and()

We first overview the components of a typical DIBR view



After missing pixels in a patch; are filled, the confidence
termC(p) for each newly filled pixep in the patch is updated
as follows:

Clp) =C(p), Vp € ¥3NQ 4

Once the confidence values are updated, priorities for the ne
patch to be filled are computed and this entire process is
repeated till all disocclusion holes are filled.

B. Using Depth to Modify Priority Term

Observing that depth information is not used in [11], [7]
proposed to modify the computation of the priority term
P(p) using depth information as follows. Assuming depth
information is available per pixel in the entire virtual wie
[7] added an extra terni(p) to P(p) in (2):
are input image and disocclusion hole region, respectivay _
shown in Fig. 1, the disocclusion hole regi@nmay not be a Pp) = Cp) D(p) L(p) ®)
single contiguous spatial region. The boundary of holeargiwhere L(p) is a depth varianceterm, proportional to the

Fig. 2. Abstract illustration of Criminisi’s template mhtng algorithm [11].

is defined a9f2. See Fig. 2 for an illustration. inverse variance of the correspondifigx K depth patch?,,:
Pixel patches of a pre-selected si& x K that border 12,

the hole regionQ2 are inpainted in a priority order (to be L(p) = L — (6)

discussed). Specifically, for a giveli x K target patch¥, Zpl + X ge z,n0 (Zo(0) — Zp)

with center pixel locatiorp, p € 612, we identify the best
matching patchl; in the source regio® that minimizes the
matching error:

where|Z,| is the size of depth patch,, Z,(q) is the pixel
depth value at the pixel locatiopunderZ,, and Z, is pixel
mean value. The intuition is that if a patch has large depth
U, = arg min d (U, ) (1) Vvariance, then the _patch is _Ilkely straddling both fo_re_gltd)u
v,ed and background pixels, which makes the patch difficult to

where d(¥;, ¥,) is the Sum of Squared Differences (SSD- paint. The patch should then be assigned a lower priority,
between corresponding known pixels of the two patches. m'“enced by a smallet (p).

other words, known pixels if¥; are used as eemplateto find ¢ New Depth-based Priority Computation

a best matched patch in source regiarAfter ¥, is identified
using (1), missing pixels in target patdh,, ¥, N2, are filled
using corresponding pixels itr;.

It is stressed in [11] that the order in which missing pixel
in Q are filled is very important; intuitively, pixel patch that
can be filled more confidently should be inpainted first. [1
defines gpriority term P(p) for each boundary pixeh € 52
as the product of two terms:

We now discuss proposed modifications to the base template
matching algorithm in [11]. Although [7] proposed to give
higher priority to patches with smaller depth variance gsin
?5), it does not guarantee the patches to be filled from back-

round to foreground. Since the selection of right priotésm
IS crucial in template matching, as a patch filled from fore-
ground boundary initially will lead to serious error propsign
to a large spatial area. Also from priori information we
P(p) = C(p) D(p) 2) understand that disocclusion areas should always be filigd w
background pixels. To make sure that background patches are
where C(p) and D(p) are theconfidenceand data terms, inpainted first, we compute@epth meanerm which provides

respectivelyC(p) and D(p) are defined as follows: higher priority to patches with larger overall depth values
C 7L Then the depth mean term is incorporated anutiplier to
C(p) = M D(p) = [V 1 (3) the original term&’(p), D(p), L(p), which are now combined

Pl @ additivelyinstead. The rationale behind adding these terms is
where|¥,| is the number of pixels in target patah,, o is 0 overcome the circumstances where patch priority rediaces
a normalization factore.g, o = 255 for a typical gray-level zero apart from having high confidencgp) and low variance
image), n, is the unit vector orthogonal t6Q at pixel p, L(p) terms. Such a condition occurs when the data tér(n)

and VIPL is the isophote (direction and intensity) at pixel IS zero . The additive combination provides equal weightage
The confidence terrd(p) gives higher priority to the patchesto all participating terms. In summary, we revise the ptjori
which have higher percentage of non-hole pixelgp) is term P(p) as:

initialized to 0 for missing pixels in(2, to 1 everywhere else. _ >

Data termD(p) defines the strength of linear structures hitting (p) = (Cp) + D(p) + L(p) X (Znear = Zp) - (7)
the boundary(2 at each iteration, and is used to encourage where Z,,..,- = 255 which is the nearest depth value. Note
propagation of linear structures. that unlike (5) in [7], the depth mean term is now clearly the



. . . TABLE |
dominant term in the computation d?(p), so that patches PSNR @MPARISON FORTEXTURE INPAINTING (in dB)

further in the background are always selected for inpaintin
first. Further, unlike [10] where the depth variance term was
replaced by a mean term, we kekfp) in the computation of
P(p), so that between two patches that have the same depth al oe 27.84 27.53 28.59

; ; ; rei ndeer 27.43 27.96 28.76
mean, the one with the smaller depth variance is favoured. art 23.06 2398 2365

dolI's 29.43 29.53 30.07

Image Criminisi et al. [11] Daribo et al. [7] JTDI

D. Filling depth disocclusion holes

The key novelty of JTDI algorithm is that we alternate be-
tween inpainting of texture pixels using partial depth mfia-
tion, and inpainting of depth pixels using texture inforinat from different inpainting methods are judged using both ob-
Specifically, after the best-matched texture patchis found jective measurements and subjective evaluation. To imghem
in the source regio®, we use the corresponding depth patch’], which assumes the availability of a complete depth map
Z; to fill in missing depth pixels in target depth patéh as priori, we first filled the holes in virtual depth map using [11],
follows: and then used this inpainted depth map for texture inpajntin

Zﬁ = Zﬁ + (Z,j — Zq) (8) using [7]

where Z; and Z; are the mean depth values of the targdd: Objective Results
depth patchZ; (computed using available depth pixels) and To test the objective performance of JTDI algorithm, Peak-
the best-matched depth pateh, respectively. In other words, Signal-to-Noise Ratio (PSNR) of the disocclusion holes is
only the depth variance of the matched pat¢h is copied used. The PSNR values of the inpainted texture maps using
to the target, while the depth mean of the original patGh JTDI method, [11] and [7] are shown in Table I. The optimal
remains the same. patch-size selected faal oe anddol I s is 5 x 5 (K = 5)
The rationale for (8) is as follows: Template matchingnd 7 x 7 (K = 7) for rei ndeer andart. The results
between texture patches just ensures the textural patieensdemonstrate that JTDI method performs better than [11] and
similar; the patches could be from quite different depths ¢¥7]. For r ei ndeer, the resulting PSNR increases by up to
the 3D sceneg.g.same wallpaper pattern recurring on a wall .33dB and 0.80dB compared to [11] and [7], respectively.
slanted towards infinity away from the camera. Thus, diyectSimilar results have been observed#&broe, art anddol | s
copying of depth pixels from best-matched patch (evaluatgdages.
based solely on texture content) to the target patch, as done
in [9], is a tenuous proposition. On the other hand, given tife Subjective Results
textural content are similar, the depgfiadient of the best-  Fig. 3, 4, 5 and 6 shows the subjective comparison of JTDI
matched patch is more likely to be similar to the gradient efigorithm with [11] and [7]. The visual results are represen
the target patch, as illustrated in the aforementionedpapltr tative sub-regions for the four Middlebury image datasets:
example. Thus copying only the variance to the target depihoe, r ei ndeer, art anddol | s. It is observed that JTDI
block is arguably more appropriate. Finally, by retainihg t algorithm (Fig. 3d), 4(d), 5(d) and &d)) performs better in
original mean depth value in the target patgh, we can preserving the foreground object boundaries comparedip [1
achieve piecewise smoothness in the inpainted depth mgrg. 3(b), 4(b), 5(b)) and &b) and [7] (Fig. 3c), 4(c), 5(c))
unlike simple depth patch copying in [9]. and Qc). The reduced artefacts are the result of proposed
improved priority term, where the filling process beginafro
background (BG) and move inwards toward foreground (FG).
In this section, we report the results of applying JTDI The comparative results for depth disocclusion filling us-
approach on various image datasets and comparing againgtJTDI method (Fig. {&), 8(c), 9(c) and 1(@c)) and [11]

V. EXPERIMENTATION

inpainting methods in [11] and [7]. (Fig. 7(b), 8(b), 9(b) and 1@b)) are shown in Fig. 7, 8, 9 and
. 10. Clearly, our method provides much better inpaintingltes
A. Experimental Setup then [11]. This shows that inpainting of depth map itselfdas n

A simple baseline DIBR view synthesis system has begfivial and cannot be done simply, as claimed in [6], [7]..[8]
implemented in Matlab. We evaluate JTDI algorithm with Currently, JTDI follows an exhaustive search approach to
using different Middlebury datasets [15], includiraj oe select the best-matching patch which makes it computdtjona
(427 x 370), r ei ndeer (447 x 370), art (463 x 370) and expensive. Instead of full exhaustive search, probalikityed
dol I s (463 x 370). These datasets contain seven camersndom sampling techniques can be deployed to reduce the
captured views of the same static scene, as well as dispasgarch complexity with minimal loss in performance.
maps for view 1 and 5. For each sequence, we use DIBR
to generate reference view 3 using texture and depth maps
of view 1. The disocclusion holes in synthesized texture andWhen synthesizing a novel viewpoint image using depth-
depth are simultaneously filled using JTDI method. Resulimage-based rendering (DIBR), disocclusion holes appesr t

VI. CONCLUSION
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(a) Disocclusion holes (b) Criminisi et al. [11] (c) JTDI
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correspond to spatial regions of the 3D scene not visible
in the reference views. In this paper, we proposed a new
inpainting scheme based on template matching in [11], sb tha
missing pixels in both texture and depth maps can be filled
simultaneously. In particular, using partial depth infation

we defined a new priority term to order pixel patches in the
disocclusion region to be inpainted. Then for a given best-
matched patch in the source region, the depth variance of
the best-matched patch is copied to the target patch fohdept
inpainting. Experimental results show that proposed mutsia
sistance inpainting approach has noticeable performaaice g
over [11] and [7] in both objective and subjective compariso
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