
Lock-free Augmented Trees

Panagiota Fatourou, U. of Crete and FORTH, Greece
Eric Ruppert, York University, Canada

DISC 2024
Madrid, Spain

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Main Result
Technique to augment lock-free search trees to support more
operations.

Simple to implement using single-word CAS
General: can handle any augmentation
Efficient: queries as fast as in sequential system,

minimal overhead for updates
Wait-free: additional work for augmentation is wait-free
Snapshots of tree easily support complex queries

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

LGD

B

EC

A

H

F

Leaf-oriented BST. Set = {A, C, E, G, L}.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Augmentation: Each node stores number of leaves in subtree.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

Size()=5

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Augmentation: Each node stores number of leaves in subtree.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

Select(4)=G

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Augmentation: Each node stores number of leaves in subtree.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

Rank(L)=5

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Augmentation: Each node stores number of leaves in subtree.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

3 4

16

3

2

9

6

4

7

LGD

B

EC

A

H

F

Keys have weights; each node stores sum of subtree’s weights.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Augmented Search Tree

Weight(< L)=12

3 4

16

3

2

9

6

4

7

LGD

B

EC

A

H

F

Keys have weights; each node stores sum of subtree’s weights.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Other Augmentations

Many other ways to augment a BST.
For database of employees, number of women in subtree.

How many women’s salaries are more than e100,000?
Store min key, max key, and smallest gap in subtree.

Find two closest keys in the set.

Key Property of Augmentations
Values of a node’s new field(s) can be computed from
information in node and its children.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Other Augmentations

Many other ways to augment a BST.
For database of employees, number of women in subtree.

How many women’s salaries are more than e100,000?
Store min key, max key, and smallest gap in subtree.

Find two closest keys in the set.

Key Property of Augmentations
Values of a node’s new field(s) can be computed from
information in node and its children.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Other Augmentations

Many other ways to augment a BST.
For database of employees, number of women in subtree.

How many women’s salaries are more than e100,000?
Store min key, max key, and smallest gap in subtree.

Find two closest keys in the set.

Key Property of Augmentations
Values of a node’s new field(s) can be computed from
information in node and its children.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Applications of Augmented Trees

Augmented BSTs are basis of many other data structures.

Interval tree
Tango tree
Measure tree
Priority search tree
Segment tree
Link/cut tree
. . .

Lots of applications in computational geometry, databases,
graph algorithms,

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Result

Main Result
Technique to augment lock-free search trees.

Example: Lock-free Binary Search Tree
Can handle any augmentation.
Adds only O(height) steps to insert, delete.
Supports simple snapshots.
Wait-free queries run sequential code.
Based on BST from PODC 2014.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Result

Main Result
Technique to augment lock-free search trees.

Example: Lock-free Binary Search Tree
Can handle any augmentation.
Adds only O(height) steps to insert, delete.
Supports simple snapshots.
Wait-free queries run sequential code.
Based on BST from PODC 2014.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating an Augmented Tree

LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating an Augmented Tree

LJ

K

Insert(J)

LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating an Augmented Tree

LJ

K

Insert(J)

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating an Augmented Tree

2

+1=6

11

+1=3

LJ

K

Insert(J)

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Challenges of Concurrency

Goal
Create lock-free augmented tree.

Challenges
An update changes many nodes along a path
All changes must appear atomic
Queries traverse a path while concurrent updates change it
Contention: all updates need to modify root’s size

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Challenges of Concurrency

Goal
Create lock-free augmented tree.

Challenges
An update changes many nodes along a path
All changes must appear atomic
Queries traverse a path while concurrent updates change it
Contention: all updates need to modify root’s size

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

2

1 1

1

3

5

2

1 1LGD

B

EC

A

H

F

Node stores pointer to current version of augmented field.
Old versions can still be used by queries in progress.
Pointers between versions provide consistent view.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

3

2

11

11

5

1

2

LGD

B

EC

A

H

F

Node stores pointer to current version of augmented field.
Old versions can still be used by queries in progress.
Pointers between versions provide consistent view.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

6

3

1

2

1

3

2

11

11

5

1

2

LJ

K

Insert(J)

LGD

B

EC

A

H

F

Node stores pointer to current version of augmented field.
Old versions can still be used by queries in progress.
Pointers between versions provide consistent view.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

6

3

1

2

1

3

2

11

11

5

1

2

LJ

K

Insert(J)

LGD

B

EC

A

H

F

Node stores pointer to current version of augmented field.
Old versions can still be used by queries in progress.
Pointers between versions provide consistent view.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

3

2

11

11

5

1

2

Accessing root’s version provides snapshot of version tree.
Versions also store keys to direct searches.
Supports any sequential query operation.
Old versions are unreachable when no longer needed.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

6

3

1

2

1

3

2

11

11

5

1

2

LJ

K

Insert(J)

LGD

B

EC

A

H

F

Accessing root’s version provides snapshot of version tree.
Versions also store keys to direct searches.
Supports any sequential query operation.
Old versions are unreachable when no longer needed.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Key Idea

6

3

1

2

1

3

2

11

11

Accessing root’s version provides snapshot of version tree.
Versions also store keys to direct searches.
Supports any sequential query operation.
Old versions are unreachable when no longer needed.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v

•

v .left ← x .left .version

•

v .right ← x .right .version

•

compute contents of v

•

CAS x .version to v

x

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

• create new version v

•

v .left ← x .left .version

•

v .right ← x .right .version

•

compute contents of v

•

CAS x .version to v

vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v
• v .left ← x .left .version

•

v .right ← x .right .version

•

compute contents of v

•

CAS x .version to v

vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v

•

v .left ← x .left .version
• v .right ← x .right .version

•

compute contents of v

•

CAS x .version to v

vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v

•

v .left ← x .left .version

•

v .right ← x .right .version
• compute contents of v

•

CAS x .version to v

7 vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v

•

v .left ← x .left .version

•

v .right ← x .right .version

•

compute contents of v
• CAS x .version to v

7 vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Updating Versions

After Insert or Delete, propagate changes up to root.

Propagate
for each node x on path to root

do (at most) twice
// Refresh x ’s version

•

create new version v

•

v .left ← x .left .version

•

v .right ← x .right .version

•

compute contents of v

•

CAS x .version to v

7 vx

3 4

Contents of version never change once it is attached to tree.
Propagation is wait-free.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Propagating an Insert

3

2

11

11

5

1

2

LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Propagating an Insert

1

2

1

3

2

11

11

5

1

2

LJ

K Insert(J)LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Propagating an Insert

Refresh(H)3

1

2

1

3

2

11

11

5

1

2

LJ

K Insert(J)LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Propagating an Insert

Refresh(F)

Refresh(H)

6

3

1

2

1

3

2

11

11

5

1

2

LJ

K Insert(J)LGD

B

EC

A

H

F

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Double Refresh

Refresh on each node x uses CAS to update x ’s version.

What if the CAS fails?

Try again.

What if the CAS fails again?

Stop; someone else’s refresh has propagated your change to x .

Cooperation and Contention
Updates are propagated cooperatively
One change can propagate many operations together
All update operations perform CAS on root
BUT not all have to succeed

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Double Refresh

Refresh on each node x uses CAS to update x ’s version.

What if the CAS fails?

Try again.

What if the CAS fails again?

Stop; someone else’s refresh has propagated your change to x .

Cooperation and Contention
Updates are propagated cooperatively
One change can propagate many operations together
All update operations perform CAS on root
BUT not all have to succeed

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Double Refresh

Refresh on each node x uses CAS to update x ’s version.

What if the CAS fails?

Try again.

What if the CAS fails again?

Stop; someone else’s refresh has propagated your change to x .

Cooperation and Contention
Updates are propagated cooperatively
One change can propagate many operations together
All update operations perform CAS on root
BUT not all have to succeed

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Double Refresh

Refresh on each node x uses CAS to update x ’s version.

What if the CAS fails?

Try again.

What if the CAS fails again?

Stop; someone else’s refresh has propagated your change to x .

Cooperation and Contention
Updates are propagated cooperatively
One change can propagate many operations together
All update operations perform CAS on root
BUT not all have to succeed

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Double Refresh

Refresh on each node x uses CAS to update x ’s version.

What if the CAS fails?

Try again.

What if the CAS fails again?

Stop; someone else’s refresh has propagated your change to x .

Cooperation and Contention
Updates are propagated cooperatively
One change can propagate many operations together
All update operations perform CAS on root
BUT not all have to succeed

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Algorithm

Insert or Delete operation
Run original algorithm to perform update
Refresh each ancestor (at most) twice

Adds O(height) to step complexity of updates.

Query operation
Read Root .version to get snapshot of version tree
Run standard sequential algorithm on that snapshot

Step complexity same as sequential query time.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Algorithm

Insert or Delete operation
Run original algorithm to perform update
Refresh each ancestor (at most) twice

Adds O(height) to step complexity of updates.

Query operation
Read Root .version to get snapshot of version tree
Run standard sequential algorithm on that snapshot

Step complexity same as sequential query time.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Algorithm

Insert or Delete operation
Run original algorithm to perform update
Refresh each ancestor (at most) twice

Adds O(height) to step complexity of updates.

Query operation
Read Root .version to get snapshot of version tree
Run standard sequential algorithm on that snapshot

Step complexity same as sequential query time.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Algorithm

Insert or Delete operation
Run original algorithm to perform update
Refresh each ancestor (at most) twice

Adds O(height) to step complexity of updates.

Query operation
Read Root .version to get snapshot of version tree
Run standard sequential algorithm on that snapshot

Step complexity same as sequential query time.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Proving Correctness

Challenges
Updates on original tree, queries on version tree
The two trees might look very different

(Strong) Linearizability
Define arrival point of each update at each node on its
leaf-to-root path.
Invariant: tree rooted at x .version reflects all operations
that have arrived at x (done in order of their arrival points).
Linearization point = arrival point at the root.
Show that propagate ensures all operations arrive at root.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Proving Correctness

Challenges
Updates on original tree, queries on version tree
The two trees might look very different

(Strong) Linearizability
Define arrival point of each update at each node on its
leaf-to-root path.
Invariant: tree rooted at x .version reflects all operations
that have arrived at x (done in order of their arrival points).
Linearization point = arrival point at the root.
Show that propagate ensures all operations arrive at root.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Proving Correctness

Challenges
Updates on original tree, queries on version tree
The two trees might look very different

(Strong) Linearizability
Define arrival point of each update at each node on its
leaf-to-root path.
Invariant: tree rooted at x .version reflects all operations
that have arrived at x (done in order of their arrival points).
Linearization point = arrival point at the root.
Show that propagate ensures all operations arrive at root.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Proving Correctness

Challenges
Updates on original tree, queries on version tree
The two trees might look very different

(Strong) Linearizability
Define arrival point of each update at each node on its
leaf-to-root path.
Invariant: tree rooted at x .version reflects all operations
that have arrived at x (done in order of their arrival points).
Linearization point = arrival point at the root.
Show that propagate ensures all operations arrive at root.

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Improving Query Time

We can improve query time for unbalanced trees.

Simply plug in a different augmentation:
x .version is a red-black tree of all keys in x ’s subtree

avoid changing α, β

γ

α β

γ = Join(α, β)

Use path copying to

Join can be done in O(log n) time.
Update takes additional O(height · log n) steps.
Queries take O(log n) steps, even if tree height is Θ(n).

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Related Work

Lock-free BST augmented with size
[Kokorin, Alistarh, Aksenov IPDPS 2024]

Each operation must join a queue at each node and help all
those ahead.
Not generalizable to other augmentations.
Ω((#processes) · height) steps per operation.

Lock-based tree augmentation [Sela, Petrank DISC 2024]
Much work on taking snapshots of shared data structures

They are more complicated, and have slower queries
Those based on multiversioning have complex GC

Double refresh has been used in other ways
[Afek, Dauber, Touitou 1995]

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Related Work

Lock-free BST augmented with size
[Kokorin, Alistarh, Aksenov IPDPS 2024]

Each operation must join a queue at each node and help all
those ahead.
Not generalizable to other augmentations.
Ω((#processes) · height) steps per operation.

Lock-based tree augmentation [Sela, Petrank DISC 2024]
Much work on taking snapshots of shared data structures

They are more complicated, and have slower queries
Those based on multiversioning have complex GC

Double refresh has been used in other ways
[Afek, Dauber, Touitou 1995]

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Related Work

Lock-free BST augmented with size
[Kokorin, Alistarh, Aksenov IPDPS 2024]

Each operation must join a queue at each node and help all
those ahead.
Not generalizable to other augmentations.
Ω((#processes) · height) steps per operation.

Lock-based tree augmentation [Sela, Petrank DISC 2024]
Much work on taking snapshots of shared data structures

They are more complicated, and have slower queries
Those based on multiversioning have complex GC

Double refresh has been used in other ways
[Afek, Dauber, Touitou 1995]

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Related Work

Lock-free BST augmented with size
[Kokorin, Alistarh, Aksenov IPDPS 2024]

Each operation must join a queue at each node and help all
those ahead.
Not generalizable to other augmentations.
Ω((#processes) · height) steps per operation.

Lock-based tree augmentation [Sela, Petrank DISC 2024]
Much work on taking snapshots of shared data structures

They are more complicated, and have slower queries
Those based on multiversioning have complex GC

Double refresh has been used in other ways
[Afek, Dauber, Touitou 1995]

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

Conclusion

Our scheme for augmenting concurrent trees

is simple to implement
works for any augmentation
adds O(height) to step complexity of updates
preserves lock- or wait-freedom of updates
has wait-free, fast queries
supports simple snapshots

Panagiota Fatourou and Eric Ruppert Lock-free Augmented Trees

