Homework Assignment #2 Due: September 22, 2025 at 5:00 p.m.

- 1. A no-writing (single-tape) Turing machine is one that never changes any character written on its tape. (Thus, in the transition function of such a machine, if $\delta(q,a) = (q',a',d)$ then a = a'.) Let L be a language. Assume there is a no-writing Turing machine M that decides whether its input string is in L.
- [3] (a) Prove that there exists a constant k such that, for every input string x, M never visits the same square of the tape more than k times. Hint: Think about the sequence of states M is in when it visits that square.
- [4] (b) Show that you can construct a no-writing Turing machine M' that decides L without ever moving beyond the first n+2 squares of the tape on any input of length n.
- (c) Prove that $L \in TIME(n)$.

York University

2. Recall that if L_1 and L_2 are languages, then $L_1 \cdot L_2 = \{x_1x_2 : x_1 \in L_1 \text{ and } x_2 \in L_2\}.$ [5] Prove that if L_1 and L_2 are in P then $L_1 \cdot L_2 \in P$.