
York University EECS 4101N/5101N Eric Ruppert March 12, 2025

Homework Assignment #7
Due: March 21, 2025 at 5:00 p.m.

1. Suppose we are representing a set of keys drawn from an ordered universe. We use a standard
B-tree (with parameter t) to store the keys. In addition, we store the keys in a doubly-linked list,
sorted by value. The pointer fields of the doubly-linked list are called next and prev .

To link the B-tree and the doubly-linked-list, nodes storing the same key in the two structures
keep pointers to each other. An example (with t = 2) is shown below. The links between the B-tree
and list are shown with the blue dashed pointers.

25

8 9 10721 13 15 16 20 25

10

8 91 2

7 15 20

13 16

(a)[2] Briefly describe how to split one of the B-tree nodes in the data structure in O(t) time. You
do not have to give detailed pseudocode; just a high-level description of what must be done
is sufficient.

(b)[3] An InsertAfter(p, k) operation, where p is a pointer to a node in the doubly-linked list
and k is a key satisfying p.key < k < p.next.key, inserts the key k into the data structure.
Describe how to implement InsertAfter efficiently.

(c)[4] Give a good upper bound on the total time to perform a sequence of m InsertAfter
operations, starting from a data structure that contains just one key. State your answer
using big-O notation in terms of m and t, and prove that your answer is correct.

Note: this question is about the total CPU time used to perform the sequence, not just the
number of nodes accessed.

(d)[1] How does your answer to part (c) compare to using ordinary B-tree insertions?

(e)[1] Suggest a scenario where InsertAfter operations might be useful.

1


