
1/47

Eiffel 101: Language, Method and Tools

A basic and elementary introduction for students in EECS3311 • Develop competence in the
methods and tools —in the first 3 weeks of the term • Learn by doing all the examples •
Compile, run, test, debug, document and understand.

Resources

• http://eiffel.eecs.yorku.ca
• https://www.eiffel.org/documentation

Available Online in the Steacie Library

2/47

Table of Contents

1 Overview .. 3

2 Eiffel Syntax .. 4

3 Start a New Project ... 4

4 Launch EiffelStudio IDE and compile .. 6

5 Run ESpec Unit Tests ... 8
5.1 Unit Tests succeeds with a Green Bar .. 10

6 Contract violations and the debugger .. 12

7 Adding a new class NODE [G] .. 15

8 Void safety and class NODE [G] ... 17
8.1 VEVI compile time error: .. 19
8.2 VUAR error .. 20

9 Unit Tests for class NODE [G] ... 21

10 Object equality and is_equal ... 23

11 Reference vs. Expanded Types ... 27

12 Using the debugger ... 28

13 Iteration using the “across” notation in the debugger ... 28

14 Using the IDE to generate Documentation ... 31

15 Advice for writing comprehensive tests ... 32
15.1 Compile Time Errors .. 33
15.2 Bugs .. 33
15.3 Debugging ... 34
15.4 Using unit tests and the debugger ... 35

16 BON/UML class diagrams .. 36
16.1 Architecture: design structure ... 37

17 Abstraction, DbC and Information Hiding .. 38
17.1 Contract View .. 38

18 Mathmodels .. 40
18.1 Specifying stacks with Mathmodels ... 42

3/47

1 Overview

We use Eiffel in EECS3311 because programs in this language have both implementation and
design constructs. And this is a course about design—requiring that you think above the
implementation level. This document is an elementary introduction to the method and tools.

The Eiffel Method:

• Is Based on a small number of powerful ideas from computer science and software
engineering

• One example is Design by Contract:
o Defines a software system as a set of components interacting through precisely

specified contracts. Contracts are active and enforceable throughout the life-cycle
o Promotes precise software specification and software reliability
o Uses a “single-product” model. All life-cycle phases are supported by a single

notation. Less need to switch, say, from “specification language” to “design
language”

o Seamlessness: turns software construction into a single continuous process from
specifications, analysis, design and implementation.

• Another example is true multiple inheritance as expressed in UML
• BON class diagrams document the architecture of the Design

The Eiffel Programming Language

• Exists to express the products of the Eiffel Method
• Contracts and contract monitoring
• Exception handling based on software specification (versus ad hoc try/catch)
• Void-safety: calls on void (null) references are eliminated at compile time
• Multiple Inheritance: includes multiple and repeated inheritance
• Genericity, constrained genericity and functional programming constructs
• Platform independent concurrency (SCOOP)

To make use of these software design ideas, you must become comfortable using the language
and tool basics in the first three weeks of the term. This is also a time when you do not yet have
many assignments and tests.

• This introduction is for students in EECS3311, working on EECS Linux workstations or
the SEL Virtual Machine (SEL-VM)1.

• See http://eiffel.eecs.yorku.ca for more information; it also contains information if you
wish to install Eiffel on your own Laptop.2

• We assume that you have done Lab0:
http://seldoc.eecs.yorku.ca/doku.php/eiffel/hello/hello2/start

1 http://seldoc.eecs.yorku.ca/doku.php/eiffel/virtualbox/start
2 https://wiki.eecs.yorku.ca/course_archive/2018-19/W/3311/_media/wiki:eecs3311-starter-guide.pdf

4/47

2 Eiffel Syntax
It is assumed that you know basic Eiffel Syntax.3

Now person.age := 21 is simply a shortcut for person.set_age(21). If you are not yet
familiar with the syntax, review: https://www.eecs.yorku.ca/~eiffel/eiffel-guide/

By convention, classes are written upper-case and features (attributes, function routines and
command routines are written in lower case.4

Exercise: How would you add a new query for the name of a person? How do you write public
queries and how do you write private queries?

3 Start a New Project
At the command line, invoke eiffel-new: 5

> eiffel-new
New Eiffel void-safe project name: node-demo

The directory and file structure is:

A new project called node-demo is
created. By default, the project is Void
Safe; more on this later.

Three clusters are created (model
which is empty, root and tests). New
classes will be created in cluster model.

The ECF file is node-demo.ecf
The root class is in a file called root.e

3 For more detail, see: https://www.eiffel.org/doc/eiffel/Eiffel_programming_language_syntax
4 For style guidelines see: https://www.eiffel.org/doc/eiffel/Style_Guidelines
5 Introduced in Lab0: http://seldoc.eecs.yorku.ca/doku.php/eiffel/hello/hello2/start.

5/47

Optional:

Figure 1 Settings for editing Eiffel Configuration Files

• Although it is not necessary to do
so at this stage —you may
optionally open the ECF (Eiffel
Configuration file) node-
demo.ecf in a text editor. It is in
XML.

• To edit the ECF file, it is easier to
use Settings in the IDE as in
Figure 1.

• Settings shows the various
clusters (model, root, tests) and
libraries (base, espec,
mathmodels) in use.

• There are many other
configurations in the ECF file
accessible via Settings.

Ensure that you have enough quota before launching the IDE and compiling:

> quota -v
/cs/home/student 667.9 of 976.6 MB used

Your Eiffel program text files (e.g. root.e) do not take up much space.

But, Eiffel programing text is translated into C and compiled in a directory called EIFGENs6.
You need at least 300Mb of temporary memory free, especially if your EIFGENs folder will be
in your home folder and not in /tmp/student (where student is your EECS login).

6 https://www.eiffel.org/doc/eiffelstudio/A_Look_at_the_Project_Directory: Every project has a project directory
which will contain the files generated and managed by EiffelStudio. The project directory may also host some of the
source files containing your Eiffel classes, the ECF (eiffel configurationl file), and external software written in other
languages. You will notice a subdirectory called EIFGENs, for “EIFfel GENerations”. EIFGENs is created and
maintained by the compiler to store information about your project, including generated code (in our case in C) for
execution. EiffelStudio manages your project in such a way that EIFGENs can always be re-generated if need be;
this means that if things go wrong for any reason and you want to make a fresh start you can always delete this
directory and recompile your system. This also means that you should not add any files into this directory, or modify
any of its files, since a later compilation is free to change or regenerate whatever it chooses in EIFGENs

6/47

You might want to create a temporary folder for your EIFGENs like this:

> mkdir /tmp/$USER

For me, $USER is student. You can also do: mkdir /tmp/student.

4 Launch EiffelStudio IDE and compile

Now launch your project in the IDE and compile: >estudio node-demo/node-demo.ecf &

A dialogue box asks you where to compile the EIFGENs for your project (you may choose the
default if you have enough quota). Below, I choose the temporary directory that I created earlier:

7/47

Below, we show a screen shot of the IDE showing class ROOT (in file root.e).

The make routine of the root class adds a class TESTS where you may start writing unit tests.
The cluster and class structure in the top right IDE window pane —mirrors the project directory
structure.

8/47

A user may browse classes and feature (attributes, function routines, command routines) of
classes:

To learn more about browsing the classes in the project and libraries, see
https://www.eiffel.org/doc/eiffelstudio/Starting_To_Browse

The default method of using the IDE is pick and drop.
https://www.eiffel.org/doc/eiffelstudio/Retargeting_Through_Pick-and-Drop

Pick-and-Drop consists of three steps:

• Pick step: find the development object (e.g. a class or a feature) and pick it: either
through the context menu, or by right-click, depending upon EiffelStudio’s Pick and
Drop Mode.

• Move step: move the mouse to the desired drop point, without pressing any button.
• Drop step: right-click (again releasing the button immediately) at the drop position.

The Pick-and-Drop mechanism relies on the metaphor of pebbles and holes. When you pick a
development object, the cursor changes into a pebble whose shape represents the type of the
development object: cluster, class, feature, run-time object ... You may then drop it into a hole,
which can be a window, a tree view entry, or a hole-shaped icon. This performs the appropriate
action such as retargeting a tool.

5 Run ESpec Unit Tests

The ESpec library is already part of the project. Choose class TESTS to see what a unit test looks
like. Below you can see test t0. We also show how to run unit testing.

9/47

The default unit test t0 is a function routine with return type BOOLEAN. The return value of a
function routine is set by assigning it to the Result variable. Unlike other languages, the return
statement does not exist. Since Result for this test is never set to True, the test will fail.

You may use any name for your tests. It is essential that every ESpec test, say
testfoo, starts with a comment taking an argument “testfoo: …”.

For more on unit testing using ESpec, see7:

http://seldoc.eecs.yorku.ca/doku.php/eiffel/espec/start

To run all the unit tests, invoke Run Workbench System (shortcut Control-Alt-F5). The unit tests
are executed and the browser displays the result with a red bar indicating that at least one test
failed:

7 EiffelStudio IDE also has a built-in unit testing facility (similar to Junit). In this course for a variety of erasons we
use ESpec (designed by our team). For more on the IDE unit testing see:
https://www.eiffel.org/doc/eiffelstudio/Create_a_manual_test.

10/47

5.1 Unit Tests succeeds with a Green Bar

Let’s write a test to check if we understand how arrays work in Eiffel. The revised unit test t0
(below), creates an array of three strings and then checks that there are three entries in the array.

Compile and re-run the unit (Control-Alt-F5):

11/47

This time the tests succeed with a green bar:

Compile (F7) Melt: quick incremental recompilation, doesn't optimize code for

changed parts. Use this to check syntax and compile errors.
Compile/Freeze (Ctrl-F7) Freeze: incremental recompilation, not as fast as Melt. but

generates more efficient code for changed parts. Use this before
running ESpec.

Compile/Finalize
Run (F5) EIFGENs/W_code (Workbench bytecode). Use this to debug

your code, e.g. when contracts fail.
Run Workbench System (Ctrl-Alt-F5) Use this to obtain a browser report (red/green bar).
Run Finalized System EIFGENS/F_Code. For deploying your software product.

The result of melting is compiled into bytecode in the W_code directory for further C processing.
Freezing does a full translation into C.8

8 https://www.eiffel.org/doc/eiffelstudio/How_EiffelStudio_Compiles

12/47

6 Contract violations and the debugger

Suppose we extend test t0 with Result := a[4] ~ "yellow" (see below):

By default, arrays in Eiffel start at index 1. There is no entry at index 4. Thus, we now obtain a
red bar indicating that one or more tests have failed. The failure is at a precondition violation.

Run (shortcut F5) the system:

13/47

Given that there is a precondition violation, the IDE drops into debugger mode. A yellow arrow
points to the line in the code that fails. In the top right hand window, we can see that this line of
code is in test t0.

14/47

If we select item (from ARRAY) in the Call Stack pane, then the debugger indicates that the
failure is in the precondition with tag valid_index. The debugger will also show that the
argument i is 4 which is not a valid index into the array.

We can make the test succeed, by inserting a line: a.force ("yellow", 4). Arrays in Eiffel
may be resized, and force will ensure that there is an index at 4.

It is vital that you become skilled in using the debugger. For more see
https://www.eiffel.org/doc/eiffelstudio/Debugging_and_Run-time_Monitoring

Exercises: Try the above array test t0, use the debugger and write more tests of your own. Write
and test class PERSON (see Section 2).

Exercises: Writing a test is a smart way to check that you understand how to use a class. Write
tests to check your understanding of some collection classes in the base library, e.g.

• ARRAY[G]
• List implementations: LINKED_LIST [G] and ARRAYED_LIST [G]. The abstract data

type is LIST [G]
• HASH_TABLE [G, H]

15/47

7 Adding a new class NODE [G]

In the IDE, select the relevant cluster (model) and click on New Class.

A dialogue box displays:

A new class NODE is created to which we add a generic
parameter G:

We will work with a class NODE as shown in Figure 2
below

16/47

note
 description: "[
 A node has left and right nodes and possibly a parent
]"
class NODE [G] create
 make

feature {NONE} -- constructor
 make (a_item: G)
 -- makes a node with a_item
 do
 item := a_item
 end

feature -- attributes
 item: G assign set_item
 -- returns the current item

 left: detachable NODE [G] assign set_left
 -- reference to left child

 right: detachable NODE [G] assign set_right
 -- reference to right child

 parent: detachable NODE [G] assign set_parent
 -- reference to parent

feature -- commands
 set_item (a_item: G)
 -- sets Current item to a_item
 do
 item := a_item
 end

 set_left (a_node: detachable NODE [G])
 -- updates left child to a_node
 -- updates left child's parent to Current if attached
 do
 left := a_node
 if attached left as l then
 l.parent := Current
 end
 ensure
 node_set: left = a_node
 child_has_correct_parent:
 attached left as l implies l.parent = Current
 end

 set_right (a_node: detachable NODE [G])
 -- updates right child to a_node
 -- updates right child's parent to Current if attached
 do
 right := a_node
 if attached right as r then
 r.parent := Current
 end
 ensure
 node_set: right = a_node
 child_has_correct_parent:
 attached right as r implies r.parent = Current
 end

 set_parent (a_node: detachable NODE [G])
 -- updates parent to a_node
 do
 parent := a_node
 end
invariant
 left_parent: attached left as l_left implies l_left.parent = Current
 right_parent: attached right as l_right implies l_right.parent = Current
end

Figure 2 Program text for class NODE[G]

17/47

Note the class invariants in Figure 2. All routines must preserve these invariants. Class invariants
ensure the consistency and safety of the business logic.9 For more on contracting see
https://www.eiffel.org/doc/solutions/Design_by_Contract_and_Assertions.

8 Void safety and class NODE [G]
Void safety is important for avoiding null pointer exceptions at runtime: ``

In a 2009 talk, Tony Hoare traced the
invention of the null pointer to his design
of the Algol W language and called it a
"mistake":

“I call it my billion-dollar mistake. It was
the invention of the null reference in
1965. At that time, I was designing the
first comprehensive type system for
references in an object oriented language
(ALGOL W). My goal was to ensure that
all use of references should be absolutely
safe, with checking performed
automatically by the compiler. But I
couldn't resist the temptation to put in a
null reference, simply because it was so
easy to implement. This has led to
innumerable errors, vulnerabilities, and
system crashes, which have probably
caused a billion dollars of pain and
damage in the last forty years.”

Void-safety, like static typing, is another facility for improving software quality. Void-safe
software is protected from run time errors caused by calls to void references, and therefore will
be more reliable than software in which calls to void targets can occur. The analogy to static
typing is a useful one. In fact, void-safe capability could be seen as an extension to the type
system, or a step beyond static typing, because the mechanism for ensuring void-safety is
integrated into the type system. The guard against void target calls can be seen by way of the
notion of attachment and (by extension) detachment (e.g. detachable keyword). 10

In class NODE [G] we have:

9 For more on the importance of invariants for correctness see: https://bertrandmeyer.com/2018/05/24/not-program-
right/
10 https://en.wikipedia.org/wiki/Eiffel_(programming_language) - Void-safety.

This approach has now been adopted by other languages such as C# and Go.

18/47

A query (attribute or function routine) has a return type. The return type of attribute item is the
generic parameter G, and the return type of attribute left is NODE [G].

In Void-safety, the compiler gives assurance, through a static analysis of the code, that at run
time whenever a feature is applied to a reference, that the reference in question will have an
object attached. This means that the feature call

 x.f (a)

is valid (at compile time before the code is ever executed) only if we are assured that x will be
attached to an object when the call executes.
The Target rule (validity code VUTA) is the primary compiler rule for void-safety (but there are
others).

The left and right child of a node may be Void. We must thus declare left to be detachable
meaning that it may initially or at other times be Void (not attached to a node object).

By default, all entities are attached. Thus, attribute item is (and must) always attached to an
object of type G. For example, if G is type STRING, then we may always write item.count
(without the worry that there will be a null pointer exception at runtime).

By contrast, before writing left.item we must first check that left is attached, e.g.

The expression attached left is a Boolean assertion that is either True or False. The clause
as l_left creates a local copy of left with type attached NODE[G] (the same return type as
left, except attachment is guaranteed). We may thus safely write: l_left.parent := Current.

For more on Void safety, see
 https://www.eiffel.org/doc/eiffel/Void-safe_programming_in_Eiffel.

19/47

 Figure 3 below provides two compile time Void Safety errors.

8.1 VEVI compile time error:

By default, in the declaration

n: NODE [STRING]

entity n is attached and has type NODE [STRING]. The problem is that the creation routine
make in the class does not initialize n. Thus, it is possible that n.item, for example, might
generate a null exception at runtime.

This problem can be fixed by initializing n in the creation routine. Alternatively, n may be
declared local in some_test.

20/47

Figure 3 Void Safe Compile errors VUTA and VEVI

8.2 VUAR error

As before, by default, in the declaration n: NODE [STRING], entity n is attached and has type
NODE [STRING]. Now class STRING in Eiffel is mutable11. In addition, the declaration is not

n: NODE [detachable STRING].

Thus, in some_test, create n.make (Void) is not allowed, as it might result in a null runtime
exception.

11 For immutable strings, we use class IMMUTABLE_STRING_8 or IMMUTABLE_STRING_32.

21/47

9 Unit Tests for class NODE [G]

Now write a test for class NODE setting the node item to “Noah”

Test t1 compiles and succeeds with a green bar. Try it.

However, extending test t1 with a left child “Shem” results in a compile time error.

22/47

We may repair test t1 with left child Shem as follows:

Initially, node.left is Void. We use node.set_left (left) to create left child of the node Shem. This
means that we are guaranteed that node.left is now attached to an object. Thus instead of using a
conditional test for attachment, we may write a check assertion as follows:

Assertions (check, preconditions, postconditions, invariants etc.) can be turned off in finalized
projects to be deployed in the field. The check for attachment (as above) cannot be turned off.
This is because the software engineer has guaranteed that node.left is attached. If the guarantee is
wrong the code will fail with a check attached exception. So, do not use check attached unless
you have a proof that indeed the target is attached.

Extending test t1, with a right child Japhet, we obtain:

23/47

In the above case, we have used the assignment alias: node.right := right.

10 Object equality and is_equal

In Eiffel, as in Mathematics, the symbol “=” stands for equality, not assignment. For assignment,
Eiffel uses the symbol “:=”.

The following test fails because variables node1 and node2 do not satisfy reference equality, i.e.
they do not refer to the same object:

24/47

Test t2 thus fails.

Class STRING is mutable in Eiffel. As can be seen in the debugger view (below), node1
references one string object and node2 a totally different string object; these objects have
different locations in memory.

Both string objects have the same values (Life won’t wait), but they are not the same object. We
must thus use object comparison “~” as shown below:

25/47

For the assertion node1 ~ node2 to work, we must redefine is_equal in class NODE [G] as
shown below:

…

26/47

The equality infix symbol “~” in the expression node1 ~ node2 is aliased to {ANY} equal as
shown below. Thus node1 ~ node2 is the same as equal(node1, node2):

class ANY …
 is_equal (other: like Current): BOOLEAN …

All classes inherit from class ANY. It is the root of the class hierarchy. Below we show a
snapshot of the IDE. Ensure you know how to use it to browse the code, edit the code, compile,
unit test, use the debugger, the documentation facility and the BON diagram utility.

27/47

11 Reference vs. Expanded Types

Suppose in some class we declare

 a,b: ACCOUNT
 …
 create a.make_with_name(“Steve”)
 …
 b := a

Then, after creation, variable a points to an object which is an instance of type ACCOUNT.
When the assignment b := a is done, then variable b also points to the same object that a
points to. We now have aliasing because doing a.deposit(“420.10”) also changes b. We
are using a reference semantics. In reference semantics, it is possible that a variable (with its type
declared detachable) may not refer to an object but be Void.12

However, variables of the basic types INTEGER, BOOLEAN, REAL and CHARACTER do not
follow a reference semantics. Rather they follow a value semantics. To obtain a value semantics
Eiffel uses the notion of an expanded type.

 i,j: INTEGER
 …
 i := 4
 j := i
 i := 5

For an expanded type. assignment does a copy not a reference. So, for j:=i a copy of the value
of i is provided for j. Thus, the subsequent assignment i := 5 does not change the value of
j (there is no aliasing). Also, there is no need to create i and j as they have default values 0.
Expanded types must thus have a default creation procedure so that its value is always well-
defined (and thus i and j will never have a value Void).

You can read more about reference and expanded types in OOSC2 sections 8.1 to 8.8. These
sections also explain copy (twin) and deep copy (deep_twin). Many of the notions in these
sections should already be familiar to you from earlier courses. Expanded types are discussed in
Section 8.7.

In Java, C#, C++ etc. developers may not (directly) create their own expanded types. By
contrast, Eiffel allows developers to create their own classes with a value semantics by using the
expanded construct.

For example, in the Mathmodels library, expanded class VALUE which does precise arithmetic
needed in banking and other systems. Eiffel also provides an infix notation so that we can use the
regular arithmetic operators such as +, -, * and /.

12 null in other languages.

28/47

12 Using the debugger

The first two tests t1 and t2 help you to understand how to use the expanded class VALUE.

One way to try to understand a new class as a client of that class, is to write some tests to
confirm that you know how to use its features.

Running ESpec (Workbench Run, i.e. Control-Alt-F5) we see that test t2 fails. How should we
use the IDE to explore why the test is failing. This is where the debugger is useful.

• Do a Plain Run (F5) and the runtime will halt at a Postcondition violation.
• You can then use the debugger to examine the state of the system

Use the debugger for finding bugs. Below is the debugger display for test t2.

13 Iteration using the “across” notation in the debugger

29/47

Class STRING treats a string as a sequence of characters. So,

So the string s is a function 1..3 → CHARACTER. The index i in s[i] must be a valid index so
that i ∈1..3.

An alternative (but less efficient) way to have a string is to declare it as an array of characters.
Generic classes such as ARRAY[G], LIST[G], HASH_TABLE[G] etc. all have iterators using
the across notation. We may also use the across notation on STRING (given that it is a sequence
of characters). Later we will see that we can equip our own collection classes with this form of
iteration.

Please see https://www.eiffel.org/doc/eiffel/ET-_Instructions for how to use the across notation.
Here is a simple example of using the across notation as a Boolean query. The contract uses the
across notation. Consider the following snippet of code:

In data structure collections such as ARRAY [G] and LIST [G], we can use the across notation
in contracts to represent quantifiers such as ∀ and ∃. Thus test1 asserts:

∀ ch ∈ word: ch ≤ ‘p’
which is true, and test2 asserts that

∀ ch ∈ word: ch < ‘o’

which is false. The comparison (≤) is done using the ASCII codes of the character. Class
CHARACTER inherits from COMPARABLE in order to allow the comparisons to be made.

30/47

We use the keyword all for ∀ and some for ∃. Between all and end there must be an assertion (a
predicate) that is either true or false.

We can also use the across notation for imperative code with the keyword loop instead of all.
Between loop and end there can be regular implementation code including assignments.

In the figure below, we have placed breakpoints shown with red dots and we execute the code,
using the debugging facilities to get to the breakpoints. After the debugger reaches the second
breakpoint, the debugger shows that test1 is true and test2 is false.

Make sure you know how to set breakpoints and how to execute to reach the breakpoints.

31/47

14 Using the IDE to generate Documentation

The IDE can be used to generate documentation in various formats as follows:

For the internet, html-stylesheet is a good choice. We choose RTF format, the one used in Figure
2.

In the next dialogue box, we select classes in clusters root, model and tests, and generate the
documentation. By default, the documentation is in the EIFGENs directory.

32/47

15 Advice for writing comprehensive tests

John Guttag’s introductory text on Python has some ideas are applicable to testing code written
in any language, not just Python.13 Some information has been added, and the discussion is
adapted to Eiffel.

Our programs don't always function properly the first time we run them. Books have been
written about how to deal with this last problem, and there is a lot to be learned from reading
these books. However, in the interest of providing you with some hints that might help you get
that next problem set in on time, we provide a highly condensed discussion of the topic.

Testing is the process of running a program to try and ascertain whether or not it works as
intended. Debugging is the process of trying to fix a program that you already know does not
work as intended.

Testing and debugging are not processes that you should begin to think about after a program has
been built. Good programmers design their programs in ways that make them easier to test and
debug. The key to doing this is breaking the program up into components that can be
implemented, tested, and debugged independently of each other. We need to tests classes

13John V Guttag. Introduction to Computation and Programming Using Python, revised and expanded edition, MIT
Press 2013.

33/47

(modules) and their routines, but we also need to test sub-systems (clusters of classes) and the
overall system (acceptance tests).

In the sequel, we will mostly be considering unit tests.

15.1 Compile Time Errors

The first step in getting a program to work is getting the language system to agree to run it-that is
eliminating syntax errors and static semantic errors that can be detected without running the
program. If you haven’t gotten past that point in your programming, you're not ready for this
appendix. Spend a bit more time working on small programs, and then come back.
The Eiffel compiler does a lot of checking at compile time, thus eliminating whole classes of
errors before you run the program.

15.2 Bugs

The most important thing to say about testing is that its purpose is to show that bugs exist, not to
show that a program is bug-free. To quote Edsger Dijkstra, “Program testing can be used to show
the presence of bugs, but never to show their absence!” Or, as Albert Einstein reputedly once
said, “No amount of experimentation can ever prove me right; a single experiment can prove me
wrong.”

Why is this so? Even the simplest of programs has billions of possible inputs. Consider, for
example, a program that purports to meet the specification:
is_bigger(x,y: INTEGER): BOOLEAN
 ensure Result ≡ x < y

34/47

Before proceeding, provide below an informal English description of the specification14:

Running it on all pairs of integers would be, to say the least, tedious. The best we can do is to run
it on pairs of integers that have a reasonable probability of producing the wrong answer if there
is a bug in the program. The key to testing is finding a collection of inputs, called a test suite,
that has a high likelihood of revealing bugs, yet does not take too long to run. The key to doing
this is partitioning the space of all possible inputs into subsets that provide equivalent
information about the correctness of the program, and then constructing a test suite that contains
one input from each partition. (Usually, constructing such a test suite is not actually possible.
Think of this as an unachievable ideal.)

A partition of a set divides that set into a collection of subsets such that each element of the
original set belongs to exactly one of the subsets.
Consider, for example is_bigger(x, y). The set of possible inputs is all pairwise combinations of
integers. One way to partition this set is into these seven subsets:

• x positive and y positive
• x negative and y negative
• x positive, y negative
• x negative, y positive
• x = 0, y = 0
• x 0, y ≠ 0
• x ≠ 0, y = 0

If one tested the implementation on at least one value from each of these subsets, there would be
reasonable probability (but no guarantee) of exposing a bug should it exist. For most programs,
finding a good partitioning of the inputs is far easier said than done. Typically, people rely on
heuristics based on exploring different paths through some combination of the code and the
specifications. Heuristics based on exploring paths through the code fall into a class called glass-
box testing. Heuristics based on exploring paths through the specification fall into a class called
black-box testing.

15.3 Debugging

Debugging is a learned skill. Nobody does it well instinctively. The good news is that it’s not
hard to learn, and it is a transferable skill. The same skills used to debug software can be used to
find out what is wrong with other complex systems, e.g., laboratory experiments or sick humans.
For at least four decades people have been building tools called debuggers, and there are
debugging tools built into EiffelStudio. These are supposed to help people find bugs in their
programs. They can help, but they only take you part of the way. What’s much more important is

14 Answer: Assume x and y are integers. The query returns True if x is less than y and False otherwise.

35/47

how you approach the problem. Some experienced programmers don’t always bother with
debugging tools, and they use only print statements. It is in your interest, though, to learn how to
use the debugger and in most cases it is better than just using print statements.

Debugging starts when testing has demonstrated that the program behaves in undesirable ways.
Debugging is the process of searching for an explanation of that behavior. The key to being
consistently good at debugging is being systematic in conducting that search. Start by studying
the available data. This includes the test results and the program text. Remember to study all of
the test results. Examine not only the tests that revealed the presence of a problem, but also those
tests that seemed to work perfectly. Trying to understand why one test worked and another did
not is often illuminating. When looking at the program text, keep in mind that you don't
completely understand it. If you did, there probably wouldn't be a bug.

Next, form a hypothesis that you believe to be consistent with all the data. The hypothesis could
be as narrow as “if I change line 403 from x < y to x <= y, the problem will go away” or as broad
as “my program is not terminating because I have the wrong test in some while loop.”
Next, design and run a repeatable experiment with the potential to refute the hypothesis. For
example, you might put a print statement before and after each while loop. If these are always
paired, than the hypothesis that awhile loop is causing non-termination has been refuted. Decide
before running the experiment how you would interpret various possible results. If you wait until
after you run the experiment, you are more likely to fall prey to wishful thinking.

Finally, keep a record of what experiments you have run. This is particularly important. If you
aren’t careful, it is easy to waste countless hours trying the same experiment (or more likely an
experiment that looks different but will give you the same information) over and over again.
Remember, as many have said, “insanity is doing the same thing, over and over again, but
expecting different results.”

15.4 Using unit tests and the debugger

See https://www.eiffel.org/doc/eiffelstudio/Debugger

36/47

16 BON/UML class diagrams

A critical way to document a design (and the design decisions) is via a BON class diagram. Use
the EiffelStudio IDE to generate BON (or UML) class diagrams. As an example, the IDE might
genererate the following:

Figure 4 BON class diagram (IDE generated)

This diagram shows some important characteristics of the design:

• The diagram shows two clusters: model and node. Each cluster contains classes (shown
as ellipses). The green double arrows denote client-supplier relationships and the red
single arrow denotes an inheritance relationship between classes.

• The “*” decorator denotes deferred classes and the “+” decorator denotes effective
classes. A deferred class has at least one routine (either a query or a command) that is
deferred, i.e. has no implementation. Such a class cannot be instantiated at runtime, and
thus does not have explicit constructors.

• Classes are always written using UPPER_CASE. Features (queries and commands) are
written using lower case.

• Deferred class SORTED_TREE_ADT [K, V] has two generic parameters, K for keys and
V for values. Generic parameter K is constrained to be COMPARABLE, needed for a
sorted order.

• Most of the features of deferred class SORTED_TREE_ADT [K, V] are effected
(implemented) using class NODE. Some examples are shown below:

The IDE Drawing tool is a good starting point for the BON class diagram. But we obtain a better
view of the design using the draw.io tool.15

15 http://seldoc.eecs.yorku.ca/doku.php/eiffel/faq/bon

37/47

Figure 5 BON class diagram (draw.io template)

The draw.io diagram is constructed manually, which allows for the selective provision of classes,
their relationships, their features, their signatures, their contracts and class invariants. The design
architecture is thereby better described. See the footnote for more information.16 Please
familiarize yourself with these notations.

16.1 Architecture: design structure

BON (or UML) class diagrams are important for documenting the design of the system
architecture, i.e. how the different parts (or modules) of the system structure are related to each
other. A software system’s structure is a division of that system into a set of parts and the
relations between those parts.

16 You might try to produce the BON diagram and the UML diagram. Why do we use BON diagrams rather the the
more standard UML notation?
(Hint: see the video: https://wiki.eecs.yorku.ca/project/eiffel/start#eiffel_specifications_and_design).
Nevertheless, you should eventually familiarize yourself with UML – see
https://wiki.eecs.yorku.ca/project/eiffel/_media/bon:uml.pdf.

SORTED_TREE_ADT [K, V]*

feature model
 model: SEQ [NODE [K, V]]

 model_path: FUN [K, SEQ [STRING]]

feature queries
 count: INTEGER

 has (a_key: K): BOOLEAN

 is_empty: BOOLEAN

 as_node_array: ARRAY[NODE[K,V]]

feature commands
 extend (a_item: TUPLE [key: K; val: V])

 require ¬has (a_item.key)

 remove (a_key: K)

 require has (a_key)

invariant
 ∀n ∈ as_node_array :
 attached n.left as left ⇒ n > left

 ∧ attached n.right as right ⇒ n < right

 ∀n ∈ model:
 attached n.left as left ⇒ left.parent = n

 ∧ attached n.right as right ⇒ right.parent = n

+

SORTED_BST [K, V]

+

SORTED_RBT [K, V]

BASIC_NODE [K, V]+

feature queries
 key: K

 value: V

 item: TUPLE [key: K; val: V] assign set_item
 left: detachable like Current assign set_left
 right: detachable like Current assign set_right
 parent: detachable like Current assign set_parent
 is_less alias "<" (other: like Current): BOOLEAN
 is_leaf: BOOLEAN

feature commands
 set_item (a_item: TUPLE [key: K; val: V])

 set_left (a_node: detachable like Current)

NODE [K, V]+

feature RB commands
 set_black

 set_double_black

 set_red

feature RB queries
 colour: INTEGER

 is_black: BOOLEAN

 is_double_black: BOOLEAN

 is_red: BOOLEAN

tree, ...

find_smallest_leaf, ...

Key K is COMPARABLE

Design of Sorted Trees
More trees can be added as descendants of SORTED_TREE_ADT

38/47

If all software experts agree on anything, it is that software shouldn’t be a monolith
(a large system that is, for all practical purposes, indivisible). In the half century
since Edsger Dijkstra published his groundbreaking paper, “The Structure of the
‘THE’-Multiprogramming System,” it has become clear that the ability to design a
software system’s structure is at least as important as the ability to design efficient
algorithms or to write code in a particular programming language. …

Dijkstra’s papers and presentations made it clear that he and his team designed the
structures before any code was written. The structure guided the coders; the result
was a design that was “cleaner” than other systems of that time.

Dijkstra’s team was small, highly motivated, and very talented. Dijkstra, who
described himself as the team’s captain, was very hands-on. They didn’t create
precise documentation of the structure. With a larger team, one that was managed
rather than “captained,” the lack of documentation would have led to
miscommunication. That would have lengthened the development time and might
have introduced errors.

The lack of documentation became evident after Dijkstra’s team dispersed. The
system was their legacy and was used for some time after they left. One member of
the original team frequently received phone requests for help when a problem
occurred. In that team member’s words, “The structure was clean and simple, but it
existed only in our minds.” The lesson is clear: structure is vital, but unless you plan
to discard the software when its authors move on, it must be documented.17

17 Abstraction, DbC and Information Hiding

There is also abstraction by specification where we ignore implementation details, and agree to
treat as acceptable any implementation that adheres to the specification.

A major benefit of these abstractions is re-use. Abstraction by specification helps lessen the work
required when we need to modify a program. By choosing our abstractions carefully, we can
gracefully handle anticipated changes to hide the details of things that we anticipate changing
frequently. When the changes occur, we only need to modify the implementations of those
abstractions. Clients are unchanged relying on the specification alone for their client code.

17.1 Contract View
What we are looking for are clean API’s that make sense.

• We use contracts to specify a system, in a way that is free of implementation detail.
• We will want many tests to exercise the contracts to ensure that the implementations of

the routines satisfy the specifications.
• Invariants are very important in constraining objects to remain safe. On the next page we

show the contract view generated automatically.

17 “Software Structures: A Careful Look”, David Lorne Parnas, IEEE Software, Nov-Dec 2018.

39/47

• Note that the class is self-documenting. There is an indexing clause to explain the purpose
of the class and each feature has a meaningful comment.

note
 description: "[
 A bank account with deposit and withdraw
 operations. A bank account may not have a negative balance.
]"
 author: "JSO"
class interface
 ACCOUNT

create
 make_with_name (a_name: STRING)
 -- create an account for `a_name' with zero balance
 ensure
 created: name ~ a_name
 balance_zero: balance = balance.zero

feature -- Account Attributes
 name: STRING

 balance: VALUE

feature -- Commands
 deposit (v: VALUE)
 require
 positive: v > v.zero
 ensure
 correct_balance: balance = old balance + v

 withdraw (v: VALUE)
 require
 positive: v > v.zero
 balance - v >= v.zero
 ensure
 correct_balance: balance = old balance - v

feature -- Queries of Comparison

 is_equal (other: like Current): BOOLEAN
 -- Is `other' value equal to current
 ensure then
 Result = (name ~ other.name and balance = other.balance)

 is_less alias "<" (other: like Current): BOOLEAN
 -- Is current object less than `other'?
 ensure then
 Result = (name < other.name)
 or else (name ~ other.name and balance < other.balance)

invariant
 balance_non_negative: balance >= balance.zero
end

A comment on Quora is interesting18. How do we explain to a beginner why we use object
oriented programming?

18 https://www.quora.com/Can-you-explain-to-a-beginner-why-we-use-OOP. Of course there are good reasons why
programmers adopt alternative styles such as functional programming.

40/47

It is difficult to understand why we use OOP until we write large programs that don’t fit in our
brains at one time. Beginners don’t normally write such large programs. Here is an image that
may one day make sense.

Each node represents a module (e.g. a class, cluster or other parts of the code) of your program,
and each connection represents an interaction. Both programs have the same number of modules,
but in the second code is hidden and encapsulated so that a module only has limited interaction
with the outside world (through its interface or API). For example, Object 2 is not even aware
that module 7 exists; it’s a private feature of Object 1.
The non-OO program has 10 possible interactions. The OO program has only has 6 interactions.

The formula for number of interactions in the non-OOP case is (n*(n-1))/2, so it grows very fast.
As more modules are added it’s easy to lose control over the complexity of your program
without modules that have good interfaces. Each module should hide implementation or design
decisions from users of the module. This is called information hiding.

This is assuming that we have already broken the program into modules (separation of concerns).
Without modularity, the complexity is exacerbated.

18 Mathmodels

The Mathmodels library is used to write high level specifications beyond classical contracts. The
library contains mathematical classes such as:

• SEQ [G]
• SET [G]
• PAIR [G, H]
• FUN [G, H]
• REL [G, H]
• VALUE

As an example, consider a chart view of some of the features of class SEQ[G].

41/47

class
 SEQ [G -> attached ANY]

General
 cluster: mathmodels
 description:
 "Finite sequences of some elements of type G.
 A valid index is 1..count.
 Array notation can be used, as well as iteration (across).
 Empty sequences can be created, or creation can be from an array.
 Sequences have a first item (the head), a tail and last item.
 Infix notation for prepended_by where x is of generic type G:
 seq1 |< x
 Infix notation for appended_by where x is of generic type G:
 seq1 |> x
 For concatenation we use infix: seq1 |++| seq2
 For queries, to assert that the state is not changed,
 the postcondition is
 Current ~ old Current.deep_twin
 Class also has an inefficient implementation:"
 create: make_empty, make_from_array

Ancestors
 ITERABLE* [G]

Queries
 appended alias "|->" (v: G): SEQ [G]
 as_array: ARRAY [G]
 as_function: FUN [INTEGER, G]
 concatenated alias "|++|" (other: SEQ [G]): SEQ [G]
 count alias "#": INTEGER
 debug_output: STRING_8
 first: G
 front: SEQ [G]
 has (v: G): BOOLEAN
 hold_count (exp: PREDICATE [PAIR [INTEGER, G]]): INTEGER
 inserted (v: G; i: INTEGER): SEQ [G]
 is_empty: BOOLEAN
 is_subsequence_of alias "|<:" (other: SEQ [G]): BOOLEAN
 item alias "[]" (i: INTEGER): G
 last: G
 overriden (v: G; i: INTEGER): SEQ [G]
 prepended alias "|<-" (v: G): SEQ [G]
 removed (i: INTEGER): SEQ [G]
 reversed: SEQ [G]
 slice (a_start, a_end, a_step: INTEGER): SEQ [G]
 subsequenced (i, j: INTEGER): SEQ [G]
 tail: SEQ [G]
 twin2: SEQ [G]
 upper: INTEGER
 valid_position (pos: INTEGER): BOOLEAN

Commands
 append (v: G)
 concatenate (other: SEQ [G])
 insert (v: G; i: INTEGER)
 make_empty
 make_from_array (a: ARRAY [G])
 override (v: G; i: INTEGER)
 prepend (v: G)
 remove (i: INTEGER)
 reverse
 subsequence (i, j: INTEGER)

Mathmodels extends the classical Eiffel contracting notation with the use of mathematical
models (based on sets, sequences, relations, functions, bags). The Mathmodels library has
immutable queries (for specifications) as well as relatively efficient mutable commands.

For example, class SEQ[G] has an immutable query

appended alias "|->" (v: G): SEQ [G]

and a corresponding mutable command

append (v: G)

42/47

The query takes an argument v, and returns a brand-new sequence which is the same as Current,
except that v is appended to Current.

For more on Mathmodels, see

https://www.eecs.yorku.ca/~jonathan/publications/2018/MoDRE18.pdf

You can explore FUN [G, H] at

https://www.eecs.yorku.ca/course_archive/2016-17/W/3311/eiffel-
docs/mathmodels/fun_chart.html

Exercise: Write a test to use FUN [G, H]. For example, each PERSON has a unique ID so you
may want to write FUN [PERSON, ID].

18.1 Specifying stacks with Mathmodels

You are familiar with stacks from your basic computing courses. You have studied the concept
of an Abstract Data Type (ADT). If you are not sure what that is, read chapter 6 of OOSC2. Here
is the stack ADT:

Note that an ADT is more general than a Java Interface (which provides only the signatures of
the attributes and methods). An ADT is more than just the signatures. It also specifies the
preconditions and axioms of the ADT. Using the stack ADT we may write an expression such as

43/47

and, from the axioms, we can prove that the expression is equal to x4.

WE will now use Mathmodels to provide an alternative complete specification of the stack ADT.

class
 STACK_ADT [G -> attached ANY]

General
 cluster: model
 description: "Abstract Data Type Signatures for a stack"
 create: make_empty

Queries
 count: INTEGER
 empty: BOOLEAN
 item: G
 model: SEQ [G]

Commands
 put (x: G)
 remove

Figure 6 Signatures for a generic stack (Chart View Generated by the IDE)

Figure 6 is a chart view of the stack ADT. In Figure 7 we provide a contract view of the stack
ADT.

Without Mathmodels, we can document the preconditions of the ADT (see classical contracts).
But we can document all the postconditions.

With Mathmodels, we can provide complete specifications as shown in the contract view (Figure
7). In fact, the classical contracts are no longer required. The complete contracts can be provided
with reference only to the model which is:

model: SEQ [G]

We could make class STACK_ADT a deferred class. Then all implementations might be a
subclass of this ADT. For example, we might implement stacks with arrays, or alternatively with
linked lists, etc. The subclasses inherit all the model contracts and must thus satisfy these model

44/47

contracts. Any descendant which does not completely implement the model specifications, will
generate a contract violation. Thus all subclasses will completely implement the ADT.

In Figure 8, we choose to make the STACK_ADT an effective class. We implement this class
with the commands of SEQ[G]. Thus, it is not necessarily so efficient, but we may already write
tests to check the correctness of the specifications, and we may use the same tests to check the
correctness of the subclass implementations.

In Figure 9, we show a test for the STACK_ADT and a breakpoint in the debugger to show what
the model looks like.

Exercises: Encode the STACK_ADT using the IDE. Write more unit tests and check that they
pass. Design efficient stacks by sub-classing the ADT and using (a) arrays and (b) linked lists.
Use the debugger to check the status of the model and to debug any problems.

45/47

class interface STACK_ADT [G -> attached ANY] create
 make_empty

feature -- model
 model: SEQ [G]
 -- abstraction function
 -- using SEQ queries

feature -- queries
 count: INTEGER
 -- number of items in stack
 ensure
 model_contract: Result = model.count

 item: G
 -- top element
 require
 classical_contract: not empty
 model_contract: not model.is_empty
 ensure
 model_contract: Result ~ model.last

 empty: BOOLEAN
 -- is the queue empty?
 ensure
 model_contract: Result = model.is_empty

feature -- commands
 put (x: G)
 -- push 'x' on top of stack ("push")
 ensure
 classical_contract1: count = old count + 1
 classical_contract2: item ~ x
 model_contract: model ~ (old model.deep_twin) |-> x

 remove
 -- pop top of stack, i.e. item
 require
 classical_contract: not empty
 model_contract: not model.is_empty
 ensure
 model_contract: model ~ (old model.deep_twin).front

end

Figure 7 Contract View for a generic stack using Mathmodels SEQ[G]

46/47

class STACK_ADT [G -> attached ANY] create
 make_empty

feature {NONE} -- Constructor
 make_empty
 do
 create model_imp.make_empty
 end

 model_imp: like model
 -- implementation using SEQ commands

feature -- model
 model: SEQ [G]
 -- abstraction function, using SEQ queries
 do
 Result := model_imp
 end

feature -- queries
 count: INTEGER
 -- number of items in stack;
 do
 Result := model_imp.count
 ensure
 model_contract: Result = model.count
 end

 item: G
 -- top element
 require
 classical_contract: not empty
 model_contract: not model.is_empty
 do
 Result := model_imp.last
 ensure
 model_contract: Result ~ model.last
 end

 empty: BOOLEAN
 -- is the queue empty?
 do
 Result := model_imp.is_empty
 ensure
 model_contract: Result = model.is_empty
 end

feature -- commands

 put (x: G)
 -- push 'x' on top of stack ("push")
 do
 model_imp.append (x)
 ensure
 classical_contract1: count = old count + 1
 classical_contract2: item ~ x
 model_contract: model ~ (old model.deep_twin) |-> x
 end

 remove
 -- pop top of stack, i.e. item
 require
 classical_contract: not empty
 model_contract: not model.is_empty
 do
 model_imp.remove (count)
 ensure
 model_contract: model ~ (old model.deep_twin).front
 end

end

Figure 8 Implementation of STACK_ADT[G] with commands from Mathmodels SEQ[G]

47/47

Debugger breakpoint is set in test t1

Figure 9 Debugger view of a test of class STACK_ADT

