
Improving the software logging practices in DevOps

Boyuan Chen

York University, Toronto, Canada

chenfsd@eecs.yorku.ca

Abstract—DevOps refers to a set of practices dedicated to
accelerating modern software engineering process. It breaks the
barriers between software development and IT operations and
aims to produce and maintain high quality software systems.
Software logging is widely used in DevOps. However, there are
few guidelines and tool support for composing high quality
logging code and current application context of log analysis
is very limited with respect to feedback for developers and
correlations among other telemetry data. This thesis proposes
automated approaches to improving software logging practices
in DevOps by leveraging various types of software repositories
(e.g., historical, communication, bug, and runtime repositories).
We aim to support the software development side by providing
guidelines and tools on developing and maintaining high quality
logging code. We aim to support the IT operation side by enrich-
ing the log analysis context through systematic estimating code
coverage via executing logs and in-depth problem diagnosis by
correlating logs with other telemetry data (e.g., traces and APM
data). Case studies show that our approaches can provide useful
software logging suggestions to both developers and operators in
open source and commercial systems.

I. INTRODUCTION

DevOps is a software development methodology that intends

to automate the process between software development and IT

operations. The goal is to reduce the time between committing

a change to a system and placing it to production, while

ensuring high quality [1]. Compared to traditional software de-

velopment process, DevOps provides faster feedback between

software development and IT operations so that new features

and bug fixes can be released faster to the customers. To ensure

the quality and the health of the deployed systems, software

logging plays a central role.

Software logging in the context of DevOps refers to the

practices of developing and maintaining logging code and

analyzing the resulting execution logs. Logging code refers

to the code snippets that developers inserted into source code

(e.g., LOG.info("User " + userName + " logged
in")) to monitor the behavior of systems during runtime.

There are typically four types of components in a snippet

of logging code: a logging object, a verbosity level, static

texts, and dynamic contents. In the above example, the logging

object is Logger, the verbosity level is info, the static

texts are User and logged in, and the dynamic content is

userName. Execution logs (a.k.a., logs), which are generated

by logging code during runtime, are readily available in large-

scale software systems for many purposes like system monitor-

ing [2], problem debugging [3], workload characterization [4],

and business decision making [5]. Stale or incorrect logging

code may cause confusion [6] or even more serious issues like

system crash [7]. In particular, there are four major challenges

associated with the software logging practices in DevOps:

• C1: No existing guidelines on producing high quality
logging code. Recent empirical studies show that there

are no existing logging guidelines for commercial [8] and

open source systems [9], [10]. Developers write logging

code solely based on domain expertise and revise them in

an ad-hoc fashion [9], [10]. Unlike feature code, which

can be examined through testing, it is very challenging

to verify the correctness of logging code.

• C2: Difficulty in maintaining and evolving logging
code. As logging code tangles with source code, it is very

challenging to maintain and update logging code along

with feature code for constantly evolving systems. Al-

though there are language extensions (e.g., AspectJ [11])

to support better management of logging code, many

industrial and open source systems still choose to inter-

mix logging code with feature code [9], [10].

• C3: Limited mechanism for quality feedback. In the

context of DevOps, the software testing process is com-

pletely changed compared to traditional software devel-

opment process, as many testing activities are automated

and occur in the field [12]. There is limited mechanism

for quality feedback from the IT operation to the software

development. This problem becomes even more serious,

as in DevOps code base evolves more rapidly with usage

scenarios being constantly added or modified.

• C4: Heterogeneous and complex telemetry data. Be-

sides execution logs, large scale distributed systems also

adopt other mechanisms to monitor the health of systems.

Some examples are distributed tracing [13] and Applica-

tion Performance Monitoring (APM) tools [14]. Existing

problem diagnosis techniques only focus on one type

of telemetry data (e.g., logs [15] or traces [16]). Very

few works try to enrich the analysis by correlating the

information among different types of telemetry data.

Motivated by the importance and challenges, throughout the

thesis, we propose systematic approaches to improving the

software logging practices to aid software development and IT

operations by leveraging various types of software repositories.

Our overall process is shown in Figure 1. For each challenge,

we list a corresponding anticipated research outcome. We will

further describe them in more details in Section IV.

The rest of this paper is organized as follows. Section II

describes the current research on software logging. Section III

presents our research hypothesis and Section IV explains our

Historical
Repositories

Bug
Repositories

Communication
Repositories

Runtime
Repositories

C1: No existing guidelines on
producing high quality logging code

C2: Difficulty in maintaining and
evolving logging code

C3: Limited mechanism for quality
feedback

C4: Heterogeneous and complex
telemetry data

Challenges Software Repositories

Software
Development

IT Operations

O1: Extracting and studying the Logging-
Code-Issue-Introducing changes

Outcomes

O2: Evaluating the use of different
logging approaches

O3: Estimating code coverage measures
via execution logs

O4: Correlating telemetry data to aid
problem diagnosis

Fig. 1: Overall process

approaches. Section V lists the expected thesis contributions

and Section VI concludes this paper.

II. CURRENT RESEARCH ON SOFTWARE LOGGING

In this section, we describe the current research on software

logging. We separate them in two aspects: logging in the

context of software development and IT operations.

A. Logging for Software Development

The current research works on developing high quality

logging code can be categorized into three types: what-to-log,

where-to-log, and how-to-log.

The problem of what-to-log is about providing sufficient

information in logging code. Yuan et al. [17] proposed an

approach based on program analysis to adding variables to

existing logging code for assisting error diagnosis. He et al.

[18] systematically characterized natural language descriptions

used in logging code and shed lights on automated logging

description generation.

The problem of where-to-log is about deciding the appropri-

ate logging points. Yuan et al. [15] proposed an approach based

on program analysis to inferring additional logging points.

Zhao et al. [19] introduced Log20, which can automate logging

code placement under certain overhead threshold. Fu et al. [8],

[20] proposed an approach based on data mining to identifying

the important factors impacting locations of logging points.

Cinque et al. [21] proposed a logging method based on a set

of rules, which can be used to detect software failures by logs.

The problem of how-to-log is about developing and main-

taining high quality logging code. There are few works in this

area except [22], [23], which focus on a few manually analyzed

samples. In this thesis, we aim to provide benchmarks for

detecting issues in logging code and better tool support for

managing logging code during software evolution process.

B. Logging for IT Operations

Logging is used pervasively in IT operations including

monitoring [2], debugging [3], workload characterization [4],

and business decision making [5]. Xu et al. [2] proposed

an anomaly detection technique to flag problematic behavior

by mining the generated logs. Oliner et al. [3] demonstrated

that logs can be used to debug system performance. Hassan

et al. [4] leveraged data compression to characterize workload

from execution logs. Barik et al. [5] highlighted the impor-

tance of logging in data-driven decision making at Microsoft.

In the context of DevOps, IT operators are tasked with new

responsibilities. In particular, the software testing process is

completely changed in DevOps with many testing activities

occurring in the field [12]. Unfortunately, there are very few

works about providing systematic quality feedback to the

software development side. Furthermore, many of the existing

log analysis works only focus on the execution logs alone.

But logs are just one type of the telemetry data existed in

the field. Other types of telemetry data like traces or APM

data can provide additional insight for the system behavior

during runtime. However, little research is done to enrich the

log analysis by correlating their information together.

III. RESEARCH HYPOTHESIS

Software repositories (e.g., code repositories, communica-

tion repositories, runtime repositories, and bug repositories)

which are readily available and contain rich information

about software development and system behavior during

runtime, can be leveraged to systematically improve the

software logging practices in the context of DevOps.

We mainly rely on four types of repositories to tackle

challenges in software logging practices. The historical repos-
itories refer to the source code version control systems like

GitHub and SVN. The communication repositories refer to the

online communication data from StackOverflow and developer

mailing list. The runtime repositories refer to the telemetry

data generated in various scenarios. The bug repositories refer

to the issue tracking systems such as JIRA and BugZilla.

In the thesis, we attempt to improve logging from two di-

mensions: software development and IT operation. For the

aforementioned four challenges (C1 - C4), we will propose

corresponding research outcomes (O1 - O4), which address

these challenges. O1 and O2 address the first two challenges

which are on the development side. O3 and O4 address the

last two challenges which are on the IT operation side.

• (O1): We will mine the historical and bug repositories

to extract a benchmark dataset which contains real-wold

issues in logging code so that interested researchers

could develop and evaluate their techniques of automated

detection of logging code issues.

• (O2): We will mine the communication and bug repos-

itories to compare various types of logging approaches

(e.g., ad-hoc, centralized, and aspect-oriented logging).

• (O3): We will propose automated techniques to estimate

code coverage measures(e.g., statement coverage, branch

coverage) by correlating source code with the logs stored

in the runtime repositories.

• (O4): We will combine various types of telemetry data

(e.g., logs and tracing data) stored in the runtime repos-

itories to perform in-depth problem diagnosis.

IV. OUR APPROACH

In this section, we describe our approaches to tackling the

aforementioned four challenges.

O1: Extracting and Studying the Logging-Code-Issue-
Introducing Changes

Incorrect or outdated logging code may cause confusion [6]

or even more serious problems like crashes [7]. Our previous

work [22] is the first work tackling the problem of how-to-log
by deriving anti-patterns (a.k.a., common mistakes) in logging

code. However, it only focuses on a few hundred manually

examined code snippets.

We will develop a general approach to extracting the is-

sues in logging code from different projects. First, we will

systematically analyze the commit logs from the historical

repositories and the descriptions of the bug reports to derive

a list of code commits, which are related to the fixes to

various issues in the logging code. The four components in

logging code (the logging object, the verbosity level, the static

texts, and the dynamic contents) can be changed separately in

different revisions. The traditional approach of automatically

locating bug introducing changes from their fixes (a.k.a., the

SZZ algorithm [24]) would not work, as it treats each line of

change as one single entity. To cope with this problem, we will

develop an adapted version of the SZZ algorithm, called LCC-

SZZ (Logging Code Change-based SZZ), to automatically

locate the Logging-Code-Issue-Introducing changes from their

fixes. Once we have derived such a benchmark dataset, we will

also perform an exploratory study to evaluate the effectiveness

of various existing logging code issue detection tools.

Expected timeline: This work has just been accepted by the

journal of Empirical Software Engineering in January 2019.

O2: Evaluating the Use of Different Logging Approaches

Although there are three general approaches to composing

and managing logging code: manual ad-hoc logging, central-

ized logging, and aspect-oriented logging, existing studies [9],

[10] show that most of the systems, including many well-

maintained projects, still chose the manual ad-hoc approaches

to develop, maintain, and evolve their logging code. It is not

clear why developers decide against systematic (i.e., central-

ized logging) or automated (i.e., AOP) logging approaches.

This research will be carried out in two aspects. First, we

will survey the developer mailing lists, bug reports, commit

logs, and online posts (e.g., Stackoverflow) in terms of pros

and cons of various logging approaches. Then, we will study

the logging practices by analyzing the logging code data

from well-maintained projects in the historical repositories

(e.g., Apache Software Foundation and GitHub). We intend to

characterize and transform the existing logging code written in

the ad-hoc logging approach to the centralized or automated

logging approaches. This transformation experiment will be

conducted in two contexts: (1) for all the logging code in

a release snapshot, and (2) for logging code snippets across

time during software maintenance. During this process, we

will record the efforts that we spend as well as the difficulties

and issues that we encounter. We anticipate this work will be

useful to programming language designers or developers who

are responsible for maintaining and evolving logging code.

Expected timeline: This work is currently at the exploratory

stage. We plan to finish this work in 2020.

O3: Estimating Code Coverage Measures via Execution Logs

It is very challenging to ensure the validity and representa-

tiveness of test cases in DevOps, as traditional code coverage

tools suffer from three major issues: engineering challenges,

performance overhead, and incomplete results.

We will propose an automated technique of estimating code

coverage measures via execution logs. We will first analyze the

system’s source code and derive a list of possible code paths

and their corresponding log sequences, which will be matched

with the execution logs. Based on the matched results, we label

the code regions as Must (definitely covered), May (maybe

covered, maybe not), and Must-not (definitely not covered)

and use these labels to infer three types of code coverage

criteria: method coverage, statement coverage, and branch

coverage. We will evaluate our techniques on commercial and

open source software projects from two dimensions: accuracy

(a.k.a., comparing against existing code coverage tools) and

usefulness (e.g., comparing the code coverage results between

the field and the existing test cases).

Expected timeline: This work has been published in ASE

2018 [25]. Case studies on one open source system (HBase)

and five commercial systems from Baidu show that: (1) the

results of our research prototype, LogCoCo (Log-based Code

Coverage), is highly accurate under various testing activities

(unit testing, integration testing, and benchmarking), and (2)

the results of LogCoCo can be used to evaluate and improve

the existing test suites. Our collaborators at Baidu are currently

considering adopting LogCoCo on a daily basis.

O4: Correlating Telemetry Data to Aid Problem Diagnosis

Existing problem diagnosis techniques only focus on one

type of the telemetry data (e.g., logs [15] or traces [16]).

Very few works try to enrich the analysis by correlating the

information among different types of telemetry data.

We will conduct an empirical study on the use of the various

monitoring data in the open source and commercial systems.

We will scan through the source code to identify their use

cases. Then, we will examine the existing bug reports and

characterize the types of reported real-world problems, the

required monitoring artifacts (e.g., only analyzing the logs,

or correlating logs and APM data) in order to perform the

diagnosis, and their analysis approaches. We seek to pro-

vide automated tool support to correlate and analyze various

telemetry data when recurrent or similar problems surface.

Expected timeline: This work is currently at the exploratory

stage. We plan to finish this work by May 2021.

V. EXPECTED THESIS CONTRIBUTIONS

The following are our expected thesis contributions:

1) Guidelines and tool support for developing and
maintaining high quality logging code: we will pro-

vide a benchmark dataset to aid software engineering

researchers to derive the best logging practices and

develop automated techniques to flag issues in logging

code. We will also identify the gaps between the various

needs in software logging and the missing functionalities

in the existing log management tools.

2) Expanding and enriching log analysis techniques for
wider application context: compared to traditional code

coverage tools, which are impractical to be used in the

DevOps context due to the issues of deployment diffi-

culty, performance overhead and result incompleteness;

our approach to estimating code coverage measures via

execution logs [25] expands the application context of

log analysis. As many field problems are still diag-

nosed manually and dealt in a case-by-case manner, our

proposed technique to automatically correlate various

telemetry data can significantly enrich the log analysis

context and reduce the manual analysis effort.

VI. CONCLUSIONS

Although software logging plays a key role in DevOps,

there are various challenges associated with it. This thesis

aims to overcome the challenges and improve existing software

logging practices through systematic analysis of software

repositories. We will derive guidelines for developing high

quality logging code and empirically evaluate various ap-

proaches associated with logging code management. We will

analyze logs to provide quality feedback to the developers and

perform deeper problem analysis by combining logs with other

telemetry data. The resulting findings and techniques will be

beneficial for both software developers and IT operators.

REFERENCES

[1] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, 1st ed. Addison-Wesley Professional, 2015.

[2] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP), 2009.

[3] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, Feb 2012.

[4] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz,
“An industrial case study of customizing operational profiles using log
compression,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE), 2008.

[5] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The Bones of the
System: A Case Study of Logging and Telemetry at Microsoft,” in Com-
panion Proceedings of the 38th International Conference on Software
Engineering, 2016.

[6] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding
Log Lines Using Development Knowledge,” in Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2014.

[7] “HBASE-750: NPE caused by StoreFileScanner.updateReaders,” https://
issues.apache.org/jira/browse/HBASE-750/, Last accessed: 11/18/2018.

[8] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where Do Developers Log? An Empirical Study on Logging Practices
in Industry,” in Companion Proceedings of the 36th International
Conference on Software Engineering, 2014.

[9] B. Chen and Z. M. Jiang, “Characterizing logging practices in Java-
based open source software projects – a replication study in Apache
Software Foundation,” Empirical Software Engineering, 2017.

[10] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012.

[11] “AspectJ,” https://eclipse.org/aspectj/, Last accessed: 11/18/2018.
[12] B. Adams and S. McIntosh, “Modern Release Engineering in a Nutshell

– Why Researchers Should Care,” in IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reengineering, 2016.

[13] “Opentracing,” https://opentracing.io, Last accessed 2018/10/24.
[14] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang,

“Studying the Effectiveness of Application Performance Management
(APM) Tools for Detecting Performance Regressions for Web Applica-
tions: An Experience Report,” in Proceedings of the 13th International
Conference on Mining Software Repositories (MSR), 2016.

[15] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou,
and S. Savage, “Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging,” in Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2012.

[16] S. Grant, H. Cech, and I. Beschastnikh, “Inferring and Asserting
Distributed System Invariants,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), 2018.

[17] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[18] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018.

[19] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully Automated Optimal Placement of Log Printing State-
ments Under Specified Overhead Threshold,” in Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP), 2017.

[20] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering,
2015.

[21] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, 2013.

[22] B. Chen and Z. M. Jiang, “Characterizing and detecting anti-patterns in
the logging code,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE), May 2017, pp. 71–81.

[23] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Studying and
detecting log-related issues,” Empirical Software Engineering, 2018.

[24] J. Śliwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce
Fixes?” in Proceedings of the 2005 International Workshop on Mining
Software Repositories (MSR), 2005.

[25] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 305–316.

