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Abstract. We describe a new approach to predicting the maximum target regis-
tration error for fiducial registration. The approach is based on the analysis of a
spatial stiffness model that produces an analytic expression of the maximum error
that is closely related to the formula reported in Fitzpatrick et al.[1]. The method-
ology we used was developed by Lin et al. [4]. The analytic stiffness results yield
error estimates that closely match those from numerical simulations.

1 Introduction

Fiducial markers, used to accurately localize an object in space, have many applications
in the health sciences such as registration for computer-integrated surgery and radiother-
apy, roentgen stereo photogrammetric analysis, and motion tracking in biomechanical
studies. Understanding how measurement errors of the fiducials affect the accuracy of the
localization is important for the clinical application of fiduciary techniques. An analytic
expression of the expected target registration error (TRE) was derived by Fitzpatrick et
al. [1] in which many important relationships were shown. Their derivation of the ana-
lytic expression is not trivial and does not easily lend itself to the case of surface-based
registration.

We have approached the problem of estimating registration accuracy using the theory
of mechanism stiffness. The fiducial markers are viewed as the points where an elastic
suspension system is attached to a rigid mechanism. By analyzing the stiffness matrix of
the mechanism using the techniques developed by Lin et al. [4], we are able to derive an
analytic expression of the maximum TRE that is very similar to the expression derived by
Fitzpatrick et al. [1]. We compare the predictions of this stiffness analysis to numerical
simulations described by Maurer et al. [6].

2 Background: Stiffness of a Passive Mechanical System

A general model of the elastic behaviour of a passive (unactuated at the instant of
analysis) mechanism is a rigid body suspended by linear and torsional springs. This
model leads to the concept of spatial stiffness or compliance of the mechanism. The
background material we give here, from the robotics literature, is based on Lin et al. [4]
and is closely related to the compliant axes described by Patterson and Lipkin [10].

For a passive mechanism in local equilibrium, a twist displacement t of a rigid body
is related to a counteracting wrench force w by a 6 × 6 spatial stiffness matrix K:

w = Kt =
[ A B
BT D

]
t (1)
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Fig. 1. The displacement of a point under a screw motion. The point rotates by an amount α about
the axis with direction ω, then translates parallel to the axis by an amount αh. The net distance
of displacement is l.

where A,B, and D are 3×3 matrices. The twist is a vector t = [υT ωT ]T where υT =
[vx vy vz] is linear displacement and ωT = [ωx ωy ωz] is rotational displacement. The
wrench is a vector w = [fT τT ]T where fT = [fx fy fz] is force and τT = [τx τy τz] is
torque. If K is invertible then an applied wrench produces a twist displacement t = Cw
where C = K−1 represents the compliance matrix. Equation 1 is simply a general
expression of Hooke’s law. We can obtain K by evaluating the Hessian of the potential
energy U of the system at equilibrium1 (Mishra and Silver [8]).

K is symmetric positive definite for stable springs and small displacements from
equilibrium. The eigenvalues of K are not immediately useful because their magnitudes
change depending on the coordinate frame used to define K; however, there exists a
subspace V of twists given by

V = {t = Pω} where P =
[

−A−1B
I

]
(2)

in which the twist, parameterized by rotational displacement, induces a pure torque. The
torque can be computed as KV ω where

KV = D − BT A−1B. (3)

The eigenvalues µ1, µ2, µ3 of KV are frame-invariant and are called the principal ro-
tational stiffnesses. There is also a subspace W of wrenches parameterized by force
where the wrench induces a pure translation. The translation is given by CW f where
CW = A−1. The eigenvalues σ1, σ2, σ3 of C−1

W are frame-invariant and are called the
principal translational stiffnesses.

To compute TRE we need to be able to compute the distance that a point moves under
a twist displacement. We do this by using the screw representation of the twist. A screw
is rotation about an axis followed by a translation parallel to the axis. It is described by its
pitch, h, which is the ratio of translational motion to rotational motion, and its magnitude,
M , which is the net rotation. For a twist (Murray et al. [9]) h = ω ·υ/‖ω‖2, M = ‖ω‖,
and the axis of the screw is parallel to ω passing through the point q = ω × υ/‖ω‖2;
by convention, a pure translation (whereω = 0) has h = ∞ and M = ‖υ‖, with the
screw axis parallel to υ passing through the origin. A unit twist has magnitude M = 1,
in which case, for ω �= 0, h = ω · υ and q = ω × υ. For a small screw motion with

1 This is especially easy to see in the case of a simple linear spring: U(x) = k(x − x0)2/2,
dU/dx = k(x − x0), d2U/dx2 = k.



A Spatial-Stiffness Analysis of Fiducial Registration Accuracy 361

Fig. 2. Spatial stiffness model for N = 4 fiducials. The fiducials in their original positions (black)
are displaced to new positions (white) by a small rotation and translation. The sum of the squared
distances is proportional to the energy stored in the linear springs connecting the displaced fiducials
to their original locations.

M = α and ω �= 0, a point located at a distance ρ from the screw axis will be displaced
by length (see Figure 1)

l =
√

ρ2 + ρ2 − 2ρ2 cos α + (αh)2 (law of cosines)

≈
√

2ρ2 − 2ρ2(1 − α2/2) + α2(ω · υ)2 (Maclaurin series approximation)

= |α|
√

ρ2 + (ω · υ)2 (4)

Equation 4 is also the basis of the frame-invariant quality measure for compliant
grasps described by Lin et al. [4]. Because the principal rotational and translational
stiffnesses have different units, they cannot be directly compared to one another. One
solution is to scale the principal rotational stiffnesses by an appropriate factor (see Lin
et al. [4] for details) to yield the so-called equivalent stiffnesses, µeq,i:

µeq,i = µi/(ρ2
i + (ωi · υi)2) i = 1, 2, 3 (5)

where, µi is an eigenvalue of KV with an associated eigenvector ωi, υi = Pωi, and ρi

is the distance between the point of interest and the screw axis of the twist [υT
i ωT

i ]T .
The equivalent stiffnesses can be compared to the principal translational stiffnesses
which leads to the stiffness quality measure Q = min(µeq,1, µeq,2, µeq,3, σ1, σ2, σ3). Q
characterizes the least constrained displacement of the mechanism. Therefore, maxi-
mizing the smallest rotational and translational stiffnesses will minimize the worst-case
displacement of the mechanism.

3 Spatial Stiffness and Fiducial Registration

The spatial stiffness model for fiducial registration is shown in Figure 2. The model
parameters are N fiducial markers with locations {pi} for i = 1, . . . N . To simplify
the analysis, we assume that the centroid of the fiducials coincides with the origin.
Suppose each marker is displaced by a small rotation R = Rz(ωz)Ry(ωy)Rx(ωx) and
small translation δ = [tx ty tz]T . The locations qi of the displaced markers are given
by qi = Rpi + δ. Assuming a spring constant of one, the potential energy Ui stored
in each linear spring is Ui = 1

2 (qi − pi)T (qi − pi). Using symbolic computation
software, it can be shown that the Hessian Hi of Ui evaluated at equilibrium is:
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Hi = H(Ui; υ = ω = 0) =
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(6)

where pi = [xi yi zi ]T . The spatial stiffness matrix for fiducial registration is:

K =
N∑

i=1

Hi =






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i=1
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
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

 =

[
A B
BT D

]
(7)

where Π =
∑N

i=1 pi and the matrix [Π×] is the cross-product matrix, such that
[Π×]u = Π × u. Equation 7 is a general expression of the stiffness matrix for our
fiducial registration model where the fiducials are located in arbitrary positions.

When the centroid of the fiducials and the origin coincide, Π = 0 and B = BT =
[0]. In this case, the principal rotational stiffnesses are the eigenvalues of KV = D. We
recognize D as the inertia tensor for a system of N point particles of unit mass (Meriam
and Kraige [7]); thus, the eigenvalues are the principal moments of inertia and the
eigenvectors are the principal axes. The fact that B = BT = [0] is a very special case
as it indicates that the rotational and translational aspects of stiffness are completely
decoupled. In general, this decoupling is not possible (Lončarić [5]).

The principal translational stiffnesses are the eigenvalues of A which are σ1 = σ2 =
σ3 = N . The model predicts that fiducial registration is equally stiff with respect to
translation in all directions, and that translational stiffnesses are independent of fiducial
configuration.

3.1 An Error Analysis of Fiducial Configurations

We performed simulations similar to that described by Maurer et al. [6]. Four families
of fiducial configurations parameterized by arc length d were arranged on a sphere of
radius 100 mm as shown in Figure 3. Target points were defined on all 3-D grid loca-
tions inside the sphere where the grid spacing was 5 mm in each direction. We used an
isotropic effective fiducial localization error of magnitude FLEeff = 0.35 mm, and a
target localization error Maurer et al. ([6]) of zero. The localized fiducials were simulated
by adding the FLEeff to the target points. We then found the rigid transformation that
registered the simulated fiducials to the targets using Horn’s method [2] and computed
the TRE for each target. This process of simulating localized fiducials, obtaining regis-
trations, and computing the TRE was repeated 1000 times for each value of arc length
d = 5, 10, 15, . . . , 150 mm.

We also computed the worst-case, or maximum, displacements predicted by stiffness
analysis. Using Equation 7, we obtained the stiffness matrix of the fiducial configura-
tion, and we computed the eigenvalues of Equation 3 to yield the principal rotational
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Fig. 3. Fiducial configurations on a sphere of radius 100 mm centered at the origin. In cases
A, B, and C, the fiducials are located in the xy-plane. In case D, the fiducials are located in a
plane parallel to the xy-plane. d is the arc length on the great circle. In this view, +’ve x is to the
right and +’ve y is to the top of the page.

stiffnesses. For each target we computed the equivalent stiffnesses using Equation 5.
With µeq,j as the smallest equivalent stiffness, we used µj , ωj and Equation 4 to com-
pute the maximum displacement due to rotational compliance. In Equation 4, the screw
magnitude α was determined by considering the work done by the displacement. For a
rotational displacement, the work done to displace a torsional spring of stiffness µj by
a small amount α is c = (1/2)µjα

2 which for constant c implies that α =
√

2c/µj .
Using Equations 2 and 7, it is easy to show that the term ωj · υj = 0 and that the max-
imum displacement due to rotational compliance given by Equation 4 is ρj

√
2c/µj .

By considering the work done, it can be shown that the maximum displacement due
to translational compliance is

√
2c/σ =

√
2c/N . We took the total squared displace-

ment to be 2cρ2
j/µj + 2c/N . For the purposes of this article we found that choosing

c ≈ 4 FLEeff
2 produced excellent agreement with the numerical simulations; we are

currently seeking theoretical justification for this value. The simulation and stiffness
analysis results are shown in Figure 4.

Fig. 4. Target registration error versus arc length between fiducials. On each graph, FLEeff is 0.35
mm for the lower curve and 2 mm for the upper curve. Symbols indicate maximum TRE computed
from simulations. Solid lines are maximum displacements computed from stiffness analysis.
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Fig. 5. Contour plots of normalized maximum displacements from stiffness analysis (left of solid
line) and normalized maximum TRE from simulations (right of solid line). Results shown are for
d = 50 mm and targets in the z = 0, y = 0, and x = 0 planes. Registration errors increase from
dark to light.

Fig. 6. Target registration error versus number of fiducials. Symbols indicate maximum TRE
computed from simulations. The solid line indicates the maximum displacement computed from
stiffness analysis.

3.2 Error Isocontours

In Maurer et al. [6] it was found that the mean TRE errors have elliptic isosurfaces.
Stiffness analysis predicts that the maximum displacement resulting from rotational
compliance is proportional to the distance from the most compliant screw axis; therefore,
the isosurfaces should be cylindrical. Results from simulations and stiffness analysis for
the four fiducial configurations are shown in Figure 5.

3.3 Error and Number of Fiducials

Numerical simulations described by Maurer et al. [6] showed that the mean TRE was
inversely proportional to the square root of the number of fiducials. Fritzpatrick et al.
[1] predicted this relationship by deriving an approximate expression for the TRE.
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We can derive a similar relationship for the maximum displacement. Using Equa-
tions 3 and 7, and the fact that the trace of a matrix is equal to the sum of its eigenval-
ues (Horn and Johnson [3]), we find that

µ1 + µ2 + µ3 = trace(KV ) = trace(D) = 2(
∑N

i=1 x2
i +

∑N
i=1 y2

i +
∑N

i=1 z2
i ) = 2NR

where R is the average of the squared distance of the fiducials from the origin. Letting
µ1 be the smallest rotational stiffness, it is easy to show that

(maximum displacement)2 =
2cρ2 + 2c(2R − µ2 − µ3)

2NR − µ2 − µ3

so we find that the maximum displacement is inversely proportional to
√

N .
We also computed maximum displacements using stiffness analysis and compared

the results to the simulation described by Maurer et al. [6]. The simulation used from
3 to 30 fiducials evenly placed around the equator of a sphere of radius 100 mm with
FLEeff = 0.35 mm. The results shown in Figure 6 show excellent agreement between
the analytic predictions and the maximum TRE from the simulation.

4 Discussion

The use of stiffness analysis as a tool for evaluating registration stability was alluded
to by Simon [12]. Instead of a frame-invariant analysis, he uses a principal-components
analysis of a symmetric, positive semi-definite matrix to assess surface-based registration
stability. Empirically, he found that registration accuracy improved when the noise-
amplification index was minimized.

Our work is most closely related to the work described by Maurer et al. [6]. Many of
the relationships for the maximum TRE – such as the independence of the rotational and
translational error contributions, the independence of the translation error contribution on
the fiducial configuration, the proportional dependence on N−1/2, and the proportional
dependence on the distance to the principal axes – are similar to those for the expected
TRE. These results have been derived in a completely independent manner from Maurer
et al. [6] and provide a sound theoretical basis for the analysis of registration accuracy.

One advantage of the spatial-stiffness framework is that we believe that the tech-
niques can be extended to the case of rigid surface-based registration. This will require a
more sophisticated spatial-stiffness model, perhaps incorporating surface-curvature ef-
fects.We anticipate that an analytic expression for the stiffness matrix will yield heuristics
for optimizing registration point selection which will be much more efficient than genetic
algorithms, such as those described by Simon [12]. The analytic expression may also
help to justify other sampling heuristics, such as the uniform normal sampling heuristic
described by Levoy [11]. Because the stiffness analysis is computationally inexpensive,
there is the possibility that it can used online to interactively guide the user to better
point selection during intraoperative registration of an image to a patient.
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5 Conclusion

We have described a method to predict the maximum target registration error for fiducial
registration that closely matches the results from numerical simulations. This stiffness
analysis approach is computationally efficient and we expect that it will generalize to
surface-based registration.
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