Information Processing Letters 20 (1985) 13-17
North-Holland

2 January 1985

SELECTION IN X + Y AND MATRICES WITH SORTED ROWS AND COLUMNS *

A. MIRZAIAN and E. ARJOMANDI

Department of Computer Science, York University, Downsview, Ontario M3J 1P3, Canada

Communicated by L. Boasson
Received February 1984
Revised June 1984

Let A be an nXn matrix of reals with sorted rows and columns and k an integer, 1<k < n%. We present an O(n) time
algorithm for selecting the k¢ smallest element of A. If X and Y are sorted n-vectors of reals, then the Cartesian sum X +Y is
such a matrix as A. One application of selection in X +Y can be found in statistics. The algorithm presented here is based on a
new divide-and-conquer technique, which can be applied to similar order related problems as well. Due to the fact that the
algorithm has a relatively small constant time factor, this result is of practical as well as theoretical interest.

Keywords: Matrix, sorting, divide-and-conquer

1. Introduction

In this paper we consider the selection problem
in matrices with sorted rows and columns. Selec-
tion in X +Y, where X and Y are sorted vectors,
is a special case of this problem.

Let X = (x{, X5,...,X,) and Y =(y;, ¥5,...,¥,)
be two vectors of real numbers. The Cartesian sum
X +Y is the n X n matrix with ij¢h entry x; +y;. If
X and Y are sorted, then X + Y is a matrix with
sorted rows and columns. Selection and other re-
lated problems in X +Y have received consider-
able attention, due to their application in statistics
and operations research [2,3,4,5,6,7,8,10]. X+Y
order related problems arise in some VLSI layout
problems as well [9].

Jefferson, Shamos and Tarjan [10] present an
O(n log n) time algorithm for selecting the median
of X+Y. Johnson and Mizoguchi [8] give an

* This work was supported by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Grants A5516
and A4304.

O(n log n) algorithm for selecting the kA smallest
element in X + Y. Both algorithms in [10] and [8]
sort the vectors X and Y before the algorithms
may proceed. Despite the time required to sort X
and Y, both these algorithms still require O(nlog n)
time. Frederickson and Johnson [2] consider selec-
tion in matrices with sorted columns. Their algo-
rithm for selecting the k¢4 largest element of X + Y,
1<k<3n’, runs in O(max{n, nlog(k/n)}) time.
They also give an O(n) time algorithm for selection
in matrices with sorted rows and columns [3].

Let A be an n X n matrix of real numbers with
sorted rows and columns and let k be an integer,
1 <k <n’ We present an O(n) time algorithm to
select the k#h smallest element of A. The algorithm
presented in this paper applies an elegant divide-
and-conquer technique. This method may be ap-
plied to similar order related problems. For in-
stance, we have used this technique to obtain a
linear time algorithm for the optimum offset prob-
lem of channel routing in VLSI [9]. Although
Frederickson and Johnson’s algorithm [3] has a
similar time bound, the algorithm presented in this
paper is simpler. Also the technique used in our
algorithm is of practical as well as theoretical
interest.

0020-0190,/85 /$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 13

Volume 20, Number 1
2. Terminology

Let A be an n X n matrix of reals. The elements
of A are not necessarily distinct. We assume rows
and columns of A to be indexed 1, 2,...,n. We call
A ordered if elements in each row are in nonin-
creasing order, and elements in each column are in
nondecreasing order. Let i ={(n +1)]. Subma-
trix A of A is an 71 X Ti matrix and is defined to be
the submatrix of A consisting of the odd indexed
rows and columns, plus the last row and column
of A in case n is even. Let L be a list of reals and a
be a real number. We define rank™* and rank™ of a
in L as follows:

rank*(L,a)=|{x € L|x>a)

; (2.1)
rank~(L,a)=|{x € L|x <a}|. (2.2)

Suppose 1 <k <|L|. Then a is defined to be the
kth smallest element of L if and only if
rank~(L, a)< k — 1 and rank*(L, a) < |L| — k. For
simplicity we use the term kth element of L to
mean kth smallest element of L throughout this

paper.

3. The main observation

The following theorem is the basis for our selec-
tion algorithm.

Theorem 3.1. Let A be an n X n ordered matrix and
A be the submatrix of A as defined earlier. Then,
for any real number a, the following inequalities
hold:

(i) rank™ (A, a) <4 rank (A, a),

(i) rank* (A, a) < 4 rank™ (A, a).

Proof. We only prove (i). Part (ii) may be proved
similarly. Let A; consist of the elements of A that
are less than a. Thus

|AL|=rank™(A, a). (3.1)

Let A be the portion of A that consists of:

(a) A, and _

(b) for each element A;; € A, its neighboring
elements A;;_;, A, -, and A, (if they exist)

14

INFORMATION PROCESSING LETTERS

2 January 1985

from A — A. Since the matrix A is drdered, AL
includes all the elements of A that are less than a.
Thus

|A > rank (A, a). (3.2)
By the construction of A, from A, we conclude
A l<4[A,]. (3.3)

From (3.1), (3.2) and (3.3) we have rank (A, a) <
4 rank™(A,a). O

4. The selection algorithm

Before describing the details of the selection
algorithm we present an O(n) time algorithm to
compute rank™ of a real number a in an nXn
ordered matrix A. rank* may be computed simi-
larly.

The function in Fig. 1 computes rank (A, a) in
O(n) time. Let pick(L, k) be a function which
takes a list L and an integer k, 1 <k <|L|, and
returns the kth element of L in O(|L|) time. For
such an algorithm, see [1]. Functions pick, rank™
and rank™ are used in our selection algorithm.

The idea behind our selection algorithm is to
recursively select two elements a and b, a> b,
from A so that the following hold:

(1) The kth element of A is between a and b.

(2) The number of elements of A which are less
than a and greater than b is O(n).

The main result of this paper is that the func-
tion select(A, k), presented in Fig. 2, computes the
kth element of an n X n ordered matrix A in O(n)
time. The function select calls the recursive func-
tion biselect(n, A, k;, k,) with k, > k,, which re-
turns (x, y), where x is the k,th and y is the k,th
element of the n X n matrix A. Let k, and k, be
defined as follows:

3 n+1+[ik] if n is even, (1)
W [1(k,+2n+1)] ifnisodd; '
Ky =ik, +3)]. (4.2)

k, is chosen to be the smallest integer such that

Volume 20, Number 1

function rank~ (A, a);
begin
j=Lx=0
fori=1 to n do begin
while j<nand Ay>adoj=j+1;
x=x+n-j+1
end;
return x
end;

Fig. 1. A ranking algorithm.

the k,th element of A is at least as large as the k,th
element of A. k, is chosen to be the largest integer
such that the k,th element of A is no larger than
the k,th element of A. In the algorithm, the phrase
ith of A is shorthand for ith element of A. The first
parameter n of the function biselect is the dimen-
sion of the submatrix which appears as the second
parameter of the function (and not necessarily the
dimension of the main matrix). We assume that
either the matrix A is present in the memory
before the computation begins, or the elements of
A can be computed as they are needed. If A is of
the form X +Y, then only the vectors X and Y
need to be present in the memory.

function select(A, k);
begin
(x, y) = biselect(n, A, k, k);
return x
end select;

function biselect(n, A, k;, k,);

begin

1. ifng2

2. then (x,y) = (kjth of A, k,th of A)
else begin

3 (a, b) = biselect(n, K,T(l,i(z);
4, 1a” = rank” (A, a);
5. rb* =rank* (A, b);
6 L={Ajla>A;>b};
7 ifra” <k;—1thenx=a
8. elseif k,+rb* —n’ <0 thenx =b
9, else x = pick(L, k, +rb* —n?);
10. ifra” <k,-ltheny=a
11. elseif k, +rb* —n* <O theny=b
12. else y = pick(L,k, +1b* ~n?)
end;
13, return (x,y)
end biselect,

Fig. 2.

INFORMATION PROCESSING LETTERS

2 January 1985

5. Proof of correctness

In order to prove the correctness and the claimed
running time of the algorithm, we need the follow-
ing lemma.

Lemma 5.1. During the course of the algorithm,
whenever biselect(n, A, k,, k,) is called, the follow-
ing hold:

() n’zk >k,>1,

(i) k, —k,<4n-4.

Proof. We use induction on the number of times
biselect is called. The function biselect is first called
from select with k, = k, =k and n? > k > 1. There-
fore, (i) and (ii) obviously hold in this case. Other-
wise, biselect is called from line 3. of the algorithm
(see Fig. 2). In this case, by the induction hy-
pothesis, we have 0’ >k, >k, >1 and k, -k, <
4n — 4. Furthermore, n > 3. We consider two cases,
depending whether n is even or odd.

Case 1 (n is even): Recall that, in this case, 7,
the dimension of A, is 1(n +2). Using formulas
(4.1) and (42) it is easy to show that k, <@,
k,>1and k, -k, > 0. Therefore, (i) holds. Fur-
thermore, k, — k, < 2n = 47 - 4,

Case 2 (n is odd): This case is proved similarly.

We conclude that i >k, >k, >1 and k, -k,
<46 -4 in both cases. This completes the proof.
O

Theorem 5.2, Let A be an n X 1 ordered matrix and
n >k >k,> 1. Then biselect(n, A, k,, k,) re-
turns the k,th and k yth elements of A.

Proof. Let x* and y* be the k;th and kth elements
of A, respectively. Notice that x* > y*. We show,
by induction on n, that biselect(n, A, k,, k,) re-
turns (x*, y¥).

Basis (n < 2): Obvious.

Induction (n > 2): By (i) of Lemma 5.1 we have
>k >k,>1, Ais an T X7 ordered matrix,
and 1 < n. Therefore, by the induction hypothesis,
at line 3. of the algorithm, a is the k,th and b the
k,th element of A. This implies

rank* (A, a) <1 -k
and

rank™ (A, b) <k, - 1.

15

Volume 20, Number 1

Using Theorem 3.1, we have
rank* (A, a) < 40° - 4k

and

rank~ (A, b) < 4k, - 4.

Now, by substituting the appropriate formulas for
1’, k, and k,, we obtain

rank* (A, a) <n* -k, (5.1)
rank” (A, b) <k, — 1. (5.2)

From (5.1) and (5.2) we conclude a > x* > y* > b.
If x is assigned the value a at line 7., then
rank™ (A, a)=ra~ <k, — 1. This, together with in-
equality (5.1), implies x* = a = x. If x is assigned
the value b at line 8., then rank* (A, b)=rb* < n’
—k,. This, together with inequality (5.2) and the
fact that k, <k, implies x* = b = x. Finally, if the
assignment at line 9. is executed, thenra™ >k, — 1
and rb* > n? — k,. These imply a > x* > b, There-
fore, x* € L, and by definition we have |L|=ra~
+1b* — n’. From this we conclude that [L|> k, +
rb* — n? > 1. Therefore the assignment of line 9. is
meaningful and after its execution we have

rank™ (A, x) =rank (L, x) +(n? - b ")
<(kj+b*—n’=1)+(n?~1b*)
=k -1,
rank™ (A, x) = rank* (L, x) +(n’ —ra")
<(IL=(k +1b* =)
+(n*+1a”)
=n*-k,.

Therefore, x = x*. With a similar argument, we
have y = y*. This completes the proof. O

Theorem 5.3. Function select (A, k) correctly com-
putes the kth element, 1<k<n of an nXn
ordered matrix A.

Proof. The proof immediately follows from Theo-
rem5.2. O

16

INFORMATION PROCESSING LETTERS

2 January 1985
6. Timing analysis

The following theorem and its corollary estab-
lish the claimed running time of the selection
algorithm,

Theorem 6.1. If A is an n X n ordered matrix and
>k>1, then select(A, k) computes the kih ele-
ment of A in O(n) time.

Proof. We first show that |L), at line 6. of the
algorithm, satisfies [L| = O(n). At line 3. we have
a>b. If a=b, then L is empty. Otherwise, from
the definition of L we have

|L|=rank~(A, a) + rank* (A, b) — n’.

Using Theorems 3.1 and 5.2 and Lemma 5.1(ii),
we can show that

IL|< 12n.

From the above we conclude that lines 9. and 12.
of the algorithm take O(n) time. Lines 4., 5. and 6.
also take O(n) time, using an algorithm that resem-
bles that of Fig. 1. Therefore, lines 4. to 13. take
O(n) time. If T(n) is the time complexity of bi-
select, then

T(n)=0(1) forng2,
and
T(n)=T([4(n +1)]) +O(n) forn>2.

Therefore, T(n)=O(n). This implies select takes
O(n) time. O

Corollary 6.2. The kth element of an n X n ordered
matrix A can be found in O(min{n, k, n’-k})
time.

Proof. Theorem 6.1 shows that selection in A can
be done in O(n) time. If k < n, then consider the
k Xk submatrix B of A, consisting of the last k
columns and first k rows of A. The kth element of
A is also the kth element of B which can be found
in O(k) time. A similar argument holds for the
casen’—k<n O

Volume 20, Number 1
7. Conclusion

In this paper we have presented an efficient and
practical algorithm for selection in ordered
matrices. The algorithm is based on a new divide-
and-conquer technique which may be used in other
order related problems as well. For instance, we
have used this technique to obtain a linear time
algorithm for the optimum offset problem of chan-
nel routing in VLSI [9].

References

{1] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E.
Tarjan, Time bounds for selection, J. CSS 7 (4) (1973)
448-461.

[2] G.N. Frederickson and D.B. Johnson, The complexity of
selection and ranking in X + Y and matrices with sorted
columns, J. CSS 24 (1982) 197-208.

INFORMATION PROCESSING LETTERS

2 January

[3] G.N. Frederickson and D.B. Johnson, Generalized s
tion and ranking: Sorted matrices, SIAM J. Compu
(1) (1984) 14-30,

[4] M.L. Fredman, Two applications of probabilistic se
technique: Sorting X +Y and building balanced se
trees, Proc. 7th ACM Symp. on Theory of Compt
(1975) 240-244.

[5] L.H. Harper, T.H. Payne, J.E. Savage and E. St
Sorting X + ¥, Comm. ACM 18 (6) (1975) 347-349.

[6] J.L. Hodges and E.L. Lehmann, Estimates of loce
based on rank tests, Ann. Math, Statist. 34 (1963) 598-

[7] D.B. Johnson and S.D. Kashdan, Lower bounds for s
tion in X + Y and other multisets, J. ACM 25 (5) (1
556-570.

[8] D.B. Johnson and T. Mizoguchi, Selecting the k th eler
inX+Yand X, + X, + --- + X,,, SIAM J. Comput.
(1978) 147-153.

[9] A. Mirzaian, Channel routing in VLSI, Proc. 16th ¢
ACM Symp. on Theory of Computing (1984) 101-10'

[10] M.I. Shamos, Geometry and statistics: Problems at
interface, in: J.F. Traub, ed., Algorithms and Comple:
New Directions and Recent Results (Academic Press,]
York, 1976) 251-280.

