Information Processing Letters 26 (1987/88) 71-75
North-Holland

19 October 1987

A HALVING TECHNIQUE FOR THE LONGEST STUTTERING SUBSEQUENCE PROBLEM

Andranik MIRZATIAN

Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3

Communicated by E.C.R. Hehner
Received 4 September 1986
Revised 6 March 1987

This paper presents an optimal linear-time algorithm to solve the longest stuttering subsequence problem. A suitable variation
of the recently developed halving method is used to achieve this result. This demonstrates yet another application of the
halving method and gives an indication that the method can be considered as an algorithmic paradigm.

Keywords: Halving method, stuttering subsequence

1. Introduction

The halving method was recently developed in
order to design a linear-time algorithm for the
optimum offset problem in VLSI river routing [6,7).
The best previously known algorithms to solve this
problem had an O(n log n) running time [2,11].
This method was also applied to obtain an O(n)
time algorithm for the selection problem on n X n
matrices with sorted rows and columns [8]. (Some
previous solutions to this problem may be found
in [3,5].) This problem has numerous applications
in statistics [4,9].

In this paper, we intend to show yet another
application of the halving method. This gives an
indication that the method has a wide range of
applicability and may be considered an an al-
gorithmic paradigm.

The contents of this paper is organized as fol-
lows. Section 2 describes the halving method in its
generality. Section 3 defines the longest stuttering
subsequence problem. Section 4 describes a linear
time solution of the problem based on the halving

* This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) under
Grant No. A5516.

method. Section 5 makes some concluding re-
marks.

2. The halving method

The halving method may be described as fol-
lows. Suppose we are given a sequence x =
X1X;...X, and we need to compute an integer
function f(x). Let x°, called the odd half of x, be
the subsequence of x comprising odd indices. That
is, X®=x,X3Xs....We may similarly define x°,
called the even half of x, to be the subsequence of
x comprising even indices. We notice that the
length of each of sequences x° and x° is about
half the length of x. We recursively compute f(x°),
and we then use 2f(x°) as an approximation to
f(x). A final adjustment will transform the ap-
proximate solution to the exact solution.

Some variations of the above general descrip-
tion are possible. One such example is the Shell-
sort algorithm [10]. Another example is, instead of
using 2f(x°) as an approximation to f(x), to use
some combination of f(x®) and f(x°). This line of
approach can be seen in the Fast Fourier Trans-
form [1]. One difference is that in the latter case
we need two recursive calls instead of one. For

0020-0190/87,/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 71

Volume 26, Number 2

efficiency reasons this should be avoided if possi-
ble. The halving method can also be generalized
from one-dimensional to multi-dimensional se-
quences, such as matrices (see, e.g., [8]). In Section
4 we shall see another variation of the technique
used.

3. The longest stuttering subsequence problem

Suppose a,,4,,a3,...,a, are given symbols
(not necessarily distinct), for some m>1. We
define a' to denote the sequence alalal...al.
That is, a' is the sequence formed by i repetitions
of a,, followed by i repetitions of a,, followed by i
repetitions of as,..., followed by 1 repetitions of
a,.

We are also given a sequence x = X;X,X3...X,
of length n. The problem is to find the maximum i
such that a' is a subsequence ! of x. (Note that this
maximum i is at most n/m and also a° is the
empty sequence which is obviously a subsequence
of x. Therefore, the problem is well defined. Also,
from now on we shall denote a' by a.) We shall
denote this maximum i by maxi(x, a). So the prob-
lem is, given x and a, to compute maxi(x, a).

3.1. Example. Suppose a =012 and

x = 21101002110112110222102.

Then, maxi(x,a) =4, since from the underlined
positions in x we see that

X4=X¢=X7=%; =0,

X =Xp3=X;5=X=1,

Xig= X=Xy =Xp3=2,

and no subsequence of x is equal to a’.

In the next section we shall develop a linear-time
algorithm, based on a suvitable variation of the
halving method, to solve the problem. We suspect
that the method may be applied to a more general
case of the basic problem stated above. However,
we have avoided being exhaustive on this subject.

' A subsequence of x does not have to be a contiguous portion
of x.

7

INFORMATION PROCESSING LETTERS

19 October 1987

4. The algorithm

In order to solve the longest stuttering subse-
quence problem, we first need to develop a boolean
function scan(x, a,1). This function returns frue if
and only if a' is a subsequence of x. The “scan”
function will then be used within the main al-
gorithm.

4.1. The scan function

This function is quite straightforward as shown
in Algorithm A. It linearly scans through the
sequence x, ‘collecting’ the symbols of a' as they
are detected. The notation |x| denotes the length
of the sequence x. As can be seen, this function
takes O(n) time to compute.

Algorithm A
function scan(x, a, 1);
var t;j; count;
begin
if 1 =0 then return rrue;
t:=1;count:= 0,
forj:=1to |x| do
if x; = a, then begin
count == count + 1;
if count =i then begin
if t = m then return true;
t=t+1;count:=0
end
end;
return false
end.

4.1. Theorem. The function scan(x, a,i) returns true
if and only if a' is a subsequence of x, and it does
so in O(n) time.

The proof of Theorem 4.1 is obvious.
4.2. The main algorithm: First attempts

The problem is to compute the integer function
maxi(x, a). That is, to compute the maximum in-
teger 1 such that scan(x, a,i) is true. In what fol-
lows, we shall suggest a number of ways to achieve
this before describing our final solution based on
the halving method.

Volume 26, Number 2

Our first, and most naive, solution is a linear
search on i. By the problem statement, we know
that the maximum i is within the integer range
0.|n/m]. We may try successive values of i in that
range to find the maximum i such that scan(x, a, i)
is true. One such a linear-search algorithm is
shown in Algorithm B. This algorithm takes
O(n*/m) time, since at most n/m values of i are
examined, and for each value of i the “scan”
function is invoked which takes O(n) time.

Algorithm B
function maxi(x, a); {a linear search al-
gorithm}

var i;

begin
i=0;
while scan(x, a,i+ 1) doi:=1i+1,
return i

end.

Our second solution is a binary search on i.
This algorithm, shown as Algorithm C, takes O(n -
log(n/m)) time.

Algorithm C
function maxi(x, a); {a binary search al-
gorithm}
var low ; mid ; high;
begin
low = 0; high := n div m;
while low < high do begin

mid := (low + high + 1) div 2;
if scan(x, a, mid)
then low := mid
else high = mid — 1
end;
return low
end.

Another possible solution would be to linearly
scan through x while maintaining a suitable aux-
illary data structure to keep track of some relevant
information. These kinds of methods have a typi-
cal O(n log n) running time, and more efficient
ones are not easy to find.

INFORMATION PROCESSING LETTERS

19 October 1987
4.3. The main algorithm: Final solution

In what follows, we shall describe a succinct
algorithm to compute maxi(x,a), which is based
on a suitable variation of the halving method and
has O(n + m) running time.

We first define a function half(x) which returns
a subsequence of x whose length is approximately
half of the length of x. The function half(x) is
defined as follows. Consider a symbol o. Let the
positions of x in which o appears be j;, j,, j3,... In
increasing order. Discard the positions j, where k
is even, and consider positions j;, js, js,... only.
The sequence half(x) is obtained by the above
odd-selection process on each symbol that appears
in x.

4.2. Example. Let
x =0120002112022220110001.

The symbols in the above odd-selection process
are underlined. That is,

half(x) = 012012022100.

In this example we see that |x| =22 and
|half(x) | = 12.

The function half(x) can be implemented to run
in O(n) time. For each symbol in x we maintain a
boolean tag, initially false. We make one pass
through x. For each symbol encountered we flip
its tag, and we then collect the symbol if and only
if its tag is true. The subsequence of x consisting
of the collected symbols is half(x). We also notice
that |half(x)| < 7|x|+m. The important prop-
erty, which is stated in the following theorem, is
that maxi(x,a) is closely approximated by
2maxi(half(x), a).

4.3. Theorem

|maxi(x, a) — 2maxi(half(x), a) | < 1.

Proof. Let
I = maxi(x,a) and J=maxi(half(x), a).

We need to show that 2J -1 <1<2J+1. First,
we show that I <2J + 1. Let subsequence a' of x

3

Volume 26, Number 2

have positions j;, j,, j3,...,j; of a symbol ¢ in x.
Then, either occurrences of ¢ at positions jj, js,
Jss... OF at POSItions j,, ju, J¢, .- appear in half(x).
(Note that the second case is a possibility, since
some earlier occurrences of ¢ in x may not show
up in a') In either case, at least 3(1—1) of the
occurrences of o from a' show up in half(x).
Considering all symbols, we see that J > 1(1-1).
In other words, 1 <2J+ 1. Now, we show that
1>2J~1. The proof is similar. a’ is a subse-
quence of half(x). Consider the J occurrences of a
symbol o of a’ in half(x). Let those be in positions
J1sJ2» - -]y in half(x). Suppose k; is the position in
x corresponding to the position j; in half(x). These
positions show up in x as well as some inter-
mediate positions, that is, ki, ki, K, K3,...,kj_,
k_,, ky; that is, 2J — 1 positions in all. By similar
reasoning about all symbols, we conclude that
1> 2J - 1. This completes the proof. O

4.4. Example. Let us assume a = 012 and
x = 022200001011112022201222] .

Then,

half(x) = 0220011102221.

From the fact that maxi(half(x),a)=3, we can
conclude that 5 < maxi(x,a) < 7.

Based on Theorem 4.3, we immediately obtain
the following algorithm to compute maxi(x, a).

Algorithm D
function maxi(x, a);
var i;
begin
if |x|<3m then return the answer by a
simpler method;
1 := maxi(half(x), a);
if scan(x, a, 2i + 1) then return 2i + 1
else if scan(x, a, 2i) then return 2i
else return 2i — 1
end.

{a halving algorithm}

4.5. Theorem. The function maxi based on the
halving method, as shown above, solves the longest
stuttering subsequence problem in O(n + m) time.

74

INFORMATION PROCESSING LETTERS

19 October 1987

Proof. The correctness of Algorithm D im-
mediately follows from Theorem 4.3 and from
induction on the length of x. To analyze the
running time, let T, (n) denote the running time of
maxi(x,a) with |[x|{=n and |a{=m. If n <3m,
then the algorithm clearly takes O(m) time. If
n > 3m, then the algorithm first invokes half(x).
This takes O(n) time. Then, the function maxi is
called recursively with the length of the first
parameter, namely |half(x)|, being at most $n +
m. (Note that in+m<n, so the recursion
terminates.) Therefore, this call takes T, (in + m)
time. The remaining portion of the algorithm which
includes at most two calls of the scan function
takes O(n) time. We conclude that

T, (n) <cm forn < 3m,
and

T

m

(n) <T,(3n+m)+cn forn>3m,

for some positive constant ¢. By a simple induc-
tion on n we can show that

T,(n)<6c(n+m). O

5. Conclusion

In this paper we have shown another applica-
tion of the halving paradigm. More specifically,
we have shown that the longest stuttering subse-
quence problem can be solved in linear time. This
and other applications of the halving method that
have already appeared in the literature show that
the method can be used in a rather wide variety of
situations.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] D. Dolev, K. Karplus, A. Siegel, A. Strong and J.D.
Ullman, Optimal wiring between rectangles, in: Proc. 13th
Ann. ACM Symp. on Theory of Computing (1981)
312-317.

[3] G.N. Frederickson and D.B. Johnson, Generalized selec-
tion and ranking: Sorted matrices, SIAM J. Comput. 13
(1) (1984) 14-30.

Volume 26, Number 2

[4] J.L. Hodges and E.L. Lehmann, Estimates of location
based on rank tests, Ann. Math. Statist. 34 (1963) 598-611.

[5] D.B. Johnson and T. Mizoguchi, Selecting the kth ele-
ment in X+Y and X;+X,+ .-+ + X,,, SIAM J. Com-
put. 7 (2) (1978) 147-153.

[6] A. Mirzaian, Channel routing in VLSI, in: Proc. 16th
Ann. ACM Symp. on Theory of Computing (1984)
101-107.

[7] A. Mirzaian, River routing in VLSI, J. Comput. System
Sci. 34 (1) (1987) 43-54.

[8] A. Mirzaian and E. Arjomandi, Selection in X+Y and
matrices with sorted rows and columns, Inform. Process.
Lett. 20 (1985) 13-17.

INFORMATION PROCESSING LETTERS

19 October 1987

[9] M.L. Shamos, Geometry and statistics: Problems at the
interface, in: J.F. Traub, ed., Algorithms and Complexity:
New Directions and Recent Results (Academic Press,
New York, 1976) 251-280.

[10] D.L. Shell, A high-speed sorting procedure, Comm. ACM
2 (7) (1959) 30-32.

[11] A. Siegel and D. Dolev, The separation for general single-
layer wiring barriers, in: H.T. Kung, B. Sproull and G.
Steele, eds., VLSI Systems and Computations (Computer
Science Press, Potomac, MD, 1981) 143-152,

75

