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A common framework for solving several VLSI river routing problems is developed. The
main result of this paper is an O(n) time algorithm for the optimum offset problem. This
improves upon the best previously known O(n log n) time bound. A new reduction technique
called halving is used to achieve this result. A variety of other applications of the halving
technique are also mentioned. Algorithms for the minimum area, minimum longest wire length,
and minimum total wire length problems are also given that take O(n?) time. € 1987 Academic

Press, Inc.

1. INTRODUCTION

River Routing is a VLSI layout problem that has received considerable attention
recently. See, in particular, [4, 11, 15, 16]. The main result of this paper is an O(n)
time algorithm for the optimum offset problem. This improves the best previously
known time bound of O(nlog n) [4, 15]. Furthermore, the constant time factor in
our O(n) algorithm is much smaller than those known previously. Algorithms for
the minimum area, minimum longest wire length, and minimum total wire length
problems are also given that take O(n?) time.

Our VLSI model comprises two horizontal rows, each containing n terminal
points. The bottom row contains terminals aq, a,,..., a,_,, and the top row contains
terminals by, b,,.., b, . Wire W, is to connect terminals a, and b,, for 0<i<n.
The wires should satisfy certain constraints defined by the wiring model. In this
paper we consider the single-layer-rectilinear wiring model. However, as we shall see
in the next sections, the methods developed in this paper may also be applied to
some other wiring models, such as multilayer, 45 degree lines, etc. The area in which
the wires are to be routed is called the channel. The channel consists of horizontal
and vertical grid lines. The horizontal grid lines are called fracks and the vertical
grid lines are called columns. Tracks are numbered 0, 1, 2,..., s from bottom to top.
The topmost and bottommost tracks contain the terminals, s >0 is called the chan-
nel separation. Wires should follow the grid lines and be separated from each other
by at least one grid unit. The points @, and b, will represent the terminals as well as
their horizontal positions (i.e., column numbers). We assume s=0 is possible iff
a;=b, for all i. If s>0, then we assume wires should be connected to track s
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vertically, while we allow them to be connected to track O either horizontally or
vertically. (This is merely an assumption for convenience and is not a serious
restriction.) Figure 1 shows a wiring example.

The terminals on a track are separated from each other by at least one grid unit.
Thatis, a;, ;<a;,—1and b, ;<bh,—1, for 0<i<n We let the track containing b,’s
slide horizontally; the amount of horizontal displacement d is called the channel
offset. That is, with offset d, terminal 5, moves to horizontal position b, + d, for
0<i<n. We say a pair (s, d) is feasible if there is a feasible wiring with separation s
and offset d. The following problems are considered.

(a) The separation problem. Given a fixed offset &; find the minimum
separation s, such that (s, d) is feasible.

(b) The offset range problem. Given a fixed separation s; find the set of all
offsets d, such that (s, d) is feasible.

(c) The optimum offset problem. Find a feasible pair (s, d) that minimizes s.

(d) The feasible set problem. Compute the set of all feasible pairs (s, d). This
problem may be regarded as solving the offset range problem for each separation
s=0,1,.,n—1. However, we give some indication that there might be a more
effecient way of solving this problem. We will show how an efficient solution of this
problem may be used to obtain solutions for many problems such as the following
three.

(¢) The minimum area problem. Find a feasible pair (s, d) for which the area
of the smallest rectangle (with horizontal and vertical sides) circumscribing the
entire wiring is minimized.

(f)  The minimum longest wire length problem. Find a feasible pair (s, d) for
which the length of the longest wire is minimized.

(g) The minimum total wire length problem. Find a feasible pair (s, d) for
which the sum of the wire lengths is minimized.

Dolev et al. [4] give O(n) time algorithms for the separation problem and an
O{n log n) time algorithm for the optimum offset problem. They also claim to have

FiG. 1. A wiring example.
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an O(n’) time algorithm for the minimum area problem. Siegel and Dolev [15] give
O(n) time algorithms for the separation and offset range problems. and an
O(nlogn) time algorithm for the optimum offset problem. Leiserson and Pinter
[11] report that the minimum area problem can be solved in O(n?) time, but do not
give any algorithm.

Section 2 of this paper develops a methodology for approaching the solution of
the problems mentioned above. The results in this section are the basis for the
developments in subsequent sections. Consequently, we present O(n) time
algorithms for the separation and the offset range problems, although comparable
results have already appeared elsewhere [4, 15].

Section 3 introduces the new reduction technique called Aalving, and mentions a
variety of application areas which indicate the technique to be a good candidate as
an algorithmic paradigm.

Section 4 uses the halving technique to obtain an O(n) time algorithm for the
optimum offset problem; thus improving the best previously known O(n log n) time
bound. The constant time factor of our O(#n) algorithm is also smaller than those
known previously. Consequently, this result is of both practical and theoretical
interest.

Section 5 discusses the feasible set problem and shows how this problem may be
regarded as a special case of the discrete convolution problem with the min and —
operators. We also show that an efficient solution of this problem implies efficient
solutions of the minimum area, minimum longest wire length, and minimum total wire
length problems.

Section 6 makes some concluding remarks.

2. THE METHODOLOGY

By showing that the wires can take a special form, we obtain a simple necessary
and sufficient condition for the feasibility of a pair (s, d), for separation s and
offset d. This section adopts some of the ideas from [4, 16] and in particular [11].

As we said earlier, wire W, connects terminals ¢, and b,. Wire W, may be con-
sidered as being composed of two parts. The first part, which we call the base wire,
extends from a; and its shape depends only on the position of the terminals at
track 0. The second part is a vertical wire segment (of possibly zero length) that
extends downward from b; and joins the base wire. There are two types of base
wires, left base wire, denoted by L,, and right base wire, denoted by R,. Intuitively,
the base wires L, (R;) are those that extend from a, upward and as far to the left
(right) as possible without violating the constraints of the wiring model. Figure 2
shows the base wires corresponding to the example of Fig. 1. Note how R,,, may
be obtained by an appropriate shift of R; along the direction with slope — 1. L, may
be obtained from L, , by a similar shift. In order to obtain wire W;, we drop a ver-
tical line from terminal b, until it hits one of the base wires L, or R, (depending on
whether terminal b, is to the left or to the right of a;). The vertical line plus the por-
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tion of the intersected base wire from the intersection point to «, forms W, as
illustrated in Fig. 3. It can be shown that this process will produce a feasible wiring
whenever one such wiring exists (for a proof see, e.g., [11]).

From the above discussion we see that a necessary and sufficient condition for
the feasibility of (s, d) is that terminal b,, which is at track s and column b,+4d,
must be above the base wires L; and R,, for 0 <i<n. The condition is

a,_,+s<b;+d<a;, ,—s,

where the lhs inequality is for s<i<n and the rhs inequality is for 0 <i<n—s.
These inequalities follow from the fact that L, , may be obtained by shifting L,
down along the direction with slope +1, and similarly, R,,, may be obtained by
shifting R; down along the direction with slope —1 (see Fig. 3). This necessary and
sufficient condition is essentially given in [11].

Let x,=a,—i and y,=b,—i We see that xy<x,<' - <x, ; and
VoS K <y, Let x=(xg, Xy X, 1) @0d y=(Vg, Vs V0o 1) We con-
clude that the pair (s, d) is feasible iff x;,— y,, , <d<x, . ,—y;, for0<i<n—s. Let

u(s, x, y)=min{x,  ,—y;|10<i<n—s} (1)

I(s, x, y)=max{x,— y;,,|0<i<n—s}. (2)
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Fi6. 3. Wires W, L, and R,.

When x and y are understood, we use /(s) and u(s) instead of I(s, x, y) and
u(s, x, y). We summarize the above discussion in Theorem 1, below.

THEOREM 1. The pair (s, d) is feasible iff 1(s) < d < uls).

Theorem | is the basis of much of the subsequent development in this paper. An
immediate consequence of Theorem 1 is the following theorem due to [15].

THEOREM 2. The offset range problem can be solved in O(n) time.

Proof.  All we need to do is to compute /(s) and u(s) using Egs. (1) and (2). |

For most of what follows. It is helpful to imagine the n x n matrix X — Y, whose
entry at row / and column j is x;— y,. In this matrix, the entries in a row are in
descending order and entries in a column are in ascending order. By this conven-
tion, u(s) may be described as being the minimum entry along the (sub)diagonal of
X — Y, which is in the lower triangle of the matrix and a “distance” s away from the
main diagonal. Similarly, /(s) is the maximum entry along the (sub)diagonal, which
is the symmetric image of the one described for u(s). We emphasize that this matrix
formulation is for exposition purposes; it is not used by our algorithms,

Another implication of Theorem I is a simple O(n) time algorithm for the
separation problem (for other solutions of this problem see [4, 15]). That is, given
an offset d, find the minimum separation s such that /(s)<d<u(s). More
specifically, we have

THEOREM 3. The function separation(n,d, x, y) below solves the separation
problem in O(n) time.

Proof. The matrix formulation above allows us to easily establish the fact that
at the end of the ith iteration of the loop, s is the minimum separation
corresponding to the offset d and the vectors (xg, X,..., X;} and (yo, Vire Vi) |
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function separation (n, d, x, y);

begin
s:=0;
fori:=0ton—1do
ifrnot (x,_,—y,<d<x;,—y;,_,)thens:=s+1;
return s
end.

The wiring process described earlier led us to Theorem 1. This process may be
used even when other single-layer wiring models are used and a discrete number of
tracks are available. Only the base wires L, and R, need to be redefined. For an
l-layer wiring model (assume layers are numbered O, 1,..,/—1), with some
reasonable assumptions about the model, it can be shown (see [3]) that in order to
achieve a wiring, we may lay out wire W, entirely in layer / (mod /). In this way the
[-layer wiring of n terminal pairs is decomposed into / independent problems of
single-layer wiring, each with at most [ n//] terminal pairs. Thus, the wiring in each
layer may proceed, independent of the other layers, in exactly the same way as we
have described earlier in this section.

3. THE HALVING TECHNIQUE

The halving technique may be described as follows. Suppose we are given a
sequence x = x,Xx, X, "' x,_; and we need to compute an integer function f(x). Let
x®, called the even half of x, be the subsequence of x comprising even indices. That
is, x*=x,Xx,X, . (We may similarly define x°, called the odd half of x, to be the
subsequence of x comprising odd indices.) We note that the length of each of the
sequences x° and x° is about half the length of x. We recursively compute f(x¢);
then we use 2/(x°) as an approximation to f(x). A final adjustment will transform
the approximate solution to the exact solution.

Some variations of the above general description are possible. For instance,
instead of using 2f(x¢) as an approximation to f(x), we may use some combination
of f(x°) and f(x°). This line of approach can be seen in the Fast Fourier Transform
[1]. One difference is that in the latter case we need two recursive calls instead of
one. For efficiency reasons this should be avoided if possible. The halving technique
can also be generalized from one-dimensional to multidimensional sequences, such
as matrices.

The halving technique results in efficient algorithms for a variety of application
areas. One such example is the odd-even merge algorithm [10,17]. In [14] the
halving technique is used to obtain an O(n) time algorithm for the selection problem
on n x n matrices with sorted rows and columns. (See also [6] for a solution of the
latter problem.) In [13] a suitable variation of the halving technique is used to
obtain a linear time algorithm for the longest regular subsequence problem. Finally,
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we should mention that the scaling method [5, 7-9] may be viewed as a numerical
halving technique, whereas ours may be regarded as a combinatorial halving techni-
que.

4. THe OpTiIMUM OFFSET PROBLEM

In this section we use the halving technique to obtain an O(n) time algorithm for
the optimum offset problem. This improves the best previously known O(n logn)
time bound of [4, 15]. Furthermore, the constant time factor of our O(n) algorithm
is much smaller than those known previously. Therefore, this result is of practical as
well as theoretical interest.

Based on Theorem 1, we may describe the optimum offset problem as follows:
Find the minimum separation s*, such that /(s*, x, y) <u(s*, x, v). We call s* the
optimum separation with respect to x and y and denote it by s* = optsep(n, x, y).
Once s* is known, then any offset d*, such that /(s*, x, y) <d* <u(s*, x, y), is an
optimum offset. First we state two useful lemmas.

LEMMA 1. The following hold for all s.

(i) u(s)<u(s+1),
(i) I(s)=Us+1).

Proof. (i) Let u(s+1)=x;,,,,—y;, for some j, 0<j<n—s—1. Since x is in
ascending order we have u(s+1)>x;, —y,. It is obvious that x,, — y, = u(s).
Therefore u(s) <u(s+ 1). A similar proof holds for (ii). |

LEMMA 2. Let s* =optsep(n, x, y). Then s* <| n/2 |; and this bound is tight.

Proof. Since x and y are in ascending order, we can conclude that /(| n/2 ]) <
X 2y~ Yz Su(Ln/2]). Thus s* <[ n/2 ). To see that this bound is tight, consider
the following example. Suppose b,=i+ 1 (ie, y,=1)for0<i<n a,=ifor0<i<
Ln/2]), a;=i+2 for [n/27<i<n. If nis odd, then a,=i+ 1 for i=| n/2 |. For this
example we have /(| n/2 |—1)>u(| n/2 ]~1). We conclude s*=|n/2| for this
example. ||

We first describe a simple O(n log s*) = O(n log n) time algorithm to compute s*.
We then use the halving technique to obtain an O(n) time algorithm for the same
problem. From Lemma 1 we see that u(s)— /(s) is ascending in s. We need to find
the smallest s* such that u(s*)—/(s*)>=0. A binary search on s suffices. We start
with s=1, and as long as u(s)—/(s) <0 we doubles. When this phase of the
process is done, let us assume s has a value s". Then | s'/2 | <s* <s'. In the second
phase of the process a binary search in the range from | s'/2 ] to s* is sufficient. We
have examined O(log s*) values of s during the entire process. For each value of s it
takes O(n) time to compute u(s)—I(s) using Egs. (1) and (2) of Section 2.
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Therefore, this algorithm takes O(n log s*) time. This is already a much simpler
algorithm than that of [4, 15]. However, the worst case asymptotic bound is stiil
O(nlog n).

Now we describe an O(n) time algorithm to compute s* based on the halving
technique. First we give an intuitive description of the idea. Then we consider a
more formal development. Consider a feasible wiring of the n terminal pairs.
Remove all odd-numbered wires. The remaining wires are separated from each
other by at least two grid units. Now for each i move wire W,; to the left by i units.
These wires are now separated from each other by at least one horizontal unit. We
can now decrease the separation by almost half (+ or — one extra track). This can
be done by shifting all horizontal wire segments as far down as possible and shrink-
ing the vertical wire segments to almost half. Conversely, if we have a feasible wir-
ing for the latter problem (that is, odd terminals removed and even terminals
moved left by 7 units), we can move even wires back to their original position. Now
even wires are separated by at least two horizontal units. We can now double the
vertical segments of these wires and if necessary add an extra track at the bottom
and extend the wires down vertically. Now there is enough room for the odd wires
to be routed in between even wires. The formal development follows.

Let x° be the [n/27-vector, which is obtained from x by removing the odd
indexed entries of x. That is, x¢=x,,, for 0<i<[n/27. x° is called the even half of
x. Define y°, the even half of y, similarly. Recall the definitions u(s, x°, y°) and
I(s, x°, y°) from Eqgs. (1) and (2). Let s° be the optimum separation with respect to
x® and y°. The following theorem states that 2s° closely approximates s*.

THEOREM 4. Let s* =optsep(n, x, y) and s¢=optsep{([ n/27, x°, y°). Then
ls* —25°] < 1.

Proof. 1t follows immediately from our matrix formulation (in Section 2) that
for any separation s, we have u(2s, x, y) <u(s, x°, y°) and 125, x, y)y=U(s, x5, y°). If
s°>0, then we have w(25°—2,x, p)—I25°—=2, x, y)<u(s*—1, x°, y°) —
l(s®—1, x°, ¥°) <O0. This implies s* > 25°— 1. The latter inequality obviously holds
when s°=0. It remains to show that s*<2s°+1. Let u2s+1,x, y)=
Xjy2e41— ), for some j, 0<j<n—25°—1. Let k =[j/27. Then u(2s°+ 1, x, y)=
Xok 4 25 — Vo = u(s%, X%, y°). Thus u(2s°+ 1, x, y) = u(s, x°, y°). Similarly,
[(2s°+ 1, x, y) <U(s°, x, y°). Therefore /(2s° + 1, x, y) <u(2s° + 1, x, y). This implies
s*<2s°+ 1 and completes the proof. |

It follows from Theorem 4 that the algorithm below computes the optimum
separation in O(n) time.

function optsep (n, x, y);
begin
if n <1 then return 0
else begin
s :=opstep([ n/27, x°, v°);
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if /(2s, x, v)>u(2s, x, y) then return 2s + 1
elseif s>0 and /(25— 1, x, y)<u(2s— 1, x, y) then return 25 — 1
else return 2s
end
end.

THEOREM 5. The function optsep(n, x, y) computes the optimum separation in
O(n) time. Thus, the optimum offset problem can be solved in O(n) time.

Proof.  The correctness of the algorithm follows from Theorem 4, Lemma 1, and
induction on n. Let T(n) be the time complexity of the algorithm. The algorithm
makes a recursive call with vectors x° and y© of length [#/27. This takes T([" n/27)
time. Then it computes /(s) and u(s) for at most two values of s. This takes an extra
O(n) time. From above we conclude that T(n)= T([n/27)+ O(n) for n> 1. Thus
T(n)=0(n). |}

5. OTHER PROBLEMS

The feasible set problem is to compute /(s) and u(s) for s=0,1,.,n—1,
according to Egs. (1) and (2). The straightforward method takes O(n?) time.
Lemma 1 asserts that u(s) is ascending and /(s) is descending with respect to s. We
also see from Egs. (1) and (2) that the problem is essentially that of computing the
discrete convolution of two sorted integer vectors x and y with the operators min
and —. An algorithm similar to the Fast Fourier Transform might exist: this
question is open. Another approach might be based on the halving technique. The
importance of this problem is justified by the following theorems.

THEOREM 6. If the feasible set problem can be solved in T(n) time, then the
minimum area problem can be solved in T(n)+ O(n) time.

Proof. The channel area for the feasible pair (s, d) is
A(s, d)=s[max(b, +d, a,_ ;)—min(b,+d, a,)].

First solve the feasible set problem. In order to find the feasible pair (s, d) for the
minimum area problem, we can consider the four critical offsets /(s), u(s), ag— by,
and a,_,—b, ,, for each separation s. (Some of these offsets might be infeasible
for some separations.) In this way we can compute the area for each of these
separation and offset pairs and select the best choice.

THEOREM 7. If the feasible set problem can be solved in T(n) time, then the
minimum longest wire length problem can be solved in T(n)+ O(n) time.

Proof.  First solve the feasible set problem. Suppose (s, d) is a feasible pair. Then
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the length of wire W,, denoted /,, is the rectilinear distance of the terminals a,
and b,. That is,

lLi=s+|a,—b,—d|=s+|x;— y,—d]|. (3)

Let LWL(s, d) denote the longest wire length with respect to (s,d). Let p=
max(x,— y;) and g=min(x,— y,), where the min and max are taken over alli.
(Note that p=1/(0) and ¢=wu(0).) Then

LWL(s, d) =s+ max(|d— p|, |d—q|).
To simplify this expression even further, let P=(p+¢)/2 and Q = (p —q)/2. Then
LWL(s, d)=5+|d— P| + Q. (4)

Note that P and Q in Eq. (4) are independent of (s, d) and can be computed in
O(n) time. Now we consider the three critical offsets /(s), u(s), and P for each
separation and pick the best choice. Among these three offsets the best choice is the
one that is in between the other two, assuming that /(s) <u(s). Then we select the
separation, along with the corresponding best offset, that gives the overal best
result. J

THEOREM 8. If the feasible set problem can be solved in T(n) time, then the
minimum total wire length problem can be solved in T(n)+ O(nlogn) time.

Proof. Suppose (s, d) is a feasible pair. Then the length of wire W, is as in
Eq. (3). Therefore, for a fixed separation s, the total wire length decreases as the
offset d approaches the median of x,— y;, i=0, 1,.., n— 1. We first sort x,— y, for
i=0,1,.,n—1. Let the sorted order be d, d,,..., d, _,. This takes O(n log n) time.
Let TWL(s, d) be the total wire length with respect to (s, ). Then

n-- 1
TWL(s,d)=ns+ Y |d—d|. (5)

i=0

Now for k=0, 1,.., n we compute 4, =>%"d,. This can be done in O(n) time.
Then we solve the feasible set problem, computing /(s) and u(s) for s=0, 1,..,n— 1.
Then for each separation s > s*, in ascending order, we select that offset & such that
l(s)<d<u(s)and d, ,<d<d, and k is as close to n/2 as possible, and (2k —n) d
is minimized subject to the restriction on k. The total wire length for this pair (s, d)
is

TWL(s, d)=ns+ (2k —n)d+ A, —24,.

During this phase of the process, as s increases, d changes monotonically. Thus, this
phase of the process can be done in O(n) time as well. Now for each separation we
have a minimum total wire length. We select the minimum among these. }

10
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COROLLARY 1. The following problems can be solved in O(n*) time.
(

(i1) the minimum area problem,

—

) the feasible set problem,

(iii)  the minimum longest wire length problem,

(iv)  the minimum total wire length problem.

Proof.  T(n) in Theorems 6, 7, and 8 is O(n’) using the straightforward com-
putation of the feasible set problem. |

6. CONCLUDING REMARKS

Our main result in this paper is an O(n) time algorithm for the optimum offset
problem based on the halving technique. We also show how an efficient solution of
the feasible set problem implies efficient solutions of the minimum area, the
minimum longest wire length, and the minimum total wire length problems. The
following problems may be considered.

(1) Are there other applications of the halving technique? For instance, can we
efficiently apply the halving technique to any of the feasible set, minimum area, and
minimum wire length problems?

(2) The feasible set problem is a discrete convolution problem on sorted vectors
and the min and — operators. Does there exist a Fast Fourier Transform type of
algorithm for such a problem?

(3) It would be interesting to generalize the techniques developed in this paper to

some other wire routing problems such as placement of a circuit within a ring of

pads [2].
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