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ABSTRACT

Triangulating a gien n-vertex simple polygon means to partition the
interior of the polygon inta - 2 triangles by adding — 3 nonintersecting
diagonals. Significantheoretical advances V& recently been made Iin
finding efficient polygon triangulation algorithmslowever, there is sub-
stantial effort being made in findingsample and practical triangulation
algorithm. W propose the concept pseudo-triangulatiorfa generalized
version of triangulation in which the member triangles need not a# ha
the same orientation), andpdore some of its combinatorial and topologi-
cal properties. Some of the main results of this paper are: ¢1jraVe
the triangulation-flip-graphof a simple polygon is connected. Using this
theorem we obtain a very simple linear-time algorithm to recognize
whether a gien triangulation of a simple polygon is its unique triangula-
tion. 52) We prove the maximum diameter of the triangulation-flip-graph
is ©(n°). (3) We prove the Spin-Number Theemon simple polygons; an
interesting topological result. (4)&\fropose a triangulation heuristic that
uses theangular (deficit) indicesand the chord-flip operation, in a local
search to transform an initial pseudo-triangulation (which is easy to con-
struct) into a triangulationThe significant open problem with thisyeed
is finding an dective aiterion in further refinement of the heuristic
regarding the selection of the chord in the chord-flip operation.

key words. simple polygon, triangulation, pseudo-triangulation, chord-
flip operation, spin numbgangular (deficit) index.
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1. Introduction

Let P be a simplen-vertex polygon (=3) defined by the list of its ertices
Vo, Vi, "+, Vpq iN positive orientatioraround the boundaryet us assume the boundary
of P is denoteddP in positve aientation as well.(To be ®ncrete, we may assume
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positve aientation is counter-clockwise, andgaive aientation is clockwise.lf we
walk on dP in positve aientation the interior oP in the immediate neighborhood will be
on our left hand side.\We cefinev,, : = vy. For corvenience we will assume that no three
vertices ofP are collinear We all this thegeneral position poperty. (After we describe
our methodologyit will become clear he to remove this assumption without significant
adjustments.) Thedgesof P are the open line segments with endpomtsv,,; for
0<i<n. Achordof Pis an open line segment whose endpoints anenbmadjacent &r-
tices of P. A diagonalof P is a chord ofP that has empty intersection with theexior
of P. Note that by the general position propgdaydagonal of P does not interse@pP
either The triangulation poblemis to find n -3 nonintersecting diagonals & which
partition the interior oP into n-2 triangles. Itis a known fact that gnsimple polygon
has at least one triangulation. (See Figure 1.)

V. \'

Figure 1L A triangulated simple polygon.

For a smple polygon, in general, determining whether an arbitravgngchord is
also a diagonal is a nontrivial tasklowever, if P is corvex, then ay chord is also a
diagonal. Thisfact allovs us to find a triangulation of a a@x polygon in O(n) time
quite easily Linear time triangulation algorithms are known for other special cases as
well, such as for monotone polygons [7], and-staaped polygons [125]. Thefirst
nontrivial triangulation algorithm for the general case was proposed in 1978 by, Gare
Johnson, Preparata, and Tarjan [This algorithm taksO(n log n) time. Sincethen, one
of the most outstanding open problems in computational geometry has been whether the
triangulation problem can be sel¥in linear time. In the recent years substantial amount
of research effort has gone into resolving this open problem. Some researsigers ha
devised triangulation algorithms with running tird¢n log k), for a parametek that mea-
sures the compigty of the polygon, such as the number of pefiegles [12], or the sinu-
osity [2]. Since all these measures admit classes of polygonskwit(n), the worst
case running time of these algorithms is only known t@(pdog n). Fournier and Mon-
tuno [6] showed the triangulation problem is linear time \emt to finding all ertex-
edge horizontally visible pairs (@quivalently, computing the horizontal visibility subdi-
vision). Thereduction of triangulation to computing the horizontal visibility information
was independently obtained by Chazelle and Incerpi [2]. Since then, almost all
researchers in the fieldyedosen this approach, nametgmputing the horizontal visi-
bility subdvision. Tarjan and Van Wyk [24] desed anO( n log log n') time triangulation
algorithm. Thisis a major theoretical breakthrough and shows that triangulation is easier
than sorting.Tarjan and \an Wyk’s dgorithm uses the divide-and-conquer paradigm and
computes the horizontal visibility information, using an adaptation of the Jordan sorting
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algorithm [14] and homogeneous and heterogeneous finger search treesliffetent
levels of the algorithm. As a result, the computationarbead of their algorithm isery

high. (Clarkson,Tarjan, and Van Wyk [4] hae aapted the ahe dgorithm and used
random sampling [3] to devise a randomized triangulation algorithm @(itHog™ n)
expected time.)Very recently Kirkpatrick, Klawe, and arjan [16] propose a sonvhat
simpler algorithm than [24]. This shows that algorithmic simplicity is still an important
issue rgading the polygon triangulation problem, but it is still a problem to be pursued
vigorously.

In this paper we propose thewneoncept ofpseudo-triangulationa generalized
version of triangulation, in which the member triangles need not el i@ same orien-
tation. W& explore some combinatorial and topological properties of pseudo-triangula-
tions. Ourmethodology in solving the triangulation problem may be viewed as a graph
search method where the underlying graph igp#®ido-triangulation-flip-grapbf P (or
flip-graphof P, for short).

The remaining portion of this paper isgamnized as follavs. Section2 introduces the
concept of pseudo-triangulations and shows some basic facts about it. Included in this
section are the introduction of the characteristic function of a simple polygon and the
proof of its additre property with respect to pseudo-triangulationsaet fwhich is used

in subsequent sections), and a necessary afidiesuif condition for a pseudo-triangula-

tion to be a triangulation. Section 3 pes a ®nnectvity theorem on triangulation-flip-
graphs, one of whose corollaries is that in linear time we can decide whetken &igi
angulated polygon has a unique triangulation. The connectivity theorem of this section
might have aher applications such as in shortest paths and visibility probl&vesdso

show that the maximum possible diameter of the triangulation-flip-gragiin. (How-

eve, the diameter of the flip-graph is known to®g) due to [23].) Themain result of
Section 4 is the Spin-Number Theorem. Section 5 introduces the notion of angular
indices (integer weights on the vertices of the polygon) whichigge yet another char
acterization of triangulations via pseudo-triangulatiod$is leads us to propose a
generic method for the solution of the triangulation probl&action 6 makes some con-
cluding remarks and poses some open problems.

2. Pseudo-Tiangulations

Consider tw chords(v; , v; ) and( vy, v ) of P. Without loss of generality assume
i <jandk<l. We sy the tvo chordsmterlacelf i<k<j<lork<i<l<j. Below, we
will use some terminology from combinatorial topolod$ee for gample [1,21].) Let
T be a tvo dimensional simplicial-compleconsisting ofn -2 triangles (or 2-simplices),
2n -3 s@gments (or 1-simplices), andvertices (or O-simplices)We sy T is apseudo-
triangulationof P if it satisfies condition (i) bela.

(i) the combinatorial ppperty The vertices oft are the vertices d. Each segment of
T is either an edge or a chordRf A segment inT is incident* to exactly one trian-
gle inT if it is an edge ofP, and it is incident to exactly twtriangles inT if it is a
chord ofP. In the latter case we may call the segment a chord dof, in addition,
it is a diagonal oP, we may call it a diagonal of as well. FurthermoreT has no
pair of chords that interlace.

It should be obvious that artriangulation ofP is also a pseudo-triangulation f
LetT be a pseudo-triangulation Bf We assign an orientation to each triangleof T as
follows. We monsiderdT; to have the orientation on which its three vertices are seen in
the same order as oR. (Note by the general position property the three vertices are not
collinear) ThenT; inherits the same orientation &g;. (See Figure 2.) As we shall see
in Theorem 5 bele, a seudo-triangulatio of P is a triangulation of if and only if it
satisfies condition (ii) bela

*two dmplices arancidentif one is a face of the other.
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(i) the topological propertyAll triangles inT have the same orientation &s
\

1
Figure 2 A pseudo-triangulation of the polygofvg,---,vs). Triangles
(Vo,Vi,V2), (V2,Vv3,Vs) and(vg, va, Vs ) have positive aientation. Tiangle
(vo, V2, Va4 ) has ngaive aientation.

To help the intuition, there is a seconéyto define pseudo-triangulationkset C
be aconvexn-vertex polygon, wheredC contains the list of erticesug, u; , -+, Up—1 IN
positive aientation. Therthe triangulations o€ are in one-to-one correspondence with
the pseudo-triangulations Bfwith the following correspondence: A triangulationof C
corresponds to a pseudo-triangulationf P if (u; , u;) is a diagonal of’ if and only if
(vI ,vj)is achord off. Let us call this correspondence tregural mapping (See Figure

A\

Figure 3 A pseudo-triangulation and its natural mapping. The sign in triangle
(ui, u;, uy ) indicates the orientation of triandle; , v; , vy ).

Now we define an elementary operation calféd which transforms one pseudo-tri-
angulation ofP to another LetT be a pseudo-triangulation Bfand(v; , v;) a chord of T
incident to tvo trianglesT,; andT, of T. Letv, andv, be the other twvertlces ofT, and
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T,. We say the chordyy , vi) of P is thedual of (v; , v;) with respect tar. A flip is the
operation of replacing a chord by its dual in a pseudo-triangulafibis operation is
obviously reversible. Ifthe flip operation is applied to cgex plygons, it transforms one
triangulation of the polygon to anothéie dso define thdlip-graphof P to be the graph

where its nhodes correspond to pseudo-triangulatio®s afd two nodes of the graph are
adjacent if the corresponding pseudo-triangulations can be obtained one from the other by
a dngle flip operation. The flip-graphs are isomorphic to the so cadiedion graphs

that hae been studied in the literature [B, 23]. It is known that these graphs are
Hamiltonian and hae dameterO(n).

Let Q be a simple polygon withertex setU in the planeR?. We define thecharac-
teristic functionyg : R® -U - {0,%%,+1} of Q as follavs. For a pointpOR? -U we
define the magnitude ofg ( p) to be0 if pis in the exterior of, % if pis onoQ - U,
and1if pisin the interior ofQ. The sign ofyq ( p) is defined to be posi a negdive
if the orientation of) is, respectiely, positive a negdive. We leare xq ( p) undefined if
pis a verte of Q.

Theorem 1. Let T be a pseudo-triangulation ¢ which contains the triangled;, for
1<j<n-2. LetV denote the set of vertices Bf Then for every pointf 0 R? -V the
following identity holds:

n-2
xp(Q) = JZ1 X, (9)

Proof: We prove the abee identity by shwing that the flip operation lges the value of
the right hand side of the equatioranant. Supposéwithout loss of generality) that the
trianglesT,; andT, of T are replaced by twnew frianglesT," andT,' by a flip. A case
analysis easily shows that, (q) + x1, (9)= x1 (d) + x1,y (q). (See Figure 4.)The
proof is complete by the twfacts that the flip-graph &f is connected and that the equa-
tion obviously holds iff is a triangulation oP. O



C
Figure 4 The flip operation. Case (i): nowalap; cases (ii) and (iii): totalver-
lap; case (iv): partialwerlap.

For a smple polygonQ, let area (Q) denote the signed area@f(with the Euclidean
metric), whose magnitude is the areaQaéind whose sign is the orientation@f There
is an analog of Theorem 1 about signed areas; the related identity is:

n-2
area(P) = > area(T))
=1
A proof similar to that of Theorem 1 can be used to@rbe area identity (For an dter-
natve proof of a special case see [17Me will use the characteristic function &g
later.
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Lemma 2. In any pseudo-triangulatiom of P no pair of diagonals cross elacther.

Proof: Otherwise under the natural mapping wewd get a triangulation of the caex
polygonC with a pair of crossing diagonals, a contradictian.

Lemma 3 (The Encloswr Lemma). Suppose andQ are two simple polygons shadhat

Q does not intersect the exterior Rfand has at least tlke vertices in common witR
and its remaining vertices aitin the interior ofR. Then the common vertices Rfand Q
appear in the same order@ndoR and oQ if R and Q have the same orientation, and
appear in ewerse order ifR andQ have opposite orientation.

Proof: We uise mathematical induction on the number of noncomnedices ofR andQ.
Suppose theartices common to botR andQ arewg , wy , - - -, W4 in the order around
0Q. Letw, :=wy. First assume there is &nex of either R or Q which is not a ertex of
the other This implies that therexests an inde i, 0<i <k, so hat the portion 0bQ
from w; to wi,4 is not a subset @R. Let the oriented polygonal chdihbe the portion of
0Q from w; to wi,¢. M partitions the interior oR into two smple polygonsk, andL;, 0
thatR; is to the right of1 andL; is to the left. We assumeR; andL; have the same orien-
tation asP. By the Jordan CuesTheorem, the interior @ must be either entirely iR;,
or entirely inL;. If Qis in R, then by mathematical induction and the fact thadnd
w1 appear in the same order aro@®Ri andaQ, Q must hae the same orientation &%
and their commonartices appear in the same order aro@aRdanddQ. Since in this
case eery vertex common to bothR andQ is also common t&®, andQ, the inductve
step follavs. If Qs in L;, then agin by induction and the fact that andw;,, appear in
opposite order aroundl; andaQ, Q must hae the opposite orientation ti, and their
common vertices appear in opposite order araindand Q. Since in this casevery
vertex common to bottR andQ is also common td; andQ, the inductve dep follows.
The base of the induction is the case wReandQ have the same set ofevtices. Inthis
case a similar argument holds in which eitReor L; is identical toR, for all0<i < k.
In other words, in this cage andQ must be the same polygon with either the same or
opposite orientationd

Corollary 4. Supposeé is one of the triangles in a pseudo-triangulationPof If t has
negative orientation, then at least one of its sides is neither a diagonal nor @afédg

Proof: If all three sides ot are either edges or diagonals Bf then The Enclosure
Lemma applies and therefardas the same orientation Rswhich is positve, a contra-
diction. O

A much stronger version of Corollary 4 will be ped in Section 4.

Theorem 5. LetT be a pseudo-triangulation &. ThenT is a triangulation ofP if and
only if all triangles ofT have positive orientation.

Proof: If T has a ngaively oriented triangle, Corollary 4 implies thais not a triangula-
tion of P. If all triangles of T have positive aientation, then Theorem 1 implies that the
triangles ofT cannot intersect the exterior Bf that no tvo triangles ofT can hae com-
mon interior points; and that each interior pointak either in the interior of one trian-
gle of T or on the common chord of tnsuch triangles. In other words, the triangles of
partition the interior oP and hencé is a triangulation oP. O

An implication of Theorem 5 is that in apseudo-triangulatio of P at least one
triangle is positiely oriented. This is because if all the trianglesTadre ngaively ori-
ented, therm must be a triangulation of the polygon identicaPtbut in opposite orienta-
tion. But this is absurd. Itas Theorem 5 and the fact that the diameter of the flip-graph
of P is O(n) that was the first matating factor in our study of pseudo-triangulatiorihe
underlying implication is that for each pseudo-triangulatioR af a starting one, there is
a equence ob(n) flip operations, that caerts it to a triangulation oP. Furthermore,
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after each step we can determin®(n) time whether the current pseudo-triangulation is
indeed a triangulation d® by simply keeping the count of Wwamary negdively oriented
triangles it contains.

3. TheTriangulation-Flip-Graph

From the literature, we already km@ few facts about the structure of the flip-graph
[5, 18, 23]. As we mentioned earliewe know that the flip-graph is Hamiltonian and has
diameterO(n). It is desirable to kn@ more about this graph. As an obvious additional
property we an mention that the flip-graph is triangle free, i.e. has no 3-cligeeus
call the subgraph of the flip-graph induced by the nodes which correspond to triangula-
tions of P the triangulation-flip-graphof P. What can we say about the connectivity and
the diameter of the triangulation-flip-graph®Phis graph may not be Hamiltonian.
Indeed, it may notven be bconnected and may not contain a Hamiltonian path either
For such an example see Figure 5. Hoerewe havethe following facts.

Figure 5 The subgraph of the flip-graph induced by the nodes that correspond
to the triangulations oP may not be biconnected, and may noteha Hamilto-
nian path.

Theorem 6. The triangulation-flip-graph oP is connected.

Proof: Assumen = 4, otherwise there is nothing to @ An ear of a triangulation oP
is ary of its triangles that has at leastotwdges ofP as its sides. It is well known that
whenn = 4 ary triangulation ofP has at least tovears. (Sedor example [1319].)

Supposd& andT' are two triangulations oP. We will show that there is a sequence
of flip operations that caerts T to T' in such a way that all intermediate pseudo-triangu-
lations obtained by this sequence are also triangulatioRs bétt be an ear of'. If tis
also an ear of, then we may discarndand apply the proof to the remaining smaller poly-
gon. Sodlet us assumeis not an ear of. Suppose the tevedges ofP that are the sides
of t are(vi_1, v;) and(v; , vi+1). Suppose the other ends of the diagonal§ incident to
v; arew; , Wy , - -+, W1 in order aroundP. Letw, :=vj,; andw, :=vi_;. We daim that
there is an inde j, 1< j <k, such that the quadrangh , wj-; , w; , wj,; is corvex.
Sincet is an ear off, none of the erticesw, , w,, ---, W, can be Int, otherwise thg
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would prevent the visibility betweenv;,_; andv;,;. Therefore,w; ,w,,---, w,_; are on

the opposite side of the line through, andv;,; with respect to;;,. Among the ertices

Wy, Wy, -, W let w; be orthogonally farthest from the line through; and vi,;.
Then, oliously, the quadrangley; , w;_, , w;,wj,; is corvex, as asired. Therefore,
(wj1 , Wj41) is a diagonal ofP. (See Figure 6.5 If we fligv; , w;) to replace it with
(Wj_1 , Wj+1), We Will obtain a nev triangulation ofP in which the number of diagonals
incident tov; has decreased by on#.we continue this process, through a sequence of
flip operations which produces only triangulationgen¢ually t becomes an ear af.

Now, we can discard and apply the same argument on the remaining portion of the poly-
gon. O

Vi
Figure 6. The figure used in the proof of Theorem 6.

Corollary 7. Given a triangulatiorn of P, we @n determine whethdr is the unique tri-
angulation ofP in O(n) time.

Proof: Theorem 6 implies that is the unique triangulation &f if and only if it does not
have any dagonal whose tavincident triangles together form a eer quadrangle. The
latter condition can easily be checkedif1) time for each diagonal af. O

For an xkample of a simple polygon with a unique triangulation see Figure 7.
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Figure 7. A simple polygon with a unique triangulation.

Theorem 8. The maximum diameter of the triangulation-fligygin of any simple poly-
gon withn vertices is9(n?).

Proof: Let P be a simplen -vertex polygon andD(P) denote the diameter of its triangula-
tion-flip-graph. Fronthe proof of Theorem 6 it follows that(P) is O(n?) since we need
less tham flips for each "ear remval". The fact thatD(P) could be as large a¥(n?) is
apparent from the simplexample in Figure 8. The number of diagonal flips needed to
convert the triangulation in Figure 8 (a) to the triangulation shown in Figure 8 (b), in such
a way that all intermediate pseudo-triangulations are actually triangulations, is
(Ooni2 0-1)(gn/2 0-1). To e this, it suUfces to notice that after— 3 diagonal flips the
instance is corerted to one with 2 lessevtices. (An ear renved from each side.)The
reason wik this is the minimum number of flips necessary follows from the fact that at
each step there are at mosotiNps possible; one on each side of the "middle diagonal".
O

Figure 8 Two triangulations of an hourglass polygon.

4. SpinNumbers

Let O be a point outside the ceex hull of P. Letl be an open oriented simple
polygonal chain from poinD to vertexa of P such that it does not interset Further-
more, we ma& the simplifying assumption that has only finitely may intersection
points with ag chord of P, with all such intersections being crossing intersections (i.e.,
no tangential intersections). We all I a probeto vertexa. Lett be the triangle with
verticesa, b andc of P seen in that order arourad®. We define thespin at vertexa of
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trianglet with respect td", denotedy , (t; ), to be he algebraic number of timeés
intersecty b, c), i.e. the side of opposite ertexa, where an intersection is counted
if at that pointl” enterst, and counted-1 if at that pointl” exits t. (See Figure 9.)The
spins at verticeb andc are defined similarly.

~N
vt
/
O

Figure 9 The spin at grtex a of trianglet = (a, b, c) with respect to the
prober ; w,(t;r) = +2.

Lemma 9. Letl and ' be two probes to ventea of trianglet. Theny ,(t;l) =
a(t;l").

Proof: There exists a third probe” to a that has no points in common withor I". Let
Q be the simple polygon whose boundary illowed bya, followed by the reerse of
r ", followed byO. Verticesb andc are in the exterior of. As we nove fomb to c
along the chord b, c) count the algebraic number of times wevaan and out ofQ,
counting+1 as we muge into Q and count-1 as we mege aut of Q. by the Jordan Cues
Theorem, the magnitude of that countys, (t; ) —¢ ,(t;I")|=0. With a similar
argumentwe heey o (t;IF')-y 5 (t;F")=0. The lemma follws. O

Lemma 9 says the spin numbers ettices of a triangle are a property of the trian-
gle itself (and ofP of course) and do not depend on which particular probes we choose.
Because of this we may use the shorter notationét ), ¢ , (t) andy . (t). (See Fig-
ure 10.)
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Figure 10. The spin numbers at vertices of triangte= (a,b,c);
wa(t)=+Lyp(t)=+1landy . (t)=-1

Remark We oould have defined the spin numbers in termsmhding numbes. For
instancey , (t) is the winding number of poirtwith respect to the closed certhat is
formed by going fronb to ¢ alongoP followed by the segment fromback tob.

Supposex is a \ertex of P but not oft. Leta , (t) denote the algebraic number of
times a probe toertex x intersectsot; agan, counting an intersectionl if the probe
enterst at that point, ané1 otherwise. Bythe Jordan Cuesy Theorem we kno a , (t)
is0if x in outsidet, and is+1if x is insidet. We havethe following fact about spin num-
bers:

Theorem 10(The Spin-Number Thesm). Let be a triangle with three vertices b and
c of P in that order aounddP. Then the quantity ¢ 5 (t)+y¢ p (t)+y¢ . (t) isOift
is positively oriented, and sl if t is negatively oriented.

Proof: Supposea =v;, b=v; andc = v,. Consider the triplg j-i,k-j,i-k) where
index arithmetic is done modula (i.e., addn to the result of the subtraction if it isge
ative). We oonsider all such possible triples in lexicographic ard&r, without loss of
generalityassumej —i <k -j <i-k.

Case (i) Supposel =j-i=k-j<i-k. Thatis,(a,b)and(b,c) are edges of
P, Since probes by definition do not inters&Gtwe must haey 5 (t) = ¢ . (t) = 0.
Trianglet is negdively oriented if the internal angle aenexb of P is reflex, and is
positively oriented otherwiseNow consider a prob€ to vertexb. As we nove dong
sufficiently close tab (where distance is measured aldngwe will be inside triangle if
t is negaively oriented, and we will be outsideotherwise. Sincéhe origin ofl is out-
sidet and the only \ay I can intersect the boundary ois by intersecting the chord
(a,c), we oncludey ,, (t) must be+1 if t is negaively oriented, and must beif t is
positively oriented. (See Figure 11 (a) and (b).)

Case (ii) Now supposel = j-i <k-j<i-k. Inthis casg a, b) is an edge of.
Thereforey . (t) = 0. Letl be a probe ta. Lety be a point o so that the distance
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from y to a alongr is sufficiently small.Let I ' be the probe td which consists of the
portion of" from O to y followed by pointy, followed by the open segment frgnto b.
If y is insidet, then so is the entire gment fromy to b. If y is outsidet, then the sg-
ment fromy to b is either entirely outside or it intersects the boundary obnly once
with the intersection being on the chard, c). If the sgment(y,b), in the sufi-
ciently small neighborhood df, is insidet, then by the Jordan Cwviheorem the alge-
braic number of time§ ' intersects the boundary ofs +1. Snce no such intersection
can occurorfa,b), weoncludey ,(t;lr) + ¢ ,(t;r") = +1. With a similar rea-
soning we conclude that , (t;F) + ¢y, (t; ") = 0 if the sgment(y,b), in the
sufficiently small neighborhood df, is autsidet. Furthermore, Since the interior of the
triangle(a, b, y ) has no point in common with, we conclude that the orientation of
is positve if and only if the sgment(y , b), in the sufficiently small neighborhood bf
is outsidet. (See Figure 11 (c) and (d).)

Case (iiif Now supposel < j-i<k-j<i-k. Letd=v;;. Consider the triangles
t, = (a,d,b),t, = (a,d,c),andt; = (d,b,c). The theorem holds far andt,
due to case (ii) alve. Also, since triangle; is lexicographically smaller thanthe theo-
rem is assumed pven for t; already Trianglet might be positiely or negatively ori-
ented. IBr each of these wvcases there are\ss sts of possibilities (fourteen cases in
all) for the location of pointl as shown in Figure 11 (e) and (Ve will prove the theo-
rem for case 1 as sla in Figure 11 (e). The proof of the other cases, being sjraitar
left to the readerln case 1 triangles andt, are positvely oriented, and trianglets and
t; are ngaively oriented. For this case we he the following equations:

0=aa(ts) =+pa(t)+ea(t2)-¢a(t) (1)
0=ap(tz) = —¢p(tu)+ygp(ts)+yp(t) 2)
0=ac(ty) =-wc(t)+pc(t3)+y () 3)
0 =aqg(t) =+ygq(ta)+ygq(t2)-¢q(ts) 4)

Let us use the abbration W (t') := ¢ ,(t'")+y , (t'")+y ,, (t") for ary triangle
t' = (u,v,w). From equations (£(4) we seethata ,(tz3) +ap(t) +a(ty) -
ag(t)=0=W(t)-W(t1)-W(t,)+W(t3). SnceW(t;) = +1,¥W(t,) = 0, and
W(tz) = +1, weoncludew (t) = 0. O
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(f)
Figure 11. The cases used in the proof of Theorem 10.

(e)

As a first application, we see that Corollary 4 isvrem dovious consequence of
Theorem 10. This is because if trianglevith verticesa, b andc, is negdively oriented,
then by the theorem at least oneyof (t), w p, (t)ory . (t)is positve. Sayy ,(t)is
positve. Then(b, c) is neither an edge nor a diagonalRfsnce it must intersect gn
probe to vertex.

Our initial attempt s to assign some kind of integer weights to the vertices of each
triangle in a pseudo-triangulation Bfwith the aim of using these weights as a guide for
the selection of a suitable chord to flip. It was this attempt that led us to the definition of
spin numbers and the dis@oy of the Spin-Number Theorentowever, the efective
use of spin numbers is still opemmhe difficulty comes in updating the spin numbers after
a flip operation is performed. Suppose the chpad c) is flipped and replaced by its
dual (b, d). Before the flip operation takes place theo ttuangles incident with the
chord(a,c)aret;=(a,b,c)andt,=(a,c,d). After the flip operation the twnew



-15-

triangles incident with the mechord(b,d) aret;=(a,b,d)andt,=(b,c,d). Ide-

ally, we would want the six ne spin numbers of theartices of the trianglels andt, to

be completely determined by the six old spin numbers of the triangeslit, and (the
positions of) the erticesa, b, c, d. If this were so, then the updating could be done in
O(1) time; havever, this is not the case. (See Figure 12.) In the next section we will
define an alternate rotion of integer weights atevtices which seem to be more promis-

ing.

Figure 12. The triangles ar¢; =(a,b,c) andt, =(a, c, d) before the flip,
andtz=(a,b,d) andt,=(b,c,d) after the flip. In both cases (i) and (ii)
prior to the flip operation we ka ¢ ,(t1)=1, ¢, (t1)=0, ¢ (t1)=0,
Walty)=1 ¢ (t)=0, ¢ 4(t,)=-1. Howeva, dter the flip operation in
case () we he&e ¢ ,(t3)=0, ¢p(tz)=1 ¢qa(t3)=0 @p(ts)=1,
@c(ts)=0 ¢ q(ts)==1 butin case (i) we hae: ¢ ,(t3) =0, ¢ p (t3) =0,
Ya(tz3)=Lyp(tg)=0¢c(t3)=0,¢4(ts)=0.

5. Angular (Deficit) Indices

In this section we define a local quantity thatveh@ome promise weards success-
ful application in an ultimate triangulation algorithrhet anglg a) denote the internal
angle ofP at vertexa. Supposet is an oriented triangle withevticesa, b andc. We
define thesigned-angle at vertea of trianglet, denotedw , (t), so hat its magnitude is
the internal angle af at vertexa and its sign is the orientation of w, (t) andw ¢ (t)
are defined similarly Therefore,w 5 (t)+wy (t)+w. (t) equals+r radians ift is
positively oriented and is- radians ift is negaively oriented. SupposeT is a pseudo-
triangulation ofP consisting of triangles; , for 1< j <n-2. Assumem of these trian-
gles are ngetively oriented and the remaining- m — 2 are positvely oriented. The total
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signed-angle sum of these triangles is therefof@ —2) —2msm. This last quantity can
be interpreted as folles. Theterm z(n-2)is the sum of the internal anglesmfand
the deficit term2ms is due to thedct thatT containsm negatively oriented triangles.
Suppose (without loss of generality) that the triangle§ ohcident to \ertex a are
T.,To,---,T. Let us define theigned-angle of verkea with respect to the pseudo-tri-
angulationT, denotedw , (T ), to be

|
wa(T) 1= _Zi‘v a(Ti).

Because of connectivity we mustviea
wa (T) = anglga) + 2k,

for someinteger k, (negdive, zero or positie). We all k, theangular inde of vertexa
with respect to the pseudo-triangulation We say, with respect tor, vertex a is bal-
ancedif k, =0, hasangular surplusf k, > 0, and hasangular deficitif k, <0. (See Fig-
ure 13.)

Figure 13. Angular inde of vertexv; in this pseudo-triangulation 4.

Lemma 11. LetT be a pseudo-triangulation &f. ThenT is a triangulation ofP if and
only if no vert& of P has angular deficit with respect To

Proof: From abwee definitions we see that the sum of the angular indices of vertides of
is -m wherem is the number of rggtively oriented triangles of . If m> 0, then olvi-
ously some ertex has angular deficitlf m =0, then by Theorem 5 T is a triangulation

of P; hence, all vertices d? are balanced

Lemma 12. LetT be a pseudo-triangulation &f. Letk, be the angular indeof vertex
v with respect tar. Then thee is me natural number sud that2a - k, triangles ofT
contain vert& v in their interior; a of these triangles arregatively oriented andr - k,
of these triangles arpositively oriented.

Proof: Suppose the triangles af that are incident tos areT;, for 1<i <, and the
remaining triangles of areT; , forl <i <n-2. Let N be a sufficiently small neighbor
hood of ertexv. (We assumeN is small enough that it does not intersect with etrord
of P that is not incident te.) Let p be an arbitrary point ian n exterior( P). Since

vertex v has angular indek, , by connectvity we must hae > xr, (p) = k,. From
i=1

n-2 n-2
Theorem 1 we he 3 xr (p) = 0. Therefore, 3 x1,(p) = —k,. Leta denote
i=1

i=l+1
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the number of rgetively oriented triangles of that are not incident teand contairp in
their interior Since p is not on the boundary of wnriangle of T, there must ber - k,
positively oriented triangles of that are not incident te and containp in their interior
Sincev is sufficiently close tg, the lemma follavs. O

Corollary 13. If vertex v has angular deficit with respect 19 then some positively ori-
ented triangleT; of T contains vertex in its interior.

Proof: Obvious consequence of Lemma 12.

In the pseudo-triangulation let us say grtexv is saturatedif all n-3 chords ofT
are incident to.

Corollary 14. A saturated vertex in a pseudo-triangulatiom must be balanced.

Proof: Since all triangles of are incident tos, the proof follavs from Lemma 120

Notice that the triangl&; of Corollary 13, although positly oriented, cannot va
all its sides as edges or dlagonaIsPoﬁnce it includes aertex of P in its interior Moti-
vated by the abee wo corollaries, let us defina chain of trianglesn a pseudo-triangu-
lationT of P to be a sequence,, T';, ---, T', of distinct triangles of’, so hatT’,_; and
T';, are incident to a common choog for 1<i <1. We sy the length of this chain Is
A chain, in a pseudo-triangulation, is determined by its initial and final triangéts. be
the \ertex incident toT'y but not to T';. We might also refer to the ake mentioned
chain as the chain fronextexv to triangleT’,. We sy the sequenag , c,, ---, ¢ is the
chain of separating ltordsfrom vertexv to triangleT’;. Suppose ertexv has an angular
deficit and hence by Corollary 13 it is in the interior of a pegtioriented triangler; of
T. Letc,, ¢y, ---, ¢ be the chain of separating chords froemtexv to triangleT;. Intu-
itively, we vvould want to flipc;. There are tw advantages for doing so. One is that the
flip will shorten the length of the chain angketually "destroy" it. The other is that if we
keep performing such flips with respect tertexv, it will eventually hare o become bal-
anced by Corollary 14. The question iswhdo we determine which triangle of is inci-
dent to vertex whose side oppositeis c;?

The effect of a flip operation to the angular indices is strictly lo€Bhis is the
desired property that spin numbers, as explained in the previous section, do not possess.)
A flip operation can change the angular indeonly one of the four verticeswnlved in
the operation, and that will happen if and only if thattex is in the cowex rull of the
other three. (See cases (ii) and (iii) of Figure 4.) Furthermore, this change is only addi-
tive by the amount1 or -1.

Consider a pseudo-triangulationin which one ertex, sayv is saturated. Then, by
Corollary 14,v, is balanced.Sincev; andv,_; are incident to one triangle each,ttaee
either balanced or kiea angular deficit inde -1 depending on whether the internal angle
of P at those ertices is, respeetly, corvex a reflex. Eachof the remaining ertices
Vo, -+, Voo IS INcident to tw triangles ofT. Therefore the signed-angle of thosar-v
tices with respect td must be in the range fror2z to +27. This implies that the angu-
lar indices of theseertices must be eith@ror -1. In summary the angular indices of all
vertices with respect td is 0 or -1 and these can be determined in tai@l) time.

In a pseudo-triangulation let us call a chordu, w) acandidatechord if there is a
vertex v of P such thatv has angular deficit angv, u, w) is one of the triangles im.
Below, we propose our heuristic for the solution of the triangulation problem. (Note that
in its generic form, this heuristic is nondeterministic due to line 5.)
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Heuristic triangulate (P );
letT be the pseudo-triangulation in whiweh is saturated;
computethe angular indices of vertices with respect to
{comment: all angular indices at this point d}er —1}
letC be the list of candidate chords bf
while C is not empty do
selecand remee a @ndidate chord u , w) from C;
flip(u,w);
updateTl, the angular indices, arf@
end while;
outputT .

©CoNoo~wWDNEO

6. Remarksand Open Problems

The only place where the heuristic is not deterministically specified is at line 5.
What should be the criterion in selecting a candidate chdrd@re certainly is a
sequence oD(n) flips that will sohe the problem. (This is the diameter of the flip-
graph.) Haevever, even the termination of the heuristic is not quite clear and depends on
further refinement of line 5. The resolution of this point needs further research work.

A second question is whether spin numbers, which we studied in Section 4yean ha
effective dgorithmic application.

Another point which deserves furtheomk is exploring additional applications of
Theorem 6. One is that, it might be possible to generateisit®lity graph of P effi-
ciently and with a lev computational werhead. Br existing work on this problem see
[8, 11, 22]. It might be possible to start from one triangulationPaind judiciously go
through a sequence of flip operations and collect diagon®ssfthg are generated for
the first time by the flip operationg he eficiency of the method would depend on the
amortized number of flip operations needed to produce one more "new" diabjomal.
eve, the reader should keep in mind the rathgyaee result stated in Theorem 8.

A similar idea might be possible for computing the single source shortest path trees
inside P. For the related work in the literature seell®, 15]. There is a unique shortest
path tree for eachevtex of P considered as the source. Foreamtexv, the edges of the
shortest path tree with soureés a subset of at least one triangulafioaf P. Let us call
a triangulationT with this property ashortest path triangulatiomf P with respect to
sourcev. Once such a triangulation is ko, the corresponding shortest path tree can be
extracted from it in linear time. Theorem 6 implies the existence of a sequence of flip
operations that generates a corresponding sequence of triangulatiowkich contains,
as a subsequence, a sequence of shortest path triangulations, one farteacs he
source. Ifsuch a sequence of flip operations is redhtishort and can be foundfet-
tively, it will result in an efficient algorithm to generate all the shortest path trees of the

polygon.
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