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Abstract

The Minimum Weight Fuclidean Matching (MWEM) problem is: given 2n point sites
in the plane with Euclidean metric for interpoint distances, match the sites into n pairs
so that the sum of the n distances between matched pairs is minimized. The graph
theoretic version of this problem has been extensively studied since the pioneering work
of Edmonds. The best time bound known for MEWM is O(n?®(logn)*) due to Vaidya.
His algorithm requires O(n logn) space.

We investigate new geometric properties of the problem and propose an O(n) space,
O((n?+ F) logn) time algorithm based on the Weighted Voronoi Diagram (WVD) of the
sites, where F is the number of edge-flips in the diagram as the weights change during
the matching algorithm. We conjecture that F is close to O(n?).

The new geometric results established in this paper include the following: We introduce
Weighted Relative Neighborhood Graphs (WRNG) and Weighted Gabriel Graphs (WGG).
These are generalizations of their unweighted versions studied in the literature. We show
WRNG and WGG are straight-line planar graphs; WRNG is a subgraph of WGG; and
WGG is a subgraph of the dual of WVD. Furthermore, we show that the admissible edges
(and hence, the matching edges) in Edmonds’ primal-dual algorithm form a subgraph of

WRNG.

Key Words: Matching, planarity, Weighted Relative Neighborhood Graphs, Weighted
Gabriel Graphs, Weighted Delaunay Diagrams.



1 Introduction

Graph Matching is a classical and well studied combinatorial optimization problem. A match-
ing in a graph is a subset of the edges, no two of which are incident to the same vertex. In a
weighted graph (with real valued weights on edges) the weight of a matching is the sum of its
edge weights. The mazimum cardinality matching problem is to find a matching of maximum
cardinality in the given (unweighted) graph. The minimum weight matching problem is to
find a maximum cardinality matching with the least possible weight in a given (weighted)
graph. The first polynomial time algorithm for these problems was proposed by the pio-
neering work of Edmonds [17,18]. Lovasz and Plummer [38] provide a comprehensive study
of graph matching. Also, [37,45,52] are excellent general sources for the subject. Galil [27]
provides a lucid survey of the area up to 1986. Let n and m, respectively, denote the number
of vertices and edges of the given graph. The best known time bound for the maximum
cardinality matching problem is O(m+/n) (see [33,41]). The best known time bound for the
minimum weight matching problem is O(n?) for dense graphs [23,37], and O(n(m + nlogn))
for sparse graphs [21,24]. (See also [28] for an O(mnlogn) time algorithm.) For the case of
integer edge weights a scaling method can be applied (see, for example, [19,26]). Some other
related problem areas are: the bottleneck matching problem [10,11,25], sensitivity analysis in
matching [55], heuristic matching algorithms [9], and on-line matching [36].

This paper is concerned with the Fuclidean Minimum Weight Matching (EMWM) prob-
lem: given 2n point sites in the plane that form the vertices of an underlying complete graph
with Euclidean interpoint distances as edge weights, find a minimum weight perfect matching
(that is, with cardinality n) of the point sites. The best time complexity we would get by ap-
plying any general graph based minimum weight matching algorithm to solve EMWM would
be O(n?) [23,37]. (For some variations of the matching problem more efficient algorithms ex-
ist. The bottleneck matching problem mentioned above is one example. Also, the minimum
weight matching of points on a simple polygon can be found in O(n(logn)?) time [39].) The
O(n®) time bound for MWEM stood for many years until Vaidya [54] gave an O(n?®(logn)*)

time, O(nlogn) space, algorithm for it. His algorithm is also based on Edmonds’ primal-dual



method, but he uses an efficient geometric query processing technique to further speed up the
algorithm.

To break the time barrier any further, there seems to be a need for a better under-
standing of the interplay between the graph theoretic methods on the one hand, and the
underlying (somewhat less understood) geometric properties on the other hand. Perhaps a
more challenging proposition would be to ask whether we can solve the problem mainly by
computational geometric methods. Two such methods are the sparsification and the lifting
techniques. The sparsification technique is to first compute a sparse subgraph of the under-
lying complete graph which is guaranteed to contain the solution (for instance, the optimum
perfect matching). This technique has been successfully applied to a number of problems such
as computing the closest pair, the nearest neighbors, and the Fuclidean Minimum Spanning
Tree via the Delaunay Triangulation of the sites (see [16,46,56]), and recently for computing
the Minimum Weight Euclidean Bottleneck Matching via k-Relative Neighborhood Graphs
[10,11]. The lifting technique is to construct a structure in a higher dimension so that its
projection down to the lower dimensions gives the desired result. Examples of this technique
are computing variations of the Voronoi diagram and the Delaunay Triangulation (see, for
example, [5,6,8,16,20,31,32]). Also, recent developments in computational geometry show
promise for improved algorithms for MWEM. Some of these techniques are: the geometric
partitioning techniques, such as in [1,2], and semidynamic and dynamic algorithms [12,47].
(For results on dynamic Voronoi diagrams of moving points see for example [22,30].)

In this paper, the Weighted Voronoi Diagram and its dual (the Weighted Delaunay Dia-
gram) play a prominent role. In fact, subgraphs of the Weighted Delaunay Diagram, namely,
Weighted Gabriel Graphs (WGG) and Weighted Relative Neighborhood Graphs (WRNG)
also come into play. Although the weighted versions of these graphs do not seem to ap-
pear in the literature previously, their unweighted versions have been studied extensively
[3,34,35,40,44,49,50,51,53].

We propose an O((n* + F)logn) time, O(n) space, algorithm for MWEM based on the
Weighted Voronoi Diagram of the 2n sites, where the weights are related to the linear pro-

gramming dual variables and dynamically change. The F term is the number of edge-flips in



the Weighted Voronoi Diagram during the matching algorithm. Furthermore, we conjecture
that 7 is close to O(n?). Our starting point is Edmonds’ linear programming formulation and
his primal-dual method. The main contribution of this paper includes further exploration of

the geometric properties of the Fuclidean version. More specifically:

e We show that if the edge weights form a distance metric (in an underlying complete
graph) then the dual variables corresponding to the vertices remain nonnegative. This
brings more symmetry between trivial and nontrivial blossoms, hence the primal con-
straints corresponding to vertices (that is, trivial blossoms) and nontrivial blossoms
become virtually alike. For the MWEM problem, this allows us to associate circular
disks centered at the point sites whose (nonnegative) radii are related to vertex and

blossom dual variables. These radii are considered as the site weights.

o We generalize the Relative Neighborhood Graphs and Gabriel Graphs to their weighted
versions. We show that when the weights are associated with the dual variables in Ed-
monds’ primal-dual weighted matching algorithm as applied to EMWM, the Weighted
Relative Neighborhood Graph is a subgraph of the Weighted Gabriel Graph. We also
show that in that case the Weighted Gabriel Graph is a straight-line connected planar
subgraph of the Weighted Delaunay Diagram and spans all the sites.

o We show the admissible edges form a subgraph of the Weighted Relative Neighborhood
Graph of the sites. Therefore, the admissible edges, considered as straight line segments,
are noncrossing and there are only O(n) of them at any given time, whereas the under-
lying graph contains ©(n?) edges. (The matching edges are a subset of the admissible
edges.) This enables us to search the sparse weighted Delaunay (or WGG or WRNG)
edges, rather than the underlying complete graph, in order to maintain the admissible
edges. However, we now have to pay the overhead for maintaining the Delaunay (or
WGG or WRNG) edges, since they change as the weights change. These edge changes
are called edge-flips. The latter phenomenon is known for the unweighted case (see, for

example, [6,32]).

¢ An immediate corollary of the above results is that the optimum perfect matching is a



subgraph of the Weighted Voronoi Diagram (and the Weighted Relative Neighborhood
Graph), where the weights are associated with the optimum dual variables. A tanta-
lizing question related to the sparsification technique is: can we directly and efficiently
compute this optimum Weighted Voronoi Diagram (or Weighted Relative Neighbor-
hood Graph)? Once we have the optimum weights, we can construct the WDD in
O(nlogn) time using Fortune’s sweep algorithm [20], and then compute its optimum

perfect matching in O(n%logn) time using any of the algorithms in [24,28].

The rest of the paper is organized as follows. Section 2 gives the preliminaries, including
the linear programming formulation of the minimum weight matching problem, an introduc-
tion to Edmonds’ primal-dual algorithm, some features of Vaidya’s algorithm, and some data
structuring rudimentaries. Section 3 contains the development of the new geometric results
listed above. Section 4 presents the proposed new algorithm. Section 5 contains further

discussion and concluding remarks.

2 Preliminaries

In this section we introduce the reader to some of the necessary background, before we get

into the details of our new results in the subsequent section.

2.1 The Linear Program

Here we will consider Edmonds’ linear programming formulation as adapted by Lovasz and
Plummer [38]. Let G = (V, F) be a given weighted graph with edge weights d. = d,, = d(v,u)
for e = (v,u) € E. We assume |V| = 2n and G contains a perfect matching. A blossom is
an odd cardinality subset of V. A blossom is called trivial if it is a singleton (a vertex);
otherwise it is called nontrivial. Let B denote the set of all blossoms of (. (Note that here
any complement of a blossom is also a blossom.) Let z be a real vector with an entry for each
edge of G (with the interpretation that z. = 1 if e is a matched edge and z. = 0 otherwise).
Similarly, let d denote the vector of edge weights. We say an edge e is incident to a blossom

B if exactly one endpoint of e is in B. We let VB denote the set of all edges incident to



blossom B. (Lovasz and Plummer call VB a cut.) Let 2(B) = X{z.|e € VB}. The linear

programming formulation of the problem is

minimize dl -x

subject to: x>0 (for each e € E)
z(B)=1 (for each trivial blossom B)
x(B)>1 (for each nontrivial blossom B) .

Now consider the dual program. We use a variable ap for each blossom B € B. Let
a(e) = a(u,v) = S{aple € VB} for any edge e = (u,v) € E. The dual program consist of

the following objective and constraints:

maximize XpBecp QB
subjectto: ap >0 (for each nontrivial blossom B)
a(e) <d. (for every edgee € F) .

In Section 3 we will show that these linear programming formulations can be further
simplified by removing the distinction between trivial and nontrivial blossoms if the underlying

graph is complete and the edge weights form a distance metric (such as the Euclidean case).

2.2 Edmonds’ Algorithm

Edmonds’ algorithm is a primal-dual algorithm and can be described based on the linear
programming formulations in the preceding subsection. The algorithm maintains dual feasi-
bility (starting with a(B) = 0 for every blossom B € B). It also maintains an integral primal
solution (starting with z. = 0 for each edge e € E) that satisfies all the primal constraints
except that it may violate some of the second and third set of primal constraints. That is,
for some blossoms B, we may have z(B) = 0. Any such solution is a matching of G though
not necessarily a perfect matching. The algorithm proceeds through n phases. In each phase,
it increases the number of matched edges by one (and thus resolves at least one of the vio-
lated primal constraints). We let M denote the set of matched edges during the execution of
the algorithm. To ensure optimality, the algorithm maintains the complementary slackness

conditions:

if 2(B)=0then o(B) =0, for each blossom B € B
if a(e) < d. then z. =0, for each edge e € F.



The slack for an edge e = (u,v) € E is the quantity slack(e) = slack(u,v) = d.—a(e) > 0.
An edge e € F is called admissible if a(e) = d., that is, with a zero slack. Dual feasibility
and the complementary slackness conditions imply that the edges in the (optimum) matching
are admissible. We call a blossom B active if it is either trivial or a(B) > 0. A biproduct
of Edmonds’ algorithm is that the set of active blossoms are nested. That is any two active
blossoms are either disjoint or one includes the other. This allows us to represent the blossoms
by the blossom structure forest. The trivial blossoms form the leaves of the structure. A
blossom Bj is a child of blossom B, in the structure, if By is the smallest active blossom
that properly contains By. The roots of the blossom structure forest will be called mazimal
blossoms.

A blossom B is called matched if 2(B) = 1, otherwise it is called ezposed. By implication,
a vertex v € V is matched if z. = 1 for some edge e € F incident to v, otherwise it is exposed.
A pair of vertices (or blossoms) incident to a matched edge are called mates. The base of an
active blossom is its unique vertex that is not matched with any other vertex of that blossom
(it may be matched with a vertex in another blossom). The blossom is exposed if and only if
its base is exposed.

An alternating path in G with respect to a matching M is a simple path in G whose edges
alternate between M and not in M. An augmenting path in G with respect to a matching M is
an alternating path between two exposed vertices of . If there is an augmenting path P, then
we can augment the matching M by changing it to M’ = M @ P (the symmetric difference of
M and P). That is, we switch the status of edges of P from matched to unmatched and vice
versa. It is easy to check that M’ is indeed a matching and |M’'| = |[M| 4+ 1. The converse
also holds:

Fact 2.1 A matching M in G has mazimum cardinality if and only if there is no augmenting

path in G with respect to M.

Let B denote the current set of maximal blossoms in the algorithm. The shrunken graph
G/B is obtained from G by contracting its maximal blossoms to single super vertices. The

shrunken matching M/B is defined similarly.



Fact 2.2 There is an augmenting path in G with respect to a matching M, if and only if
there is an augmenting path in G /B with respect to M/B.

At any point in time, a(B) can change only if B is a maximal blossom. The algorithm
gives each maximal blossom one of the labels F,S5.,7. The meaning of these labels are:
label(B) = F means o B) is fixed, label(B) = 5 means a(B) is increasing, and label(B) =T
means a(B) is decreasing. A vertex inherits the label of the maximal blossom that contains
it. We shall also refer to a maximal blossom as an §-blossom, a T-blossom, or an F’-blossom,
according to its label. At the beginning of each phase, the exposed maximal blossoms are
S-blossoms, the rest are F-blossoms. To help construct an augmenting path during a phase,
the algorithm maintains an alternating forest in the (conceptually) shrunken graph G/B using
only the admissible edges. The nodes of the forest are the maximal blossoms labeled S or
T. The roots of the forest are exactly the exposed maximal blossoms. The path from a root
to any leaf in this forest is an alternating path and the nodes alternate between 5-blossoms
and T-blossoms. A T-blossom has exactly one child — its S-blossom mate — (their bases
are matched). Figure 1 shows an example of an alternating tree and blossoms (some of the
admissible edges are shown, with the matched edges shown thicker). Now imagine for each
maximal S-blossom B we increase «(B), and for each maximal T-blossom we decrease a(B),
all by the same amount 6, until either a new edge becomes admissible, or a(B) becomes 0 for

some maximal T-blossom B. The quantity € is obtained from the following equations:

bss = min{ slack(u,v)/2 | (u,v) € E,uand v are in distinct mazimal S — blossoms}
Ors min { slack(u,v) | (u,v) € E,uis an F' — vertex, v is an S — vertex}
Or min { o(B) | B is a mazimal T — blossom }
6 = min {0ss, Ors, 01 } .

Recall that the algorithm consists of n augmenting phases. IFach phase consists of a

number of stages of the following types:
1. a dual variable change stage,
2. a tree growing stage,

3. a blossom deactivation (or expansion) stage,



Figure 1: An alternating tree and its blossom clusters.

4. a blossom activation (or shrinking) stage, and
5. an augmentation stage.

Each phase ends with an augmentation stage. The details are as follows.
If # > 0, then we need to readjust the dual variables corresponding to maximal blossoms

as follows:
(B) = a(B)+6 if Bis an S-blossom
“ "] a(B)—-6 if Bis a T-blossom

This increases the dual objective value by # times the number of exposed maximal blos-
soms. (The exposed maximal blossoms are S-blossoms and the others are either F' type or
matched in pairs of S type and T" type). It would be too costly to make these repeated dual
variable changes. To avoid this, we will use an offset for each 5 or 7" blossom similar to [28]
as follows. Let A be the accumulated é values for the current phase (A is set to 0 at the
beginning of the phase). For each maximal blossom B, let A(B) denote the value of A at the
time B became active most recently. Then, we let a(B) remain fixed, but we use the quantity
a(B)+ A — A(B) (respectively, a(B)— A+ A(B)) which is the true up to date value of a(B),
for an S-blossom (respectively, T-blossom) B. At the end of each phase, and when B stops



being a maximal blossom (for instance, due to being shrunk into a larger blossom), we update
a(B) by adding (subtracting) A — A(B) to it (from it) if B is an S-blossom (7-blossom). We
also set A(B) := 0 at this point. Fact 2.3 below shows that we will need to perform such an
operation for a total of only O(n) times in each phase.

Otherwise, # = 0. There are three possible subcases:

The case frs = 0 corresponds to the tree growing stage. This means that an edge between
an S-blossom Bg and an F-blossom Br becomes admissible. We add B as a child of Bg in
its alternating tree; change the label of By to T and change the label of its mate from F to
5. We also add to the alternating tree the mate of By as the child of By and the matched
edge between them.

The case 8gg = 0: This means that an edge between two S-blossoms B and C has
become admissible. If B and C are in the same alternating tree, then a new blossom must
be activated (the blossom shrinking stage). The new blossom D consists of all the ancestor
blossoms of B and C in the alternating tree starting from B and C up to and including
their lowest common ancestor B,. Suppose these ancestors of B along the alternating path
are By = B,By,---, By, B,, and similarly, the ancestors of (' are ('} = C,Cy,---,C), B,.
Then the alternating cycle of the new blossom D is By, By_1,---, B2, B1,C1,Cq,---,C)p, B,.
We contract (or shrink) these blossoms into the newly activated maximal blossom D in the
alternating tree, and label it 5. Subblossom B, becomes the base of D. Accordingly, we
introduce a new root in the blossom structure forest corresponding to the newly activated
blossom D). We make its children those old roots that are no longer maximal and correspond
to its subblossoms. The subblossoms loose their labels.

On the other hand, if the two S-blossoms B and C are in two different alternating trees,
then we have found an augmenting path, namely the path that consists of the admissible edge
between B and ', and the two alternating paths from, respectively, B and C up to their roots
in the alternating forest. In the latter case, we augment the matching and end the current
phase.

The case 87 = 0 corresponds to the blossom deactivation (or blossom expansion) stage.

This occurs when a(B) has become 0 for some T-blossom B. We need to expand B. This

10



M := (; set dual variables and vertex weights to zero;
initialize the blossom structure forest by setting each
singleton vertex as a maximal blossom;
for phase :=1,---.n do
initialize the alternating forest for this phase;
augmented := false;
while not augmented do
calculate #ss,0rs, 071, 6;
case:
f# >0 : UPDATE DUAL VARIABLES;
67 = 0: DEACTIVATE BLOSSOM;
frs = 0: GROW ALTERNATING TREE;
fss = 0: if the two S-blossoms incident to the new
admissible edge are in the same alternating tree
then ACTIVATE BLOSSOM
else AUGMENT MATCHING ; augmented := true
end{while}
end{for}

Figure 2: A summary of Edmonds’ Minimum Weight Matching Algorithm.

needs restructuring of both the blossom structure forest and the alternating forest. The root
B in the blossom structure forest is removed. This causes its previous children to become
new roots in the forest. These new roots are now maximal blossoms. In the alternating tree
containing B, we similarly expand B. This expansion can be described as follows. First
replace B by its alternating cycle of subblossoms. This alternating cycle is partitioned into
two chains delimited by the connection to the old parent of B and child of B. One of the
chains has odd length, the other one even. Remove the chain with odd length from the
alternating tree and relabel the (now) maximal blossoms on it as F-blossoms. The (now)
maximal blossoms on the remaining chain of the alternating cycle are relabeled as .S-blossoms
and T'-blossoms so as to maintain the alternating property of the tree.

Figure 2 shows a summary of Edmonds’ algorithm.

11



Fact 2.3 ([28,54]) Within each of the n phases of the algorithm, the following quantities are
O(n) : the number of alternating tree growings, blossom deactivations, blossom activations,
dual variable changes, the total number of different maximal blossoms, the number of times

fss,0rs,0r, and 6 are computed.

Proof sketch: These mainly follow from the nested structure of the active blossoms and
the fact that within a phase each S-blossom corresponds to a unique node in the blossom
structure forest at the end of the phase, and each T-blossom corresponds to a unique node in

the blossom structure forest at the beginning of the phase. O

Let W be any subset of V. We define p(W) = X{ a(B) | W C B € B}. Let lca(u,v)
denote the blossom that is the lowest common ancestor of vertices u and » in the blossom
structure forest. Assume the lowest common ancestor is V if w and v are not in the same tree

of the forest. (Note that p(V) = 0.)

Lemma 2.4 Consider an arbitrary edge e = (u,v) € E. Then, a(e) = p(u) + p(v) —
2p(lca(u,v)), where p(z) = ¥{ a(B) | « € B} for a vertex . Thus, if u and v are not

in the same active blossom, then a(e) = p(u)+ p(v) .
Proof: This easily follows from the nested structure of active blossoms. O

We represent blossoms, as ordered sets of vertices, by an offsetted concatenable queue
explained below. (This is the same as priority queue p.q.; in [28].) The linear ordering is
according to the order of subblossoms on the alternating cycle when the blossom was activated.
The base of the blossom is considered the last subblossom in this ordering. The same ordering
is inductively applied to subblossoms, in the blossom structure forest. We need to perform

the following operations on the offsetted concatenable queues:
e find(v) : find the maximal blossom containing vertex v,

e eval(v) : return up-to-date value of p(v) (including the offset £(A — A(B)) if B, the

maximal blossom containing v, is an S-blossom or a T-blossom ).

12



e concatenate( By, Bz) : concatenate the two maximal blossoms By and By,

o split(B,v) : split maximal blossom B and its linear ordering at vertex v into two disjoint

offsetted concatenable queues.

We need the operation find for deciding whether two ends of an edge belong to the same
maximal blossom. The second operation is also needed for edge-slack computations when
the two vertices are not in the same blossom. Operations concatenate and split are required
for blossom expansion and shrinking and for augmentation. We can implement an offsetted
concatenable queue by 2-3 trees whose leaves correspond to the vertices of the blossom in its
linear order [4]. This will allow us to perform find, concatenate and split in O(logn) time.
We also maintain an additional real number in each node of the tree so that the sum of the
numbers on the path from the root to any leaf v is p(v). We can accomplish this by using
the idea of [28]. In this way, the operation eval can also be performed in O(logn) time. A
blossom expansion or shrinking involving r subblossoms can be performed in O(rlogn) time
(for a total of O(nlogn) time per phase by Fact 2.3). Also, an augmentation stage may cause
the base of the blossoms on the augmenting path to be shifted around its alternating cycle.
This can be implemented by a split and concatenate on the affected blossoms to maintain
their appropriate linear ordering. There is only one augmentation per phase and it can be
performed in O(nlogn) time. We also maintain 7-blossoms in a priority queue for logarithmic

computation of #7. We conclude:

Theorem 2.5 Fxcluding the maintenance of Ops and 0ss, Edmonds’ algorithm can be im-

plemented to run in O(nlogn) time per phase, O(n?logn) time total, and O(n) space.

2.3 The Euclidean case

The remaining issue is how to maintain fsg and fpg efficiently. The rest of the paper
concentrates on this issue for the Fuclidean case. So, now G is a complete graph on 2n
planar point sites as its vertices, and d(u,v) is the Fuclidean distance between sites u
and v. In the next section we will show that in the Euclidean case p(v) is nonnegative

for every vertex v. Think of p(v) as the weight, or radius of a circular disk centered at

13



vertex v. Let the weighted distance between a pair of sites u and v be the slack value
slack(u,v) = d(u,v) — a(u,v). When u and v are not in the same active blossom, then
by Lemma 2.4 we have slack(u,v) = d(u,v)— p(u) — p(v) > 0. The efficient maintenance of

frs and Osg suggests the following two query processing problems respectively:

Problem 1. ( Bichromatic weighted closest-pair maintenance):
We have two disjoint subsets of the 2n point sites: S (red) and F (blue). we want to maintain
the minimum weighted red-blue distance dynamically, when weighted red points can be added

to S and weighted blue points can be added to or deleted from F.

Problem 2. ( Unichromatic weighted closest-pair maintenance):

We have a set of at most 2n planar point sites S with the nonnegative weight p(v) for site v.
Think of these as circular disks with radius p(v) centered at v. These disks form a number of
connected components in the plane. Two sites belong to the same active blossom if and only
if their disks belong to the same connected component (see the next section). The problem
is to maintain the minimum (nonnegative) weighted distance between connected components

dynamically subject only to site insertions.

These are modified versions of the two query processing problems posed by Vaidya [54].
Vaidya was able to show that these two problems can be solved by maintaining data structures
so that each of the individual operations can be performed in O(y/n polylog(n)) amortized
time, and O(nlogn) space. This resulted in his O(n?\/n polylog(n)) time algorithms for both
the bipartite and the nonbipartite Fuclidean Minimum Weight Matching problems. Recently,
as noted in [7], new developments in dynamic bichromatic closest-pair algorithms further
reduces the running time of Vaidya’s bipartite algorithm to O(n?*¢), for any € > 0, with the
constant of proportionality depending on € [1,2]. Can Problem 2 also be solved in o(y/n) per
operation? Can Problems 1 or 2 be solved in O(polylog(n)) time per operation? The main
strategy of this paper is developed in the next section. Here let us briefly offer a possible
alternative about tackling Problem 2. Maintain the Additively Weighted Voronoi Diagram
of the sites in 5. Since the weights of all vertices in 5 grow at the same rate, the Weighted

Voronoi diagram remains fixed during a phase, except the only changes occur when new sites

14



are inserted into S with given weights. How fast can we insert new weighted sites in the
diagram? We in fact need the dual of the diagram — the Weighted Delaunay Diagram. To
maintain the closest pair, we label the O(n) edges of the dual depending on whether the
two end points are in the same S-blossom or not. Maintain the edges whose two ends are
in different S-blossoms in a priority queue, with their weighted distances as their priorities.
In this way, we can maintain the closest-pair in logarithmic time. The only open question is
how fast can we insert new sites in the diagram. For the related randomized problem in the
unweighted case see [15,29]. Eventhough in the worst case insertion of O(n) sites may cause
Q(n?) combinatorial changes in the diagram even in the unweighted case, such worst cases
may not occur in the matching algorithm, due to a fare amount of locality and clustering. We
leave this as an open problem. In the rest of the paper we develop an alternative strategy, as

well as establish the necessary geometric ideas.

3 New Geometric Results

3.1 The Euclidean Linear Program

The main result of this subsection is the following theorem which removes the distinction
between the trivial and nontrivial blossoms in the linear program for the minimum weight

matching in the Fuclidean case.

Theorem 3.1 In the minimum weight matching problem on a complete graph if the edge
weights form a distance metric, such as the FMWM problem, then the dual variables corre-

sponding to the vertices (that is, trivial blossoms) remain nonnegative in Edmonds’ algorithm.

Proof: A proof based on the primal linear program is possible. Here we give a proof based on
the dual program and Edmonds’ algorithm. Let us first consider EMWM; the generalization
to other cases would be straightforward. Suppose to the contrary that for some vertex v, a(v)
becomes negative in Edmonds’ algorithm. Consider the first time that this occurs. Just prior
to that time, v must have been a maximal T-blossom. At this point p(v) = a(v) > 0, and
v is incident to two maximal active S-blossoms By and B, via two admissible edges. These

are the parent and the unique child of » in its alternating tree. Suppose these two admissible
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edges are (v,u) and (v, w), with v € By and w € By. At this point the three disks centered

at v, u,w have positive radii p(v), p(u), p(w). Furthermore,

d(v,u) = p(v)+p(u),
d(v,w) = p(v)+p(w),
d(u,w) = p(u)+ p(w) .

These follow from Lemma 2.4, the dual feasibility, and the fact that edges (v,u) and (v, w)
are admissible. Also, v is a T-vertex and its radius decreases, while v and w are S-vertices
and their radii are increasing. This progress will stop when the third inequality in equation 1
becomes equality, before p(v) becomes negative. That is, at this point the circles centered
at the triple (v, u,w) will form Apollonius circles (that is, three pairwise externally tangent

circles [13,14]) with radii

p(v) = (d(v,u)+ d(v,w) - d(u,w))/2.
plu) = (d(u,v)+ d(u,w) — d(v,w))/2.
p(w) = (d(w,v)+ d(w,w) — d(v,u))/2.

These are nonnegative radii since the edge distances satisfy the triangle inequality (and the
other metric axioms). Note that at this point d(u,w) = p(u) + p(w). Thus, the edge (u,w)
between two distinct S-blossoms By and B, has become admissible. So, v, By and By will be
shrunk into a new S-blossom, and a(v) = p(v) > 0 will be fixed. A contradiction.

The generalization to other metric distances is now obvious; use the same argument em-

phasizing the above equations without mentioning circles. O

Thus, without loss of generality, we can add the constraints
a(B) >0 (for each trivial blossom B )

to Edmonds’ dual linear program. We thus obtain the following simplified primal-dual linear
programs for EMWM:

minimize dl -
subject to: ., >0  (for each pair of sites u,v)
z(B)>1 (for each blossom B) .
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maximize XpBecp QB
subjectto: ap >0 (for each blossom B)
a(u,v) < d(u,v) (for each pair of sites u,v) .

Now, dual feasibility implies p(v) > a(v) > 0 for each vertex v.

3.2 Disks and blossoms in EMWM

Let disk(v) denote the circular disk centered at v with the nonnegative radius p(v). For each

active blossom B associate the planar region Region(B) = ,cp disk(v).

Lemma 3.2 Suppose Fdmonds’ algorithm is applied to EMWM. Then, for each active blos-
som B (ie, a(B) > 0), the interior of Region(B) is connected.

Proof: The proof follows by an easy induction on the cardinality of the blossoms. If B is
a trivial active blossom, then Region(B) is a disk and its interior is obviously connected.
Otherwise, consider when B is formed from subblossoms when it is activated. By induction
the subblossoms satisfy the assertion of the lemma. When B is activated, Region(B) becomes
path connected since the admissible edges along its alternating cycle connect its subblossom
regions. At this point the only possible disconnection points for interior of Region(B) are
where two regions of subblossoms become tangent to each other. However, when a(B) > 0,
the abutting disks from its different subblossoms overlap and make the interior of Region(B)

also connected. O

Lemma 3.3 Consider any two distinct mazimal blossoms By and By. Then, the interiors of

Region(By) and Region(B;) are disjoint.

Proof: Otherwise, there must be vertices v € By and w € By such that disk(v) and disk(u)
overlap. But then, d(u,v) < p(u)+ p(v) = a(u,v), since u and v are not in the same active

blossom. This violates dual feasibility. O

Corollary 3.4 Two vertices are in the same maximal active blossom if and only if they are

in the same connected component of the interior of U,ey disk(v).
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Figure 3: Blossom clusters in EMWM.

Theorem 3.5 During Edmonds’ algorithm applied to EMWM, there is no pair of distinct
vertices u and v such that disk(u) is included in the interior of disk(v). That is, |p(u)—p(v)| <

d(u,v), for each pair of sites w and v.

Proof: By dual feasibility and Lemma 2.4, at all times we have d(u,v) > p(u) + p(v) —
2p(lca(u,v)) . Let us define r, = p(u) — p(lca(u,v)) and r, = p(v) — p(lca(u,v)). Thus,
d(u,v) > r, + r,. We note that r, = ¥{ o(B) | v € B C lca(u,v) } > 0. Similarly, r, > 0.
Therefore, the two disks centered at v and v with radii, respectively, r, and r, have disjoint
interiors. Hence, |r, — r,| < d(u,v). By adding p({ca(u,v)) to these two radii, we obtain
1p(w) = p(0)| < d(u,v). O

Figure 3 shows the clustering structure of blossoms and subblossoms in an example. The

admissible edges are shown in straight line-segments, the bold ones are matched edges.

3.3 The Weighted Voronoi Diagram, Gabriel and Relative Neighborhood
Graphs

Weighted Voronoi Diagram: Let p(s) be the weight of each site s. For any point z in
the plane, the weighted distance of  from site s is defined as é5(2) = d(z,s) — p(s). Consider
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the location of the points that have smaller or equal weighted distance from site » than wv.
This region is empty if p(u) < p(v) — d(u, v). Otherwise, it includes u and is bounded by the
bisector of u and v, denoted by H(u,v), which is one branch of a hyperbola with foci u and
v. This bisector is bending towards the site with smaller weight (it is a line if both sites have
equal weight and it is a half line if |p(u) — p(v)| = d(u, v)). This region (if nonempty) is star
shaped and u is one of its kernel points. The Weighted Voronoi cell (or Voronoi region) of site
s, Vor(s), is the set of points in the plane that are at least as close (in the sense of weighted
distance) to s than to any other site. A Weighted Voronoi region Vor(s) is star shaped
with s as one of its kernel points, and its boundary consists of a chain of hyperbolas. The
subdivision of the plane by Weighted Voronoi regions of the sites is their Weighted Voronoi
Diagram (WVD). The vertices and edges of the subdivision are called Voronoi vertices and
Voronoi edges, respectively. In the absence of degeneracy, Voronoi vertices have degree three.

For more details on the general properties of WVD see for example [5,6,20,31,48].

Remark: In this paper the weights are not entirely general due to Theorem 3.5. Some of

the properties we prove here do not hold for general weights.

Weighted Delaunay Diagram: The WDD is the topological dual of the Weighted Voronoi
diagram. The sites are the vertices of WDD, and there is an edge between a pair of sites u and
v, if Vor(u) and Vor(v) share a common boundary edge. In the unweighted case (excluding
degenerate cases) WDD is a straight-line triangulation of the sites and is called Delaunay
Triangulation. In the weighted case, WDD is possibly a multi-graph and can be drawn quasi-
straight-line as follows. In the weighted case, Vor(u) (if non-empty) is not necessarily convex
but it is star-shaped with site u one of its kernel points (that is, the line segment between u
and any point € Vor(u) does not intersect the exterior of Vor(u)). First suppose Vor(u)
has a non-empty interior. Draw a line-segment between u and each Voronoi vertex on the
boundary of Vor(u). These segments partition Vor(u) into sectors. We can associate each
sector with the boundary edge of Vor(u) it contains. This boundary edge is called the base

of the sector. Now, if Vor(u) and Vor(v) share a common boundary edge, then consider the

19



sectors of Vor(u) and Vor(v) with the common base. If the common base does not intersect
the line segment (u,v), then draw the edge between u and v as two connected straight line
segments within the two sectors with the connection point on the common base. Draw the
edge as straight-line, if the segment (u, v) intersects the common base. The common boundary
between a pair of Voronoi regions may consist of several bases. In that case we will have the
corresponding multiple edges in the WDD. In the absence of degeneracy, and if none of the
Voronoi regions are empty, this drawing gives a quasi-straight-line topological triangulation
(that is, each bounded face is incident to three sites). A site u is on the boundary of the
unbounded (exterior) face, if and only if disk(u) touches the boundary of the convex-hull of
Uvsey disk(v). In the presense of degeneracy, a Voronoi region might be a half-line or a line
segment, and some internal faces may not be triangles. These cases can be resolved by slight
perturbation: in the first case thicken the half-line or the line segment slightly to endow it
an interior; in the second case triangulate these non-triangular faces by adding to them a
maximal number of non-crossing chords. For additional properties of Voronoi Diagrams and

Weighted Delaunay Diagrams and how to compute them in O(nlogn) time see [20,48].

Weighted Gabriel Graph: The WGG is the straight-line graph whose vertices are the
given sites, and the line segment between sites w and v is an edge of the graph if and only if
the (closed) line segment (u,v) intersects the bisector H(w,v) and this intersection point ¢,
is on the common boundary of Vor(u) and Vor(v). In other words, let ¢, = (u,v)N H(u,v)
(if it exists). Then (u,v)is an edge of the WGG, if and only if ¢, is closest (in terms of
weighted distance) to u and v than to any other site (except the degenerate case mentioned
below). Point ¢y, is called the Weighted Gabriel Center of sites u and v. The following is

now obvious.

Theorem 3.6 The Weighted Gabriel Graph is a subgraph of the Weighted Delaunay Diagram.

A degenerate case: Consider a quadruple of sites (a,b, ¢,d) such that (a,b) and (¢, d) cross

each other at a point  and ¢y, = ¢.¢ = @. In this case z has the same weighted distance from
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all four sites a, b, ¢, d. This is considered a degenerate case. In WGG if the ends of a pair of
edges form the degenerate case above, we remove one of these two edges. If, in addition, sites
a,b,c,d are collinear, then we remove edge (a,b) if (as a line segment) it is not included in

(¢, d); similarly, we remove edge (¢, d) if it is not included in (a,b). O

Below, we will prove some additional properties of the Gabriel Graphs (and later Weighted
Relative Neighborhood Graphs) when the weights satisfy Theorem 3.5.

Lemma 3.7 The Weighted Gabriel Center c,, of each pair of sites u and v exists and is on

the line segment (u,v).

Proof: Select the point p on the line segment (u,v) such that d(u,p) = (d(u,v)+ p(u) —
p(v))/2. By Theorem 3.5 |p(u) — p(v)| < d(u,v). Thus, pis indeed on the line segment (u, v).
Also, 6,(p) = 6,(p) = (d(u,v) — p(u) — p(v))/2. Therefore, p = ¢y, is the desired point. O

Lemma 3.8 For each site u, Vor(u) is a nonempty star shaped region and u is one of its

kernel points.

Proof: From Lemma 3.7, the bisector H(u,v) of any pair of sites v and v intersects the
line-segment (u,v). Hence, u is at least as close (in weighted distance) to itself as to v. This
implies u € Vor(u), and hence, Vor(u) is nonempty. Furthermore, The region of the plane
bounded by H(u,v) that includes u is star shaped and w is its kernel point. Since Vor(u) is
the intersection of such regions, itself is star shaped and w is its kernel point. O

In fact, we prove a stronger result below.

Theorem 3.9 The Weighted Gabriel Graph is a connected straight-line planar graph and

spans all the sites.

Proof: The fact that WGG is straight-line planar follows from the quasi-linear drawing
and planarity of WDD and Theorem 3.6. Now suppose to the contrary that WGG is not
connected. Consider a pair of sites v and » that are disconnected in WGG. Select v and v such

that é,(cuw) = (d(u,v)—p(u)—p(v))/2is minimum possible. If the choice is not unique, select
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a pair (u,v) among them such that d(u,v) is minimum. If the choice is still not unique, select
a pair (u,v) among them such that the minimum x-coordinate of w or v is as small as possible
(break the tie arbitrarily). If there is no other site w, such that é,(cyy) < 6u(cyuw), then by
definition, the line segment (u,v) is an edge in WGG, a contradiction. Now, assume there is a
site w such that d,,(cy) < 0yu(cuy). Without loss of generality assume w is not collinear with u
and v, or the above inequality is strict (otherwise, by the degeneracy convention, (u,v) would
still be an edge in the graph, a contradiction). Then d(u,w) < d(u,cy) + d(w, ¢yy). Thus,
20, (cyw) = d(u,w) — p(u) — p(w) < dy(Cuw) + Ouwl(cun) < 204(cun). Thus, dy(Cuw) < dulCu)-
Similarly, 6,(¢cyy) < 6y(cyy). Then, by the selection criterion of (u,v), we conclude that WGG
contains a path between v and w and a path between v and w. Thus, u and v are connected,

a contradiction. O

Weighted Relative Neighborhood Graph: The WRNG, which is also a straight-line
graph with the given sites as vertices, is defined as follows. Let §(a,b) = d(a,b)— p(a)— p(b)

be the (symmetric) relative distance between sites @ and b. The line segment (a,b) is an edge

of WRNG if and only if 6(a,b) < maz{é(a,c),d(b,c)}, for any other site c.

Theorem 3.10 The Weighted Relative Neighborhood Graph is a subgraph of the Weighted
Gabriel Graph.

Proof: Suppose (a,b) is an edge of WRNG. Then, for any other site ¢ we have §(a,b) <
max{6(a,c),6(b,c)}. Thus,

6c(cab) = d(Cacab)_p(C)

d(a,c)—d(a,cq) — p(c)
= d(a,c)—6(a,b)/2.

v

Similarly, 6.(cqp) > 6(b,¢) — 6(a,b)/2. Thus,

0.(cap) > max{d(a,c),6(b,c)}—6(a,b)/2
> 6(a,b)/2

= ba(cap) -
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This implies (a,b) is an edge in WGG. O.

Corollary 3.11 The Weighted Relative Neighborhood Graph is a straight-line planar sub-

graph of the Weighted Delaunay Diagram.

Proof: Follows from Theorems 3.6, 3.9 and 3.10. O

3.4 The Admissible Edges

In this subsection we establish some connection between the admissible edges and the struc-

tures discussed in the previous subsection, such as Weighted Relative Neighborhood Graphs.

Lemma 3.12 Consider any site v during the algorithm. Initially v is an exposed §-vertez.
After a while v acquires an incident admissible edge for the first time. From that point on v

maintains at least one incident admissible edge.

Proof: Initially every site v is an exposed S-vertex and hence p(v) keeps increasing. There-
fore, eventually some edge (v, u) incident to » must become admissible. The only way this
edge can become inadmissible later is when both u and v are T-vertices in different blossoms.
However, any T-vertex is already matched, and matched vertices do not become exposed.

The matched edge incident to v is an admissible edge. O

Recall that p(a,b) = p(lca(a,b)) = X{p(B) | a € B,b € B}. Furthermore, by Lemma 2.4
and dual feasibility, we have d(a,b) > a(a,b) = p(a)+ p(b) — 2p(a,b). So, for an admissible
edge (a,b) we have 6,(cqp) = —p(a,b) = (d(a,b)—p(a)—p(b))/2. Consider applying Edmonds’
algorithm to EMWM. We have the following;:

Lemma 3.13 For any three sites a,b, ¢, we have p(a,b) > min{p(a,c),p(b,c)}

Proof: Here we use the nested structure of the blossoms, that is, the blossom structure
forest. To simplify the discussion, we convert the blossom structure forest to a tree by adding
the superficial “blossom” V as the root and making all maximal blossoms its children. Now

every blossom is a descendent of the new root in the tree. Consider the subtree rooted at
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lca(a,b). If ¢ is outside this subtree, then lca(a,b) is a descendent of lca(a,c) = leca(b,c).
Hence, p(a,b) > p(a,c) = p(b,c). If ¢ is in the subtree, there are two case: (i) lca(a,c) is
a descendent of lca(a,b) = lca(e,b). In that case p(a,c) > p(b,c¢) = pl(a,b). (ii) lca(b,c)
is a descendent of lca(a,c) = lca(a,b). In that case p(b,c) > p(a,c) = p(a,b). In all cases
pla,b) = min{p(a,c),p(b,c)}. O

Theorem 3.14 Admissible edges form a subgraph of the Weighted Relative Neighborhood
Graph.

Proof: Let (a,b) be an admissible edge. Let ¢ be any other site. By Lemma 3.13 we have

§(a.b) = d(a.b)— p(a) - p(b)
= —2p(a,b)
maz{—2p(a,c), —2p(b,c)}
maa{d(a,e) ~ p(a) - ple),d(b,e) ~ p(b) - p(c)}
maz{8(a,c),6(b,c)} .

IN A

This implies (a,b) is an edge of WRNG. O

Corollary 3.15 At any time during the algorithm there are only O(n) admissible edges and

they are non-crossing.

Proof: By Theorems 3.9, 3.10, 3.14, and the convention on resolving the degenerate cases.

a

Remark: A necessary condition for optimality is that the Weighted Relative Neighborhood
Graph must contain a perfect matching (the alleged optimum matching). The WRNG, for
arbitrary weights, may not necessarily contain a perfect matching. So, an open question is
to find out under what condition on the weights does the corresponding WRNG contain a

perfect matching. Also, how does WRNG change as the weights change? O
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3.5 The Edge-Flip Criterion

In this subsection we show how to compute the # change needed before an edge-flip in WDD
occurs. There are two kinds of flips possible and are explained below. Let the triple (2, y;, ;)
denote a circle ; with radius r; whose center is at Cartesian coordinates (x;,y;). We say
three circles C;, ¢ = 1,2, 3, are collinear, if there is a line tangent to the three given circles,
and all three circles are on the same side of the line. Also, we say four circles C, ¢ = 1,2, 3,4,
are cocircular, if there is a circle (' tangent to the four given circles, and all four circles are on
the same side of C', that is, all external tangents, or all internal tangents to C'. (Cocircularity
condition corresponds to the degenerate case mentioned earlier with respect to Weighted

Delaunay and Voronoi Diagrams.) We need the following two lemmas.

Lemma 3.16 Three circles C; = (x;,y;,7i), i = 1,2,3, are collinear, only if A>—B*-(C? =0,

where
1 o 1 rioy 1 re o2 1
A = 9 Y2 1 5 B = T2 Y2 1 5 C = Tog X2 1
r3 ys 1 rs3 ys 1 r3 23 1

Proof: Let the equation of the line tangent to the three circles be az 4+ by + ¢ = 0. Suppose
this equation is normalized so that a? + b2 = 1. Now consider the signed distance of the
centers of the three circles from this line. We get the three equations az; + by; + ¢ = r;, for
i = 1,2,3. Using Cramer’s rule, we obtain a« = B/A, b = —C'/A. Substitute these in the

normalization condition a? + 52 = 1 to obtain the lemma. O
Lemma 3.17 Four circles C; = (2, yi, 1), 1 = 1,2,3,4, are cocircular, only if

4AB+C*4+D*—FE? =0,

where
Iz o om 21Tt M 1z onm
1z oy T | w2 Y2 T |l oz oy 1
A - b B - b C - b
1 23 ys 73 Z3 T3 Y3 T3 1 z3 w3 73
1 xg ya 14 Z4 T4 Y4 T4 1ozg ya 1y
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1 21 1 M 1 21 1 W1
1 Z9 T T3 1 Z9 X3 2
D= , = 4 ,and z=ax? 4y —r? .
1 Z3 T3 T3 1 Z3 X3 Y3
1 Z4 Tq4 T4 1 Z4 Tg Yaq

Proof: Suppose the (unknown) circle tangent to the given four circles C; is (z,y,r), where r
is positive for external tangency and negative for internal tangency. Then, the cocircularity
condition is

(2 =2 +(y—p) = (r+r)* . fori=1234.
To linearize these equations, define the new variable z as

z:x2+y2—7‘2.

Then, we have the four linear equations
—z24zix+yy+rir=2/2 , fori=1,2,3,4.

Using Cramer’s rule, we obtain the solutions 2 = —B/A, 2 = C'/2A,y = —D/2A,r = E/2A.
Substitute these in the condition z = z? + y? — r? to obtain the lemma. O

As the site weights change, the Weighted Delaunay Diagram changes by edge-flips. There
are two kinds of edge-flips (corresponding to Lemmas 3.16 and 3.17).

One kind is when an unbounded Voronoi edge appears or disappears. This happens
when the Voronoi vertex incident to the unbounded Voronoi edge moves to (or from) infinity.
This occurs when the disks of the three sites that share that Voronoi vertex on their com-
mon boundary become collinear. The corresponding condition is given in Lemma 3.16. In
Lemma 3.16 the three circles C; = (z;,y;,7;) are the associated three sites, where r; is p(¢)
if site ¢ is an F-vertex, p(¢) + 6 if 7 is an S-vertex, and it is p(¢) — 6 if 7 is a T-vertex. We
substitute these values in the stated condition of the lemma and compute the smallest positive
value of @. It should not be hard to see that the condition is a second degree polynomial in
f. The corresponding event in WDD is called an edge-flip of the first kind: the edge of WDD
corresponding to the infinite edge in WVD is either deleted or added.
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The second kind is when a bounded Voronoi edge shrinks to zero length, that is, its
two incident Voronoi vertices coincide. The corresponding condition is given in Lemma 3.17.
Similar to the above, this involves solving the stated condition of Lemma 3.17 for the unknown
f. The corresponding event in WDD is called an edge-flip of the second kind. In general,
the condition becomes a 6-th degree polynomial in 8. However, if the four sites involved are
of at most 2 types (from among the 3 possible types: T, S, F'), then the polynomial is of
degree 4, since it involves computing the intersection of two known hyperbolas. It is only
when all 3 types are present (that is, an S-vertex, a T-vertex, an F-vertex, and one other
vertex of any type) that the degree of the polynomial is 6. We will assume that this equation
can be solved for the smallest positive root § in O(1) time. (Implicitly we are also making
an assumption that extracting square roots is also done in O(1) time in order to compute

inter-point distances.)

4 The New Algorithm

The proposed new algorithm for EMWM is the following modification of Edmonds’ algorithm.
During the initialization we also construct, in O(nlogn) time, the (unweighted) Weighted
Delaunay Diagram (since site weights are zero at this point). As the weights change, the
WDD changes when an edge-flip occurs as discussed in the previous subsection. Consider
an edge (a,b) of WDD that is incident to two triangles (a,b,¢) and (a,b,d). Flipping edge
(a,b) means replacing it with edge (¢,d). This occurs when the circles corresponding to the
quadruple (a,b,c,d) become cocircular. Suppose 6(a,b) > 0 is the minimal change needed
after which edge (a,b) of WDD should be flipped (an edge-flip of the second kind). Similarly,
let §(a,b) > 0 be the minimal change needed after which edge (@,b) must go through an
edge-flip of the first kind. Let us modify the definition of & as follows:

by = min{ 6(a,b) | (a,b)is an edge of WDD }

8 = min { Ov,ess,eps,OT } .
We have already discussed how to maintain f7. By Fact 2.3, we perform only O(n)
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operation on 7 per phase, for a total of O(nlogn) time per phase. Here 6y is the minimal
amount of weight change needed before an edge-flip occurs. (The subscript V stands for
Voronoi.) We maintain each edge (a,b) of WDD, in a priority queue, called PQyv, with 6(a,b)
as its priority. Thus, we can compute #y and execute an edge-flip event in O(logn) time.
When an edge-flip occurs, the neighboring four edges in WDD must also be checked and their
priorities in PQyv must be updated. When a site incident to a WDD edge changes label (5,
F,or T), we need to directly access the edge in PQy and change its priority.

To maintain fgg, we store each S5-edge (u,v) of WDD (that is both ends are S-vertices)
in another priority queue called PQggs, with priority slack(u,v)/2. We are interested in those
edges in P()ss whose two ends are in distinct S-blossoms. Therefore, when we extract the
55-edge with minimum priority, we check to see if both ends are in the same S-blossom or
not. This can be done in O(logn) time using the offsetted priority queues of the blossoms. If
the two ends of the edge are in the same S-blossom, then we simply ignore that edge. This
happens only once per edge in a phase. When some sites are relabeled and become S-vertices,
we may need to add edges to PQgsg using O(logn) time per edge. An $5-edge will neither
be flipped nor will change label for the duration of the phase. Thus, such an edge remains in
WDD for the duration of the phase. Hence, there are only O(n) (insert or delete) operations
performed on P@Q)gs per phase, for a total of O(nlogn) time per phase.

It remains to show how we maintain frg. We essentially use the two level priority queue
structure of [28] that they call p.q.,. To be self contained, we give the necessary details here.
For each F-blossom or T-blossom B, we maintain the set of edges that are incident both to B
and an S-blossom into an ordered concatenable priority queue OC PQ(B), where the priority
of an edge is its slack value. The linear ordering is an extension of the linear ordering used
to implement the offsetted priority queue of that blossom, namely, for each vertex j € B,
all edges incident to j appear consecutive (but in arbitrary order) in the linear ordering.
This is needed for the split operation to work properly. (We need to maintain OC PQ(B)
even if B is T-blossom, since it may subsequently expand and some of its subblossoms may
become F-blossoms. Also, some F-blossoms during the tree growing stage may become T-

blossoms.) These form the lower level of the two level data structure. At the top level, we
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maintain a priority queue P@) s which stores the minimum priority edge of each F-blossom B
from OC PQ(B). Now 0pg corresponds to the minimum priority of PQrs. When a blossom
changes label between T or F, we need to perform a corresponding insert or delete on PQ)ps.
According to Fact 2.3 this occurs only O(n) times per phase. What happens if a T-blossom
or an F-blossom B becomes an S-blossom? This happens during the tree growing stage and
the blossom expansion or shrinking stage. We first remove the record corresponding to B
from PQrs if B was an F-blossom. Then, move all edges of OCPQ(B) to PQss and at the
same time multiply their priorities by 1/2. From the analysis on PQgs above, we conclude
that only a total of O(n) edges per phase will be moved from any OCPQ(B) to PQss.
What happens when edges are flipped? Suppose F; edge flips occur in phase i. (Recall
F =X F:.) So, the total number of edges involved in phase i is £; = O(n + F;). Since an
edge-flip can never remove an 55-edge, no delete operations are done on P{)ss. However,
if necessary the corresponding edges must be deleted or added to OCPQ(B) for some F-
blossom or T-blossom B. A similar add or delete may also have to be done on PQrs. The
total number of such operations is O(E;), for a total of O(F;logn) time per phase. This

concludes the description of the new algorithm and we have:

Theorem 4.1 The proposed new algorithm solves the MWEM problem in O((n* + F)logn)

time and O(n) space, where F is the total number of edge-flips during the algorithm.

5 Discussion

The aim of this paper has been to devise a more geometric solution of the weighted Fuclidean
matching problem. A number of open questions regarding weighted relative neighborhood
graphs and their relation with the EMWM problem remain. On a related note, let us also
mention that the fractional version of EMWM gives rise to a circle packing problem which
admits a more efficient solution [43].

Another remaining problem is to find a tight upper bound on F. A very crude estimate
of F can be obtained as follows. From [20] we know that the WVD is the projection of

the lower envelope of vertical circular cones. These are identical circular cones in one-to-one
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correspondence with the sites, such that each of their axes is perpendicular to the zy—plane
and intersects it at the corresponding site, and the radius of the circular intersection of the
cone with the zy—plane is the weight of the site. Consider the lower envelope of only the §-
cones, corresponding to S-vertices. Call this lower envelope, the S-surface. Define T-surface
and F-surface similarly. During a stage, the vertex labels do not change, the S-surface is
moving down at a constant rate, the T-surface is moving up at the same constant rate, and
the F-surface is stationary. As these three surfaces interact with each other, their lower
envelope goes through at most O(n?) combinatorial changes. Since there are a total of O(n?)
stages, we conclude the total number of combinatorial changes, that is F, is O(n*). This
analysis is of course very crude, since it considers the worst for each stage and does not take

into account the correlations inherent in the algorithm. We conjecture that F is close to

O(n?).
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