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The star-star concentrator location problem (SSCLP), which is a network layout prob-
lem, is considered. SSCLP is formulated as an integer linear programming problem.
The Lagrangian relaxation (LR) method is used to obtain suboptimal solutions (upper
bounds) and lower bounds. Three different LRs are used for SSCLP. The resulting
Lagrangian dual problems are shown to be equivalent to some linear programming
problems. An approximation algorithm is suggested for SSCLP that produces both a
feasible solution (upper bound) and a lower bound. It is shown that if z and Z are the
lower and upper bounds found, then z/z < k, where k is the concentrator capacity.
Some computational examples with up to 50 terminals and 20 potential concentrator
sites are considered. All the network designs obtained are shown to be within 2.8% of
optimal,

. INTRODUCTION

An important computer communication network design problem is how to connect
several remote terminal sites T;, 1 <i< n, to a central (processing) site Co. The usual
design method uses concentrators. We are given Cj, 1 <j<m, a set of potential con-
centrator sites which is usually a subset of terminal sites, and we must select a subset
YC{C,, C,,...,Cp} to be the set of actual concentrator sites. These concentrators
will be connected to the central site via high-speed lines. Each terminal must be con-
nected, via a low-speed line, to a unique site in YU {Cy}. The number of terminals
connected to any C; € Y must not exceed a positive integer k (<n) called the concen-
trator capacity.

The cost of installing a concentrator at site C; and connecting it to the central site
through a high-speed line is d;. The cost of connecting terminal T; to site (j is ¢;;. We
assume (c;;) and (d;) are non-negative integers. For further relations on (cy) and (d))
see [18]. The optimization problem of finding a network with minimum cost is called
the star-star concentrator location problem (SSCLP).

The SSCLP is shown to be NP-complete in the strong sense even for the special cases
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k=3 and k = n (the latter corresponds to the uncapacitated version of SSCLP). The
problem is solvable in polynomial time if ¥ <2 [17, 18] . Therefore it is unlikely that
any polynomial-time algorithm will yield an exact solution in general (see [9]).

The SSCLP is closely related to some location problems of operations research.
Such problems have been studied by many workers and both exact and heuristic algo-
rithms have been suggested for their solution (see,eg., [2,3,5,7,8,12,15, 16].

A heuristic algorithm for a hard combinatorial optimization problem is considered
effective if it is time efficient and guarantees good performance. This paper is an at-
tempt to study the performance of some heuristics for SSCLP. The technique used is
based on linear programming relaxation and Lagrangian relaxation. An alternative
approach could be based on the property called supermodularity (submodularity)
[4,17,19].

I1. NOTATION, ASSUMPTIONS, AND PROBLEM FORMULATIONS

We will assume all the problems considered here are feasible and bounded. If a prob-
lem is denoted P, then the optimal value will be denoted v(P). If P is an integer linear
programming (ILP) problem, then P denotes the linear programming relaxation (LPR)
of P. A Lagrangian will be denoted as LRi(u) where i is an index and u is the La-
grangian multiplier. By this notation then the Lagrangian dual problem, i.e., max,
v(LRi(x)), will be denoted as LDi. If a is any real number, then a* denotes max {0, a}
and a~ denotes min {0, a} and [a], the ceiling of a, denotes the smallest integer not
less than a.

Let x;;, 1 <i<n,0<j<sm, and y;, 1 <j<m, be 0-1 variables with the following
interpretation.

{ 1 if C;jis a selected concentrator site,
yi=

0 otherwise;

1 if T;isconnected to G,
Xy =

0 otherwise.

Then SSCLP, denoted by P from now on, can be written as

n m n
v@P)=min 3 > cyxyt 3 djy; ®)
i=1 j=o0 F=1
subject to
m
@ > x;=1, 1<i<n;
j=o

n
(i) > xy<ky;, 1<jsm;
i=1

(i) x;, ;€ {0, 1}.
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I1l. THE LINEAR PROGRAMMING RELAXATION OF P

Consider the following problem:

subject to
i m

@ 3 x;=1,
j=0

n
i=1

(iil) y;<1

(IV) x,-j = 0,

M5

v(i)\)=m1 i

i=1j

1<i<n0<j<m.

d

We see that P is the same as Pife ¢=cand d= d. Below we give an algorithm that plugs

in different costs of ¢ and d in P and solves P with those costs.
straints y; =0 and x; <1 are not needed.) IfA=(A,,..

and y= (74, ..

M), 0=(oq, ..

then the linear programming dual of P, deneted by D, is:

subject to
() \i<¢ip,
(ll) )\ cl],
(iii) koj -y = ci,—,

(iv) 05,720,

In this section we address the issue of solving P and D efficiently.

A n
v(D) = max
=1

- [Cu
c.- = _
Y ¢yt (d)/k

m
Nt 20
=1

Let us assume

if j=0,

otherwise.

(Note that the con-

< s Bppds
, Ym ) are the dual vectors of constraints (i), (ii), and (iii), respectively,

®)
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Now consider the following problem:

U(T)) = min z": 3 Ei]‘xi]' @)

i=1 j=0

subject to

m
@ > x;=1, 1<i<n

n
(ii) Zx,-jék, 1<j<m;
(iii) x; >0, 1<i<n0<j<m.

Lemma 1. If x is an optimal solution of P, then (x, ») is an optimal solution of P,
where

o Xig oo L =
> = if di=>o, ,
yi={iz1 k I<j<m (1)
1 if d;<0,
and
%, m
=v@®)+ 3 @ @

j=1

Proof. First let (x, y) be any optimal solution of p. By constraints (ii) and (iii) we
have 12 y; > 7, x/k. If d; <0, then we must have Yj =1, because otherwise we

can set y; =1 and this will yield a new feasible solution in P with lower objective
value, a contradiction. With a similar reasoning y; must be Zj., x;/k if d >0. Ifd; =
0, y; can be any number between 1 and by 1 Xylk. Therefore

A _ m n X m
v(P)=ex+dy=cx+ > Z )" " Z ).
j=1 j=1

By the definition of ¢, we can then write v(P) x + Zm i (d i)”. Furthermore, it is
easy to see that x is feasible in P. Therefore (P) whlch shows

o®)>o®)+ 3 (@) 3)
j=1
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Now let x be any optimal solution of P. Then consider y defined by (1). (x, ) is fea-
sible in P, therefore

d)_

<
=
/
<
+
&
|
?<
i [\/]5
M'M;
ey |\
i Mg

m —
=cx+ ) (d) = v(P) + Z ()"
By this and (3) we see that

o@)=extdy=v®+ 3 @),
J=1

and the lemma follows. L
Let
EOi =0, 0<jsm;
1 if 1<i<n,
a; =
km if i=0;

{k if 1<j<m,
b—
n if j=0.

Then P may be written as the following transportation problem (note that we have
added a slack node i = 0):

v(T)l)=min i in: Eijxij (Pl)

i=0 j=0

subject to
m
@ > xj=a;, O0<i<mn

n
(ll) z x,-j=b,-, 0<]<m,
(iii) x;>0, 0<i<n0<j<m.

Let u= (ug, Uy, ... ,up)and v=(vg, Uy, ..., Up) be the dual vectors of P;. Then
the dual of P, is
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~ n m N
v(D,)=max Y aqu;+ Y by (Dy)
i=0

j=o
subject to
(l) ul+U]<811’ O<l<n,0<}<m.

We obviously have v(P) = v(f’l Y=v(D,). P, and D, can be solved by the primal-dual
algorithm for the transportation problem [20]. In order to add efficiency to the algo-
rithm we may start from the (infeasible) solution x,; = k, 1 <j<m, and x;; = 0 other-
wise. Then we need n additional augmentations each taking O(nm) steps. Therefore
P, and D, can be solved in O(n?m) steps. The next two theorems are the main results
of this section.

Theorem 1. P has an optimal solution (x, y) where x is integral and y satisfies Eq. (1).
Furthermore, such a solution can be obtained in O(n*m) steps.

Proof. ﬁl has integral optimal solution x and it can be found in O(n®m) steps by
the primal-dual algorithm. The theorem then follows by Lemma 1. L

Theorem 2. If (u, v) is an optimal solution of D,, then (R, G, ¥), defined by (i)-(iii)
below, is an optimal solution of D and can be found in O(n*m) steps.

() X;=u; +v,, 1<i<n;
(i) 6;=-(vj +uo) + @)k, 1<j<my;

(i) ;= -k(vj+uo)-(@p)~, 1<j<m.

Proof. By (i) of D, we have v +uy <0,1<j<m. So g;, y; = 0, satisfying con-
straints (iv) of D. From (1) of Dl and the definition of X; we see that (i) of D is satis-
fied. We also have X; = 6; = (u; + vj) + (o + o) - (d Yk <&y - @)k =¢y. There
fore (ii) of D is also satlsfled Also we have kg; - (a' )+ (d )y = d So (iii) of Dis
also satisfied. Finally, we have

m

z 5=

j=1

W+ v)+k S W +ue)+ S (@)

j=1 i=1

[v]=

~
]
—

[V]s

@)y =v®)+ 3 @)
j=1

~.
(=]
[}
-

)

By Lemma 1 we have v(D)— v(D;) + Z L, (@) So v(D) TN Z;'Llj,-, which
shows the optimality of (X, &, ¥) in D Since an optimal solution (u, v) of D; can be
found, by the primal-dual algorithm, in O(n%m) steps, then (X, &, ) can be found in
O(n*m) steps, completing the proof of the theorem. u
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IV. TWO LAGRANGIAN RELAXATIONS OF P

One of the reasons for considering the Lagrangian relaxations (LRs) instead of the
linear programming relaxation (LPR) is that any Lagrangian dual (LD) will yield a
lower bound at least as good as the lower bound obtained from the LPR. For an ex-
cellent introduction to the theory of Lagrangian relaxation see [10, 11].

In this section two different LRs of P based on the two constraint sets (i) and (ii)
of P will be considered. It will be shown that both resulting LDs are equivalent to
some LP problems, one of which is P, the LPR of P; the other is P,, described below,
which is the same as P except with an additional set of constraints. Later on we will
consider a third LR based on P,.

A. The Lagrangian Relaxation LR2 (o)

We relax the constraints (i) of P in a Lagrangian fashion. Assuming o= (0y,...,
0y, ) is a non-negative real vector, the Lagrangian is

v(LR2(0)) = min [cx +dy + i o) ( i X - ky,-)] (LR2(0))

j=1 i=1

subject to (i) and (iii) of P.

LR2 (o) satisfies the integrality property, since the constraint matrix is totally uni-
modular [note that (iii) of P can be broken up into two constraint sets, namely {0 <
x;j, ¥y < 1} and {xy, y; integral}.] Hence

v(LD2) = v(P) = v(LR2(5)) )]

where § is an optimal dual vector corresponding to the constraint set (ii) of P. Equa-
tion (4) shows that we do not obtain a better lower bound by solving LD2 instead of
P. In the next subsection we show an LR for which the corresponding LD indeed
yields a better lower bound than v(P) in general.

B. The Lagrangian Relaxation LR1())

Now we relax the constraints (i) of P in a Lagrangian fashion. Assuming A =(,,
. s \,;) is a real vector, the Lagrangian is

v(LR1(\)) = min [cx +dy + i i (l - f: x,-,)] _ (LR1(N))

i=1 j=0

) n m m I
= min S (- A xy+ 3 diyp+ 3 )‘f>
P 2 i=1

i=1 j=0 j=1

subject to (ii) and (iii) of P.
LR1(A) does not satisfy the integrality property, and in general we have

v(LD1) = v(P). (5)
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Consider the following two questions. First, given a A how do we solve LRI(A)
efficiently? Second, what choice is best for A? In other words, what A, satisfies
v(LR1(Ao)) = v(LD1)? [Note that v(LD1) = max, v(LR1(})).]

Let us consider the first question first. For eachj, 1 <j< m, consider a nondecreas-
ing ordering of ¢;; - A;, 1 <i<n. Let the i index sequence of the ordering be J(j) =
(D), ..., in(7)), 1 <j<m. Then consider the following index sets:

J(N= i) [ 1< 1<K ey Mgy <Oh 1<j<m;
J(0)={i| cio - Xi<0,1<i<n}.

Each J (7), 1 <j<m, can be found in O(r) time, using the well-known linear selec-
tion algorithm [1]. (Th1s algorithm. finds the kth smallest element from a list.)
Therefore J(]) for all j, 0 <j<m, can be found in O(mn) time total. An optimal
solution to LR1(Q) is then given by the following theorem.

Theorem 3. An optimal solution of LR1(}) is

1 if g+ 22 (e~ A)<0
yi= e 0<j<m;
0 otherwise

y; if i€J())
X = 1<i<n0<j<m

0 otherwise
Furthermore, such a solution can be found in O(mn) time. (Note: y, is not part of
the solution, but it is used conveniently with dy = 0.)

Proof. The proof is by the fact that if y; is set to 1, then among ¢;; - A, 1 Si<n
the k (or less) most negative ones are selected and the corresponding x;; are set to 1.
The proof is complete by the discussion preceding the theorem. L

By Theorem 3 the first question is answered. In what follows, we attempt to answer
the second question. By Theorem 3 we may write

v(LR1(V) = z At Z (d + 2 (ey- ,) (6)

i=1 tEJ(/)

Equation (6) is the basis of characterizing LD1 with an equivalent LP. The proof of
the following theorem is given in Appendix A.

Theorem 4. v(LD1)=uv(LR1(A,)), where A, is an optimal dual vector of constraints
(i) of the following LP:

v(132)=min (i 'Zn: c,-,-x,-,-+ ;"j d,y,) (I_)Z)

i=1j=0 j=1
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subject to (i)-(iv) of P and
W) x;<y;, 1<is<nlI<j<m. u

If we dualize P, we get the following LP:

o(B2) = max (Z -3y ) ®»)

j=1
subject to
@) Ni<ci, 1<i<n
(i) \;- 05 - By < cy, 1<i<n, 1<j<m;"
(iii) ko; + Z By~ o 1<j<m;
@iv) By, 05,7 =0, 1<i<n, 1<j<m;

Ao of Theorem 4 is an optimal solution (A) of D2
We may notice that P, is the same as P (i.e. P with ¢ =c and d = d), except that P,
has the additional constraints (v) and this shows once more that v(LD1) = v(P).
Theorem 4 gives a condition for Ay to solve the Lagrangian dual LD1. Whether D,
(or P, for that matter) can be solved in a number of steps that is polynomial in » and
m is not known to the author at the time of this writing. The next section considers
a third LP based on P, that will be the core of the final algorithm.

V. AN APPROXIMATION PROCEDURE FOR P

In this section we will consider an approximation algorithm for P based on P,. We
consider an LR of P, by relaxing the constraints (v) of P,. If §=(8;) =0 is the corre-
sponding Lagrangian multiplier vector, then the Lagrangian is:

V(LR3@)=min ex+dy+ 3 5 By - ¥) (LR3(8))
i=1 j=1

subject to (i)-(iv) of P,.

We see that LR3(f) is the same as P with ¢ Cij=cy,for1<i<n,j=0,and ¢;;=cy +
By, 1<is<n, 1<j<m, andd d; - s ol B, for 1 <j<m. Furthermore v(LD3) =
v(LR3(B,)), where B, is any opt1mal solution of D,. For a given B the procedure
PR(B), given below, will yield a lower bound and a feasible solution to P.

Procedure PR(B)

Step 1. Solve LR3(B). Let (x, ) be the optimal solution found, where x is integral
and y satisfies Eq. (1). Set LB(8) = v(LR3(B)) as a lower bound to v(P).
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Step 2. Set (x, y) as a feasible solution to P, where y; = [ 7;], 1 <j<m. Set UB(B)
cx + dy as an upper bound to v(P).
End.

By Theorem 1 the procedure PR(B) takes O(n?m) steps. Also note that Step 1 ¢
procedure PR(B=0) will correspond to solving P. The next theorem gives an uppc
bound to the worst-case performance of PR(B) with 8 = 0, which will suggest that ther
might exist a § for which PR(B) has better performance. The latter issue will be cot
sidered in the next section.

Theorem 5. The following statements hold true:

(i) LB(B)<v(P)<UB(®),
(ii) UB(0) < k LB(0),

(iii) v(P) < kv(P).

Proof. (i) The left-hand inequality of (i) is obvious since v{LR3(B)) < v(P) for an
B = 0. The right-hand inequality is also clear since (x, y) obtained at Step 2 of PR() i
feasible in P.

(i) Procedure PR(B) produces integral x. By Eq. (1) we have y; equal to 1 or b4l
Xjilk, 1 <j<m. Therefore y; = [ ;] < ky;. Hence if =0, we have

n

kLB(O)=k(Z

Ms

i
(=]

m 3 — -
j CijXij + 2 diyi) = k(cx + dy)
i=1 j i=1

= kex +dy = cx + dy = UB(0).

(iii) By the right-hand inequality of (i) and the fact that LB(0) = v(P) statement (iii
is obviously true. |

In the next section procedure PR(B) is used in an iterative routine for the subgra
dient optimization technique.

VI. APPROXIMATION ALGORITHM FOR P

The paper by Held and Karp [13] on the traveling-salesman problem introduced ¢
surprisingly effective method of iteration that converges to a solution of a Lagrangiar
dual problem. Held et al. [14] generalized the method somewhat and called it the
subgradient optimization technique. Since then there has been considerable effort ex
pended in improving the method and trying to get a better understanding of the under
lying principles. The Lagrangian relaxation coupled with the subgradient optimizatior
technique is one of the most widely used methods in finding tight lower bounds fo
hard combinatorial minimization problems. First let us consider the simplified versior
of the final algorithm.

Algorithm Al

1. Sett=1,8"=0, and 7 as the iteration limit.
2. While t <t do

10
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2.1. call procedure PR(B?) to find x, 7, y, LB(8"), and UB(8*);
2.2. “alter B with the subgradient optimization technique”

set Wt = )’t(UB(ﬁI) - LB(ﬁt))/i i (xl] - )7]')2:
i=1 j=1
BT = [+ w'xy - DI
23. t=t+1.
End.

In the subgradient optimization technique the coefficients #* are usually taken as 0 <
7 <2. But in general if lim,_, o #* =0 and lim; _, .. 5, 7’ =00, it is guaranteed that
B¢ converges to a solution of the Lagrangian dual (see [14] and references cited
therein).

There are a number of points to explain before giving the final version of the algo-
rithm. In SSCLP the potential concentrator sites are usually at a subset of terminal
sites. In [18] it is shown that there is an optimal solution in which if j is a selected
concentrator site, then 7 is _connected to Cj. So we may change the inequalities x;; <
yj fori=j to x;; - ;=0 in P,. This in turn says that the Lagrangian multipliers g;;,
1 <j<m, need not be restricted to be non-negative. Secondly, at the iteration rou-
tine of the algorithm we may use a postoptimization heuristic to improve the upper
bound. The idea is from the proof of Facts 1 and 2 in [18]. The heuristic is as
follows.

Heuristic POST-OPT1

1. Let (x, ) be a feasible solution to P. Set (X, )= (x,»).
2. Forjfrom 1 tomdo
ifx;j=0and p; = 1 thenletj;,0<j, <m,be such
that ';C\fil =1, and Ij ={i I Xij = 11}, let ij E[j
be the solution to min,-EII. {ej7 + cijy = cjiy - cijhs
then set 56\” = 56\,'1.]'1 =1, 55'!" = '%\Nl =Q.
3. Forjfrom 1 tomdo
if 27, %> 1 then set y; = 1, otherwise set y; = 0.
4. (%,9)is an enhanced feasible solution (i.e., cX + dy <cx +dy).
Output (X, ).
End.

Another postoptimization may be used at the end of the algorithm (or instead of
POST-OPT1 at each iteration). If Y C {1,...,m} is the set of selected concentrator
sites, then let Z(Y) be the optimal network cost using concentrators at sites denoted
by Y. Z(Y) can be found in O(n*m) by the primal-dual algorithm for the transporta-
tion problem.

In the final algorithm we keep a record of the best lower and upper bounds found.
After the last iteration we take Y as the set of selected concentrator sites from the best
upper bound, and postoptimize it by finding Z(Y') and the associated solution (x, y)
as the final upper bound and feasible solutions, respectively. Since the optimal value

11
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v(P) is integral, then we take the ceiling of the lower bounds as the actual lower
bounds. The final version of the algorithm is as follows.

Algorithm NETWORK

1. [Initialization: Set t=1, 8% =0,% =eo,z =0, where 7 and z are the upper and lower
bounds, respectively; also initialize 7 and 7 as the iteration and performance limit,
respectively; set = oo,

2. Whiletr<tandn=ndo

call procedure PR(B?) to obtain x, y, y, LB(8"), UB(8?),
call procedure POST-OPT1 to obtain X, 7, z%, (= cX + d¥);
set z = max {z, LB(8%)}
ifz>zf thenset Y={j|p;=1},z=2}
setn=(Z- [z])/[z],t=t+1
“alter 3:”

2

i=

set wi=rf[z - LB(ﬁ’)]/n i (e - 77,
1 j=1

g _{[ﬁ.§+w'(xij-ff)l* if i#],
ij - - < 3 5
B + wixij - 7)) if i=j.

3. “Final postoptimization.” Set y; =1 if j€Y, y; =0 otherwise. Find z(Y). The
lower bound is z. The upper bound is z(Y). The performance bound is =
[2(Y) - [z]}/[z].

End.

Theorem 6. If n is the performance ratio found by algorithm NETWORK, then n <
k- 1.

Proof. Since 8! =0, by Theorem 5 we have UB(')< k LB(B!). Observing that
2(Y)<zZ<UB(B')and [z] = LB(B'), the theorem follows. L]

Vil. SOME COMPUTATIONAL RESULTS

Recall that » is the number of terminals, m is the maximum number of concentra-
tors, and k is the concentrator capacity.

Three networks were considered with (n, m) equal to (50, 20), (40, 20), and (23, 5).
For each network three different values of k were considered, namely 3,5,and 7. In
all these networks the first /2 terminal sites were considered as the potential concentra-
tor sites. Figures 1, 2, and 3 show the network designs obtained. Table I shows a sum-
mary of the computational results. In all cases the postoptimized solutions are seen to
be within 2.8% from optimal. (The performance bound mentioned in Table I is the
percentage difference between lower and upper bounds.) The details of each network
are given in Appendix B. One more detail remains to be explained, and that is the
choice of r*. We decrease r’ linearly from r! to F0 for some o, 1 < to < T, then de-
crease »* geometrically from r’© to r?. That is,

12
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FIG. 1. Network designs with (n, m) = (50, 20). The node O is the central site, and
the nodes ® are the potential concentrator sites.

Xk

FIG. 2. Network designs with (n, m) = (40, 20). The node O is the central site, and
the nodes @ are the potential concentrator sites.

13
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FIG. 3. Network designs with (n, m) = (23, 5). The node O is the central site, and the
nodes ® are the potential concentrator sites.

. {rt—l - (! - r’O)/([o -1 for 1 <t<t,,

PPN PTO) 1/(T - 1) for to <t<7

For a justification of such a choice see [14]. We have selected 7 =100, 7, = 50, rl =
10,70 =2,r* =0.08.

VIIl. CONCLUDING REMARKS

We have described an algorithm for the approximation of SSCLP. The algorithm
produces both lower and upper bounds. A worst-case performance bound has been
established and some computational results have been performed which show the ef-
fectiveness of the algorithm. Here we would like to mention the following open
questions.

(i) Can we improve the worst-case performance bound?

(ii) We characterized the solution A, to max, v(LR1(\)) as being an optimal solu-
tion of an LP. Can this LP be solved in polynomial time in 7 and m?

(iii) The formulation of LR1(A) resulted in finding the extra linear constraints (v)
of P,. We know that 7., Z/L, x; = n must be satisfied by any feasible solution of
P. So if we add this constraint, even better lower bounds may result. The question is,
is the new Lagrangian solvable efficiently? If yes, can we characterize the new LD
with an LP that has additional constraints and further characterizes the feasible solu-
tions to P?

15



16 MIRZAIAN

(iv) Can we use the dual vectors \, o, and vy of D,, in addition to g, in an algorithm
to obtain more information on the intermediate solutions of the algorithm? One way
to do this is the use of the following proposition in a multiplier-adjustment-based algo-
rithm [6].

Proposition 1. An optimal solution o, 8, ¥ of LRI(X) (i.e., D, with a fixed \) is given
by (i)-(iii) below:

(i) g;= max (A;- ¢, 1<j<m;
i¢J(j)
(ll) Bi}'=(?\i‘0j‘cii)+, l<l<n,1<]<m,
(iii) 7,-:( > ey d,.>+, 1<j<m.
i€ ()

Proof Outline. 1t can be shown that (i)-(iii) satisfy (ii)-(iv) of D, ; the objective
value of D, with this solution is equal to v(LR1()\)) as given in Eq. (6). =

APPENDIX A (PROOF OF THEOREM 4)
From Eq. (6) noting that v(LD1) = max, v(LR1(\)), we can write

n m
v(LD1)=max > X;- > v (A1)
% A ¥ j=0

subject to

v =0, 0<j<m.

Assuming k; =k for 1 <j<m and k, = n, we can evaluate Z;c j;y (c;j ~ Xy), for
0 <j<m, as follows:

n
= X (cj-Ap=max 3 (A;- ci) wy
i€ J(j) W=t

subject to
. n
(l) Z W,-j < k';
i=1

(i) 0<w;<1, 1

N
N
=

16



LAGRANGIAN RELAXATION 17

Dualizing the linear program above, we get

n
- 2 (cy-A)=min kjo; + 3 By (A2)
ieJy) 0,8 i=1
subject to
@) -0j-Bjj<cy-N;, 1Sism

Lemma 2. v(LD1)=v(LR1(}A,)), where A, is an optimal solution of the following
linear program:

n m
z=max » A;- > v (A3)
i=1 j=o0
subject to
@) X,'—O'i—ﬁ,','QC,'j, 1<i<n,0<j<m;

n
i=1
(iii) By, 07,77 =0, 1<i<nO0<j<m.

Proof. Suppose (A, 0, 8, 7) is an optimal solution to (A3). From (i) and (iii) of
(A3) we see that (o, B) is feasible in (A2). Hence

n
kioj+ > Bi= 2 (ci-N), 0<j<m.
i=1 i€ J()

From (i) and (iii) of (A3) we have v; > 0 and
n
7]>_d]+k10]+ Z ﬁii>_ dj— Z (Cij_ 7\1)
=1 i€ J()

Therefore (A, ) is feasible in (A1). Hence

i=1

j=0

17



18 MIRZAIAN

Now suppose (A, ) is optimal in (Al). From (A2) we know that there exist (o, §)
such that

n
- 2 (- N)=kjoi+ > By, O0<j<m,
i€J () i=1

and (o, B) satisfy the constraints of (A2). So (A, 0, 8, ) is feasible in (A3). Hence
n m
U(LD1)= Z 7\,"‘ Z ’)’i<2. (AS)
i=1 j=0

From (A4) and (A5) the lemma follows. ; L
Now it is a simple matter to show that (P, ), given in Theorem 4, and (A3) are equiv-
alent. To show this we dualize (A3); the following LP results:

R n m m
mm( 2 2 Xyt Y diyi)
. P

i=1 j=0
subject to
m
D > x;=1, 1<i<n;
j=o

n
(i) > x;<ky;, 0<j<m;
i=1

iii) x; <y;, 1<is<n 0<j<m;
ij J

(iv) 0sy;<1, 0<j<m;

(V) xij>0, I<t<n,0<]<m

In the LP above we may remove the constraint y; 2 0 in (iv), since it is implied by
(ii) and (v). Secondly, by the fact that d, = 0 we may set v, = 1 without affecting the
optimality. By doing this then constraints (ii)-(iv) can be removed forj = 0. The re-
sulting LP is P, of Theorem 4.

APPENDIX B

The data are obtained as follows. We consider n + 1 points py, Py, ...,P, on the
Euclidean plane. The point p, is the central site, and p,, ..., p, are considered as
the potential concentrator sites. The cost matrices are calculated as follows:

ci=1|xi- x|+ |yi-y]l, 1<i<n0<j<m,

18



LAGRANGIAN RELAXATION 19

where (x;, y;) is the x-y coordinate of p;. We can see that (c;;) satisfy the triangle in-
equality. We set

d;=ric,, 1<j<m,

where m > 1 is a proportionality constant. We have used m = 2.
Now it is sufficient to give the coordinates of the terminals and the central sites for
networks mentioned in Table I. These are shown in Tables II-IV.

TABLE II. Coordinates of sites of the network with (n, m) = (50, 20).

i 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14
x;| 11 9 12 16 15 13 10 6 7 5 7 10 13 16 16
y;i 16 13 12 14 19 22 21 20 17 14 12 11 13 12 16
i 15 16 17 18 19 20 21 22 23 24 25 26 27 128 29
x;| 15 12 8 5 4 5 7 9 12 14 15 18 19 19 18
yil 21 20 20 17 15 11 9 8 9 10 11 11 13 15 17
i 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
x;| 18 17 16 13 10 7 4 2 3 2 3 4 7 9 11
Yi 19 21 23 24 23 23 21 19 17 14 11 8 6 7 7
i 45 46 47 48 49 50
x;| 13 15 17 20 22 21
Vi 8 8 9 10 13 18
TABLE 1II. Coordinates of the sites of the network with (n, m) = (40, 20).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x; | 15 18 19 18 20 21 24 25 24 24 25 26 27 28 16
y; |12 14 12 17 16 15 15 14 13 11 9 5 15 17 10
i 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
X; 15 15 13 12 7 5 30 29 28 26 26 25 24 22 23
Vi 11 9 13 9 10 12 18 17 15 11 4 12 8 9 16
i 30 31 32 33 34 35 36 37 38 39 40
x; [ 23 21 21 20 19 17 16 8 4 4 3
yi | 14 13 11 6 9 18 6 9 20 11 13
TABLE IV. Coordinates of the sites of the network with (n, m) = (23, 5).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x; 19 16 25 26 19 15 21 26 27 28 28 24 21 16 13
Yi 15 12 9 20 20 18 S 5 10 16 19 22 23 22 22
i 15 16 17 18 19 20 21 22 23
x; 12 13 14 17 35 8 36 5 37
Yi 15 12 9 6 4 4 22 21 12

19
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