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ABSTRACT

Let2={S,, -, S, } be afinite set of disjoint line ggments in the
plane. V¢ mnjecture that its visibility graphis(Z), is hamiltonian. In
fact, we malk the stronger conjecture thdis(Z) has a hamiltonianycle
whose embeddecewsion is a simple polygon (i.e., its boundary edges are
non-crossing visibility sgments). W all such a simple polygonspan-
ning polygonof Z. Existence of a spanning polygon bfis equvalent to
the existence of a hamiltonian triangulationzof A spanning polygorP
is said to be aircumscribing polygowf Z, if it has the additional property
that no segment i lies in the exterior oP. We prove drcumscribing
polygons eist for the special case whenis exremally situatedi.e.,
when each ggnentS touches the caex hull boundary ofz. Further-
more, for this special case wevgian dgorithm that constructs a circum-
scribing polygon irO(nlog n) time and this is optimal.

1. Introduction

Throughout this paper the domain of discussion is with respect to the Euclidean
plane. Itis well known that ay finite set of points admits a simple polygon with the
given points as its vertices

Gra72 W may call such a polygon spanning polygorof the point set. What is a
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suitable generalization of this fact from points to (disjoint) lingnsnts? Unlessther-
wise stated, throughout this paperdet { S, , - -, S, } be a %t of n pairwise disjoint
line sgments. Calkach endpoint of agmentS [0Z a vertex of S, and also a ertex of

>. The visibility graphVis(Z), of Z (see e.g.,

Ede87 is the (embedded) graph whose vertices are the settioky ofZ, and whose
edges are those line segments between pairsraifes that do not crossyasegment in

>. By definition, the segments b are considered to be edges of the visibility graiph.
what follows, we will be considering theistence of various simple polygons that are
hamiltonian cycles o¥is(Z).

Rappaport

Rap89 defined aimple cicuit of Z to be a simple polygo® whose vertices are thewr
tices ofZ, and every segment irk is an edge o). He showed that notvery such has a
simple circuit, and to decide whether it does is NP-complete. (Rappaport actuedg pro
this NP-completeness result assuming songenseats inz may hae mmmon \ertices
and left as an open problem the complexity of the case whgmeesés in> are pairwise
disjoint.) ThesetX is said to beexremally situatedf each sgment inZ has at least one
of its endpoints on the boundary of thewsnhull of Z. Rappaport et al.

RIT90 showed thatven an etremally situated may or may not admit a simple circuit.
Furthermore, for this special casetlgaveanO(nlog n) time algorithm that constructs a
simple circuit, if one exists.

Definition 1. We define aspanning polygownf Z to be a simple polygoR such that er-
tices of P are exactly the vertices &, and no edge oP crosses ansegment inZ. In
other words, each gment inZ is either an edge, an internal diagonal, or =ereal
diagonal ofP.

Definition 2. We define acircumscribing polygomwf = to be a spanning polygdn of X
with the added property that nogseent inX lies in the exterior oP. In other words,
each segment ik is either an edge or an internal diagonaPofSee Figure 1.

[Figure 1 about here.]

Definition 3. A hamiltonian triangulationof Z is a triangulation o& such that, when
viewed as a graph, it contains a hamiltonignle. (Recallthat a triangulation ok is a

subdvision of the comex hull of ~ whose edge-set contains the segments, iplus a

maximal set of additional noncrossing visibilitygegents. Sees.g.,

Ede87

We @an nav mention the following simple facts.
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Fact 1. Any simple circuit is a circumscribing polygon, and any circumscribing polygon
is a spanning polygon.

Proof. Obvious.O

Fact 2. % has a hamiltonian triangulation if and only if it admits a spanning polygon.

Proof. Any hamiltonian gcle in a hamiltonian triangulation & is a spanning polygon
of Z. Corversely any gpanning polygon ok can be extended to a hamiltonian triangula-
tion, by adding additional noncrossing visibility segments to it, plus the segmeénts in

Note that if some ggnents inZ are allowed to ha&e ®wmmon vertices, thek may
not hare a ercumscribing polygon. (See Figure 2.)

[Figure 2 about here.]

We make the following conjectures.

Conjecture 0 Any finite set of pairwase disjoint line segments has @uwiscribing
polygon.

Conjecture = Any finite set of pairwise disjoint line segments has a hamiltonian trian-
gulation.

Conjecture 2 The visibility gaph of any finite set of pairwise disjoint line segments is
hamiltonian.

Note that by Facts 1 and 2, Conjecture O implies Conjecture 1, and Conjecture 1
implies Conjecture 2In contrast to Conjecture 1, we note that naretriangulation of
> is hamiltonian. Shamos in his Ph.D. thesis

Sha78 asked whether Delaunayamgulations are hamiltonian. Thegaive answer vas
given in

Kan83 Dil87a Also,

Dil87b raised tw related open problems: (a) is it true that "most" Delaunay triangula-
tions are hamiltonian? and (b)walifficult is it to determine whether avgn Delaunay
triangulation is hamiltonian? (Can it be solved in polynomial tim&?glated result is a

classical theorem of Whitney

Whi31 which asserts that wmaximal 4-connected planar graph is hamiltonidine
proof of this theorem is simplified in

AKS84 and a linear time algorithm isvgn to find a hamiltonianycle in such graphsA
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proof of this theorem for a larger class of planar graphs and a linear time algorithm for
finding a hamiltonian cycle in such graphs appears in

Dil90 Tutte

Tut56 generalized the result of Whitnby showing that ag 4-connected planar graph is
hamiltonian. Chiband Nishizeki

ChN89 @vea linear time algorithm to find a hamiltonian cycle in a 4-connected planar
graph.

2. Main Results

The main results of this paper are Theorems 1 and ¥vhibld shev the istence
of circumscribing polygons (hence, the existence of spanning polygons and hamiltonian
triangulations) for the special case wheis extremally situated. The proofs of the theo-
rems appear in subsequent sectidnsthe rest of the paper assume {S,, -, S,}is
a ®t of n extremally situated pairwise disjoint line segments.

Theorem 1. Any extremally situatel admits a circumscribing polygon.

Theorem 2. Ther is an dgorithm that constructs a aumscribing polygon of
exremally situatect in linear space and (nlogn) time, and this is optimal.

In a first attempt we may try to construct simple polygon§(im time, that encap-
sulate the gien sagments by going around the a@x rull in an Euler tour fashion (see
Fig. 3), then use a triangulation of these polygons to proceed further

Cha91 The apparent difficulty in this approach is in maintainingestiy as we descend
down to subproblems.

[Figure 3 about here.]

Our proofs are based on recursion and eynploovd structure called theéourna-
ment pseudoforest . (The termpseudoforeshas been used in a different context in

GaT88 The corex danar subdivision induced by the tournament pseudoforestiof
linear space data structure and can be constructed in o@{m&gn) time using the
sweep method. (For an explanation of the sweep method see for example

Ede87 PrS85 @en this data structure, a circumscribing polygorkafan be constructed
in O(n) additional time.
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The oganization of the rest of the paper is as falo Sectior8 contains a proof of
Theorem 1. Section 4 ddops theO(nlogn) agorithm to construct the tournament
pseudoforest subdsion. Sectiorb gives a poof of Theorem 2 by using the tournament
pseudoforest subdivision for a fast implementation of the proof of Theoreection 6
mentions some applications. Section 7 contains some open problems.

3. Proof of Theorem 1

As mentioned before we assuras an extremally situated set pfpairwise dis-
joint line sgments. LedX denote the boundary of the eex hull of Z. A segmenS§ in
> is called aredge gment adiagonal sgment or an internal sgment if it i s, respec-
tively, an elge ofdZ, a dagonal ofdZ, or has only one endpoint a@®. In the latter case
the endpoint o5 ondZ is called itshead(denotedh;) and the other endpoint is called its
foot (denotedf;). Eachendpoint of an edge segment or a diagongineat is considered
as both its head and foofo gmplify the discussion, we assume (a) ngreentS is
horizontal, (b) no three endpoints ofgsents inZ are collinearand (c) no three gp
ments are concurrent if extended.

The proof of Theorem 1 is by induction on gieeof %, which is defined to be the
cardinality of X plus the number of its internalgeents. W reed to proe a $ightly
stronger version in which we alloa pair of edge segments to have a @mmon head.

In what follows we use the folldng two obsenations. (i) Any subset of an
extremally situated is also extremally situated. (ii) In amircumscribing polygorP of
>, any adge segment & must be an edge &f, and ary diagonal segment & must be a
diagonal ofP. The same holds for the induelly defined subproblems.

If all segments ok are edge segments, thédis a circumscribing polygon &. If
there is a diagonal gmentS, thenS divides the problem into twamaller subproblems
one on each of its sides, includiBg Both subproblems ka snallersizethan the main
one, andS is an edge segment in both. By induction there is a circumscribing polygon
for each of the tew subproblems. Paste together these pwlygons alondS to obtain a
circumscribing polygon of.

Now supposeZ has no diagonal segmentsit lat least one internal gment. Con-
sider a sequence= (o, ,0,, -+, g, ) of internal segments b constructed as folles.
The initial sgmento; is ary internal segment &. Supposeo,, for 1< k < j, havebeen
defined already Let o; denote theextensionof o; obtained by the following process:
extend g; along the direction of its supporting line from the side of its foot until it hits
either (a) an edge @& (which may or may not be an edgeX)f (b) one ofo, (k < j), or
(c) a nev segment inZ — 0Z. In case (c) the e segment becomes,;. Also note that
in case (b), thextensiono; stops and does not continue past an extension of/mpsty
considered segment in the sequence. Furthermorig,3atlosurdo; — o;). SeeFigure
4. We monstruct the sequeneeuntil o; hits either (i)dZ, or (i) someog,, k <i. In case



[Figure 4 about here.]

(i), the extended ggnentso, , 0,41, - - -, 0; induce a gcle. Wth a suitable change of
subscript, and without loss of generalitye may assume the subsequencecothat
induces this cycle starts @t with k = 1.

Case(i.1). o; hits an edge odX — X: In this case diide X in two parts (two subprob-
lems) one on each side of with g; belonging to both sides (as in Fig. Note thato;

was an nternal segment, but it becomes an edge segment in each obthdpwoblems.
So thesizeof each subproblem is strictly smaller than the original problsiow pro-

ceed inductiely on each of the to subproblems, then paste together the tesulting
polygons alongs;.

[Figure 5 about here.]

Case(i.2). o hits an edge ggnentS; at a pointp: Split S; in two segmentsS; and Sy
at pointp. Divide the problem in two, as in Fig. 6. One contdjn§;, and esery other
seggment of on the same side of, asS;, excludingo;. The second containg, Sj, and
evay remaining segment & (and of coursexeludingo;). Notethatpis a ‘new” end-
point in both subproblems, the headopis not an end point in the first subproblem, and
the foot ofg; is not an endpoint in the second subproblem. The dvbproblems are
strictly smaller insizg since S; is replaced by another edge segment (nanglgr S)),
and the internal ggnento; is replaced by an edge segment (namntelyr o;). By induc-
tion there is a circumscribing polygon for each of the twbproblems. &ste together
the two resulting polygons along. Note that sgmentso; and S; become edges of the
resulting polygon and the “extra vertexd disappears.

[Figure 6 about here.]

Case(ii). We wse a similar argument as in case (i.2). See Figure 7.

[Figure 7 about here.]

Suppose the internal segments that induce the cycle, in appropriate order around the
cycle, areo;,,0,,---,0;. (Here the ordering is such that; loses tooj,, for
j=1,2---,i, where ind& arithmetic is talen modula, and this is done in the rest of the
proof of the theorem as wellAs suggested in Fig. 7, we will obtairsubproblems. In
addition to these subproblems, there is averrihole” in the middle which will become

part of the eentual circumscribing polygon. The subproblems are similar to the first
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subproblem of case (i.2) and are defined asvslloLetS),; denote the portion af .,
between the head of ,; and the point of intersection betwegpanda ;. The j™ sub-
problem consists of geentst;, Sj,;, and every segment ot (other thano; andoj,,)

that fall in the comex portion of the comex tull of X cut of by o; andS;,;. Each sub-
problem is extremally situated and strictly smallesizethanZ. We proceed inductiely

for each subproblem, then appropriately paste the resulting polygons of the subproblems
and the covex “hole” together as suggested in Fig.[7.

4. TheTournament Pseudoforest

The idea is motiated from the proof of Theorem 1magine the segments Iplay
a tournament as folles: Extend each segmentaralong its line of support from the side
of its foot until it hits eithel®Z, or the extension of anothergrent. Iftwo segment
extensions intersect, thglay a match.The extension of the loser ends at the intersection
point, while the winner continues to betended. Ifthe intersection point is in the rela-
tive interior of one of the segments, then that segment is declared the winner of that
match, otherwise the winner is chosen arbitrarily (so the structure is not unica -
ment extension intersedg, it loses t@Z and its &tension terminates at the intersection
point. Naw let g; denote the extension of, andt; = closurdo; — o;) be alled thetrail
of g;.

As defined in

GaT88 apseudotreas a tree plus possibly an extra edge, betweenofits distinct \er-
tices (that creates a unique simpjele). A pseudoforess a \ertex-disjoint collection of
pseudotrees.

The tournament pseudoforest Bf denotedTP(Z), is the plane graph that is the
union of the segments and their trailBP(Z) forms a cowex partitioning of the comex
hull of Z. We refer to this covex danar subdivision as the tournament pseudoforest sub-
division, denoted P - subdivision (See Figure 8.)The following lemmas and the corol-
lary justify these claims.

[Figure 8 about here.]

Lemma 1. TP - subdivision isa convex planar subdivision of conwehull of Z.

Proof: This follows from the fact that if some face of the partition has axreéieex,
then both of the ter 'egment extensions that intersect at thette are the loser of that
match, a contradictionz

We cefine afan to be a cyclic sequeneg, , o, , - -+, o; of segment extensions so
thato; loses too .4, for j =1,2,---,i, where ind& arithmetic is done modula This is
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related to the notion of ceax "hole" mentioned in the proof of Theorem 1.

Lemma 2. A ssgment extension cannot appear in mtéran one fan.

Proof: Supposes; appears in someafi. Theng; completely determines the ggaent
extensions that form the fan, since eachnsent extension in the fan (starting wit)
loses to a unique segment extension, which is tkeame in the sequencel

Lemma 3. Let T be a connected component of the tournament psewedbforhenr
contains one and only one of the following:

(i) a fan,

(i) an edge £gment ofZ,

(i) a diagonal segment &, or

(iv) a segment of whose trail hits an edgd 0% — 2.

Proof: Let C be the set of all the gment extensions that either appear in some fan, or are
edge segments, diagonaseents, or extensions of segmentithat lose todz — 2.

Using Lemma 2, we see that at this point in time each connected compoed: &t

fan, an edge ggnent, a diagonal segment, or extension of a segment that l@zes o

Now we add toC, one by one, the remaining segment extensioris arid shav that the
number of connected componentLofloes not change. While there is greent &ten-

sion ofZ not already placed i€, choose one such geentS which loses to a genent
already placed €. Since all the fans are already placeddnthere must be one such
sgment. SgmentS, when placed i€, would belong to the same connected component
of C which contains the segment to whiSloses, and it will not cause yamerge of two
connected components. Continue this process until all segment extensions are @dded to
When this is doneC is the tournament pseudoforest and each of its connected compo-
nents contains one and only one of the four kindgi{)) mentioned in the statement of
the Lemma.o

Corollary 1. TP(Y) is a pseudoforest.

Before describing the algorithm to constrli€(Z) and theTP — subdivision let us
say a fev words about the representation of the data structdfe.will maintain each
connected component @iP(Z) as a poted pseudotree (with appropriate bidirectional
pointers with thél'P — subdivisior), where, by using Lemma 3, the root is chosen to be its
unique fan, edge segment, diagonal segment, or its segment which lo@es B0
Except where the root corresponds taa, fthe rest of the pseudotree i®lk $andard
tree. W refer to this entire data structure colleety as the tournament pseudoforest
data structure, denoté&e{().
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In the rest of this section we will describe our algorithm to cons$#(&) in
O(nlogn) time using the sweep methotlVe sveepZ by a horizontal sweep line along
the direction of the y-axis, where theest points of the sweep are the endpoints of the
sgments ofZ, plus some “tournament intersection poihtsThere are a total ofO(n)
event points and each contribut@¢log n) to the time complexity.

The algorithm will maintain the portion of the pseudoforest\welte sweep line,
excluding the g&tension (belor the sweep line) of those segments that areveattte
sweep line and hence not yet considerg@tie intersection of the sweep line and the
edges of the pseudoforest built so far will be callechtiiezve setWe wse the natural lin-
ear ordering of points in the aai %t, i.e., in increasing order of x-coordinaté€he
edges of the current pseudoforest that intersect the sweep line (at the points of¢he acti
set) are called thactive edgs We use the same natural ordering on thevactiges as
their corresponding ae points. Theewent-queuga piority queue, will maintain those
endpoints of the segments that are at ovaltte sweep line, and the intersection points,
above the sweep line, of adjacent agtialges, in increasing order of their y-coordinates.
(Here, tvo active alges are called adjacent, if yhare consecutie in their natural order
ing.) Theseintersection points are potentialournament points’ If the sweep line
reaches the bottom end point of greent which is not odz, its extension will penetrate
belowv the sweep line.To determine the extension end point of thigreent belw the
sweep line in logarithmic time we would need efficient ray shooting to determine the first
edge of the current pseudoforest hit by thiteesion. (© learn about the idea of ray
shooting see, for example,

Ede87 ® accomplish this, we will extend the natural ordering of thevact as follavs.

The regions of the current pseudoforest that are justvbarid intersect the sweep line,
form corvex bays We will extend the actie st of edges, by including in it all boundary
edges of all the bays (i.e., their bottom chainghe natural ordering used on this
exended active sa$ to order the edges of each bay consedytcounterclockwise (as

we go from its left to right intersection points with the sweep line), and order all edges of
bay B, before all edges of bay,, if the left end intersection @&, with the sweep line is

to the left of that oB,. (Note that the bottom chain of a bay is not necessarily x-mono-
tone.) W maintain this extended aeéi %t, according to its natural linear ordering, in a
balanced search tree called Hutive-set-tree (See Figure 9.)

[Figure 9 about here.]

Now we perform the sweep as folles. Initially the actve-set-tree is empfyand the
event-queue contains thenZznd points of the segmentsan As we ontinue the sweep,
supposep is the next item remad from the gent-queue.
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If pis a bottom end point of a segment, &yhat is not a grtex of 0% (the case
that p is a \ertex of 0Z is rather obvious), then we perform a ray shooting on the bays, by
consulting the aote-set-tree, and split the corresponding,bsy B, into two bays B’
andB'" along the extension @&. (SegmentS loses to the edge & hit by the atension
of S.) Thenwe need to update the atiset-tree in the obviousay, and also update the
event-queue by removing the “tournament pdirdbrresponding to bay (if there is
ary), and inserting the ones f@' and B" (if there are ay). It is clear that it taés
O(log n) time to proces®y.

If pis the top end of a geentS, which is not a ertex of 9%, then there is only a
status change necessavye crvert from sgmentS to its etension. Agin, this can
obviously be done i@(log n) time.

If pis a “tournament pointand it is the intersection of the “end eddex a bay,
sayB;, then processing gb amounts to “closing up’B; as follovs. Remee dl edges of
B, from the actre-set-tree; appropriately declare a winner among tloe‘emd edges’of
B, that play the match g; insert in the eent-queue the e tournament point (if ar
caused by this winner segment and it® adjacent bay; finallyremove from the gent-
gueue the tournament point between the looser segment of the matematits other
neighbor (if ag). (A similar “closing up’ of a bay may occur ifp were a ertex of 0%
and the top end point of aggeent.) Thisstep taksO(logn + r;) time, wherer; is the
number of edges of the bdy which is closed upThis is caused by the colleati cele-
tion of the edges dB; from the actre-set-tree. Thisan be done by twlit operations
followed by a join, assuming the data structure for theastt-tree is chosen appropri-
ately (e.g., aypbalanced or self adjusting search tree such as a red-black tree, or a splay
tree). Therthe nodes of the middle subtree (corresponding to the datadtbay) that is
cut out of the actie-set-tree are disposed.

There are a total o®(n) “tournament point$’ever processed by the algorithm.
Therefore the werall time compleity of the algorithm iO( nlogn + 3 r; ), wherer; is
the size complexity of bay (omaée) B;. Clearly 3 r; is O(n), since the tournament
pseudoforest is a linear size planar suvisthn. Thereforethe overall time complexity of
the sweep algorithm i®(nlogn). We would need additionaD(n) time to traerse the
data structure to complete the construction of the pseudoforest and the corresponding
subdvision. We mnclude the following.

Lemma 4. The tournament pseudoforest can be constructedidg n) time 0O

5. Proof of Theorem 2

We wse the tournament pseudoforest data struék(kg and acareful refinement of
the proof of Theorem 1. The entire procese$sdB(n) time, assuming!(Z) is dready
constructed. \Wwork on the pseudotrees oP(Z) one by one.We dould note that as
we proceed to smaller subproblems, we mayetelge sgments that share commoarv
tices as discussed in the proof of TheoremHbwever, this does not cause significant
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difficulty; we appropriately generalize the definition of the tournament pseudoforest and
its subdivision to mak the necessary accommodatioe amit most details here and
sketch only the case corresponding to case (ii) in the proof of Theorem 1 (the most
involved case): The root of the pseudotree provides the cyclic sequencgnnse
(cycle-sgments) that form the fan and the eex “hole”. Then,for each gcle-segment,

we use depth-first-search to gowdothe pseudotree (akin to the idea of topological
ordering of vertices around a plane tree as described in

AGS89 andclip off maximally connected trails starting from those that intersect the
cycle-sgment (but not its trail) or intersect the edg@bfadjacent to theycle-segment
and on the appropriate side. (See Figure 10.) In this we ait the problem intanany
subproblemsall extremally situated

[Figure 10 about here.]

Each step of the clipping process is ¢ea to one of the trails that is clipped, &(1)

time to each. But the number of such trails is in the order of (almost equal to) the number
of segments irk that were internal but ke become edge segments in the smaller sub-
problems. Thiss crucial in proving the linear time complexigiven W(Z).

The optimality of the algorithm is implied by an easy linear time reduction from
sorting: Suppose we arevgn n numbersx; , X, , ---, X, to sort. Let a=min; x; —1
andb=max x;, +1. Letz={S;,S,, -+, S, } be a st of n vertical line sgments,
where the x-coordinate of§ is x; and the y-coordinates of its dwends are
+(x; —a)(x; — b). (SeeFigure 11.) The seX is clearly extremally situated amd is its
unique circumscribing polygonGiven the order of vertices arourdk, the sorted order
ing of x;’s can be inferred in linear time.

[Figure 11 about here.]

6. Applications

First we mention some applications of circumscribing polygons with respect to
Euclidean matching problems. The Euclidean matching problemvien gi €t of 2n
points in the plane, find a perfect matching by choosipgirwise disjoint line sgments,
called the matching edges, whose vertices are thlea goints and whose total length is
minimized. \aidya

Vai89 showed that this problem can be solve®{n?°log”* n) time. Marcotteand Suri

MaS89 considered a variation of the Euclidean matching problem where/¢hggints
are some vertices of avgh ample polygon and the matching edges are restricted to be
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edges or internal diagonals of the polygdrhey showed that this version can be sedv
in O(nlog? n) time.
An open problem in

MaS89 is the follwing. LetM, be the weight of a minimum weight Euclidean matching

of a setS of 2n points; P be a simple polygon that spans the set of pointsMnthe the
weight of the minimum weight matching in which all matching edges are constrained to
be edges or internal diagonals of the polygon. The question is: what pdtygcmeres

the minimum ratioMp/M,? Mp/M, =1 is the minimum ratio if and only if a circum-
scribing polygonP of the segments that form the optimum matching exists.

Circumscribing polygons can also be used in a paréigfigation algorithm for the
Euclidean matching problem: ¥&n a £t M of n pairwise disjoint matching edges, we
are asked whethél forms a minimum weight matching of the points. W\ first find a
circumscribing polygorP of M (assuming this»asts and can be found quickly), then
apply Marcotte and Sus'O(nlog? n) algorithm to find an optimum matchingl’ in P.

M is a minimum weight Euclidean matching of the@ints only ifM and M’ have te
same weight. (Of course the emrse does not hold, i.e., M and M’ have the same
weight thenM is not necessarily optimum.)

Finally, let us mention that this paper introduces the d&ta structure, namelthe
tournament pseudoforest. It would be interesting to explore other applicationst@amd e
sions of this data structure.

7. OpenProblems

Settling Conjectures 0, 1, and 2 areviolns open problems. Another open problem
worth mentioning is the follwing. The Q(nlogn) lower bound stated in the proof of
Theorem 2 is essentially due to finding thevaoniull of Z. A natural question to ask is:
if the corvex hull of X is given, can we compute the tournament pseudoforest in
o(nlog n) time, sayin linear time?

Another open problem akin to Marcotte and Sugiproach is the following. Sup-
pose we are gen a smple polygonP with an een number of \ertices. Find a minimum
weight Euclidean matching between the vertice$ (fubject to the constraint that no
matched segment crosses the boundarly.dflote thatP is a spanning polygon of yn
such matching.
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9. NoteAdded in Print

We havelearned that Urabe and Watanabeeh@cently found a count@xample to
Conjecture 0.



