
Shading and Shadowing with Linear Light Sources

Pierre Pouliny and John Amanatidesz

yImager, zDepartment of Computer Science
Department of Computer Science, York University
University of British Columbia, 4700 Keele St.
Vancouver, British Columbia North York, Ontario
Canada V6T 1W5 Canada M3J 1P3
(604) 228-2218 (416) 736-5053
poulin@cs.ubc.ca amana@yetti.yorku.ca

In virtually all rendering systems, linear light sources are modeled with a series of point
light sources that require considerable computing resources to produce realistic looking
results. A general solution for shading surfaces illuminated by a linear light source is
proposed. A formulation allowing for faster computation of the di�use component of
light reection is derived. By assuming Phong's specular component, simple, inexpen-
sive and convincing results are produced with the use of a Chebyshev approximation.
A shadowing algorithm is also presented. As shadowing from linear light sources is
expensive, two acceleration schemes, extended from ray tracing, are evaluated.

1 Introduction

One of the requirements for generating realistic images is the capability of simulating a wide variety
of light sources. Small changes in the intensity patterns of these illuminants can signi�cantly e�ect
the appearance of a scene. To get the right e�ect, artists can easily add dozens of lights. Light which
originates from neon lights can be simulated by linear light sources. In this paper we introduce two
solutions for rendering surfaces illuminated by linear light sources. The �rst is an analytic solution
that is exact though a little expensive. The second allows us to compute the e�ects of these light
sources inexpensively yet avoiding the sampling problems of standard approaches. When extending
the light source to a line, the shadows have to be handled di�erently in order to capture the variation
of intensity within the shadow region. An algorithm to compute the umbra and penumbra regions
of shadows is presented. This algorithm allows the objects in a scene to not be limited to polygons
only. We �rst review shading and the various light sources currently in use in computer graphics.
The two solutions are then derived and the shadowing algorithm is introduced. Finally, results are
presented and discussed.

2 Concepts and Previous Work

2.1 Shading

The light reection o� a surface can be broken down into two components: di�use and specular1.
When light hits an ideal di�use surface, it is re-radiated equally in intensity in all directions. Chalk
and at paints are examples of real surfaces that re-radiate light mostly in a di�use way. Purely
specular surfaces only re-radiate light in one direction, the reected light direction. Mirrors are

1This division of reection into two components is usually well accepted amongst the computer graphics
community. In fact, highly di�use or specular material are closely approximated by this subdivision. However
it is important to mention that reection o� some surfaces cannot adequately be represented this way. The
more general bidirectional reection functions [Cabr87] should be used to characterise these surfaces.

P

e

l

θθ

φφ

R

L
N

R

E

Figure 1: General Reection

examples of specular surfaces. A physical explanation of the di�erence between these two components
is that light bounces o� a specular surface while for a di�use surface, light penetrates the surface and
is scattered internally before emerging again. The reection of the light from real objects contains
both di�use and specular components and both must be modeled to create realistic images. Consider
�gure 1. ~E and ~L are unit vectors that point to the eye and to a point on a light source, respectively,
~N is the unit vector normal to the surface at P and ~Re and ~Rl point in the reected eye direction
and reected light direction, respectively. Computing the di�use component is very simple; it is
proportional to ~N � ~L, which is the well-known Lambert's Law. Note that in di�use reection, since
light is radiated equally in all directions, the position of the eye is not required by the computation
and the maximum intensity occurs when a surface facing the light is perpendicular to the light source
direction.

The specular component is harder to compute. Real objects are non-ideal specular reectors
and some light is also reected slightly o� axis from the ideal reected light direction (~Rl). A
possible explanation is that a real surface is never perfectly at but contains microscopic deformations.
Popular models of the specular component have been proposed by Phong [Phon75], Blinn [Blin77]
and Cook and Torrance [Cook81]. Our selection of a particular illumination model (Phong's (~Re�~L)n)
for modeling linear light sources was based on its relative accuracy with reality and the possibility
to compute and integrate it at a moderately low cost.

2.2 Light Sources

The simplest light source in use in computer graphics is the directional light source. This models
the parallel light coming from an in�nitely distant light source. There are several reasons for its use.
First, the vector ~L, which points to the light source, is constant and does not have to be computed
at each point to shade. This vector, in fact, de�nes the directional light source. Because the vector
~L is constant, the shading computation for polygons can be simpli�ed as many computations can
be removed from the inner loops [Phon75]. Also, the intensity of the light source is constant and
independent of the position of an object in space.

The second most popular light source is the point light source, which is de�ned geometrically by a
point in space. The following equation can be used to model the shade of a surface when illuminated
by a point source:

Ipixel =
I

r2

�
kd(~N � ~L) + ksRs(~E; ~N; ~L)

�

where kd and ks determine the ratio of the di�use and specular reection, respectively, and Rs

is a function de�ning the specular intensity reected. To compute ~L we subtract the position of
the surface we are shading from the point source position and normalise the resulting vector. The
intensity of this light source is proportional to 1

r2
though confusion on exactly how to apply this

formula has been reported [Fole82]. Some people include the distance from a surface to the eye in
the intensity calculation. This is not necessary. As a surface moves further away from the viewer, the
increased distance is compensated by the increase surface area that now occupies the pixel. Thus,
the only factor that must be taken into account is the distance from the light source to the surface.

The directional and point light sources are generally modeled in most rendering systems due
to their simplicity. Unfortunately, they are di�cult to use creatively. Researchers have introduced
modi�cations to the intensity distribution of point sources that give the designer more creative
freedom. We outline some of these attempts below.

Warn [Warn83] attempts to create more realistic light sources by mimicking the lights used by
photographers. His extensions include making the intensity of the light source a function of direction
(to produce spotlights) and providing aps that can cut o� the light in certain directions. Verbeck and
Greenberg [Verb84] and Nishita et al. [Nish85] continue Warn's work by providing more sophisticated
lighting design tools. They allow the user to specify the shape of the intensity distribution by drawing
goniometric diagrams2.

Other kinds of light sources have also been de�ned. For instance in cone tracing [Aman84],
spherical lights have been simulated. In various attempts to solve the global illumination with the
radiosity algorithm [Gora84] [Cohe85], lights are formed of polygons. In another rendering algorithm
driven by light propagation [Four89], any type of light can be simulated. However in all these
approaches, lights are inherent to a particular rendering algorithm and as such, cannot easily be
generalised to other common rendering techniques.

Linear light sources simulating neon-like lights open a new dimension to the e�ects that can be
produced. These lights can be modeled by the following expression:

Ipixel =
Z

length

Il

r2l

�
kd(~N � ~Ll) + ksRs(~E; ~N; ~Ll)

�
dl

where l is the variable of integration. By assuming that the intensity Il is constant over the whole
length (length) of the light source, we can take out the intensity from the integral part. This integral
can also be broken down into di�use and specular components:

Ipixel = Ikd

Z

length

(~N � ~Ll)

r2l
dl+ Iks

Z

length

Rs(~E; ~N; ~Ll)

r2l
dl

The linear sources were modeled by Verbeck and Greenberg [Verb84] by a series of collinear
point sources. Area sources were similarly modeled. There are some problems associated with this
approach to model linear light sources. For instance, a large number of point sources must be used
or sampling problems will ensue. These problems will be related to the shading of a surface as well
as the shadowing within the penumbra region. Since shading and shadowing computations are very
important parts of the rendering process, this approach can be very expensive.

Nishita et al. [Nish85] use a slightly di�erent formulation than the one introduced in this pa-
per. They derive an analytic solution for the di�use component if the light source is parallel or
perpendicular to the surface. However, multiple point sources are used to approximate the specular
integral.

By looking more closely at the reection expressions given above, it becomes possible to extract
an analytic solution from them. In the next sections we derive our solutions for the di�use and the
specular integrals.

3 The Di�use Integral

To solve the di�use integral we transform the light source into a coordinate system in which the
surface is at the origin and the surface normal ~N is along the Z axis. In this coordinate system,
~N � ~Ll can be replaced by zl

rl
and thus the di�use integral is transformed to:

2Goniometric diagrams specify relative intensity as a function of direction. See the IES Lighting Handbook
[Kauf81] for a good source of lighting de�nitions. Note: the user must exercise care when drawing these
diagrams since sharp discontinuities in the resulting curves are a source of aliasing artifacts.

Source

Light

Linear

p

d

N

N

θ
γ

β

Figure 2: Integrating over the angle

Z

length

zl

r3l
dl or

Z

length

zlq
x2l + y2l + z2l

3
dl:

Let the light source be de�ned by (~u + t~v) for 0 � t � 1. By substituting the light source line
equation into the integral, we have an integral of the following form that can be solved analytically
[Grad65] as: Z

1

0

Dt+ Ep
At2 +Bt + C

3
dt =

2(D(Bt + 2C)�E(2At+ B))

(B2 � 4AC)
p
At2 +Bt + C

�����
1

0

:

4 The Specular Integral

To lay the groundwork for the solution of the specular integral we will redevelop the di�use integral
in a di�erent coordinate system. In this coordinate system, the solution is more expensive than the
one developed above. Nevertheless, its development will simplify the explanation of our solution to
the specular integral.

Let us consider the problem in 2D. We transform the coordinate system such that P is at the
origin and the light source lies on the plane z = 0. The di�use integral can be expressed in this
system as

Z

length

(~N � ~Ll)

r2l
dl = (~N � ~Np)

Z

length

(~Np � ~Ll)

r2l
dl

where ~Np is the projection of ~N onto the plane z = 0.

Take an in�nitely small segment dl on the light source. As seen from P , this dl has a length
dq = dl cos� where � is the angle between the direction perpendicular to dl and the direction from
dl to P . On another hand, take a circle of radius rl centered at the origin. The length of the arc of
d� is dq = rl d�. By combining these two equations, we can express dl as a function of d� as

dl =
rl d�

cos �
:

So now, we can replace the integral along the length of the light source by an integral along the
angle subtended by the light source at P . If is the angle made by joining the two end points of the
light source to P (two light vectors) and � is the angle between ~Np and the closest light vector3, the
integral becomes

3If ~Np is within , we can take any end points light vector. In such a case, � is negative.

(~N � ~Np)
Z �+

�

cos�

r2l

k rl

cos �
d� (1)

Figure 2 illustrates this situation.

In this new formulation, k, the intensity of the light source per unit length, has been added
for more exibility to the di�use integral previously given. Expressing rl as a function of � gives
rl =

d
cos�

where d is the distance between the in�nite line along the light source and P .

This formulation is valid to model an in�nity of point light sources over a linear light source
where each point on the light source radiates light equally in all directions. This �nal integral is

k(~N � ~Np)

d

Z �+

�
cos� d�: (2)

Similarly, assuming the function Rs = (~Re�~L)n is used to represent the specular reection component,
the specular integral is established as

k(~Re � ~Rep)
n

d

Z �+

�

cosn � d�: (3)

It is important to note that if P is along the line formed by the light source, the integral is
undeterminate (and d are both zero). In this situation, the integral can be easily handled as a
special case.

4.1 Chebyshev Approximation

The integral for the di�use term has an exact solution that is easily solved. However, the integral
for the specular term is harder to integrate exactly in an e�cient manner.

An alternative is to approximate cosn � between 0 and �
2
since it is nicely behaved. Several

approximation techniques can be used (various spline bases, etc.), but in our case, we chose the
Chebyshev approximation for its simplicity and its property to return, for a given degree, the best
polynomial approximating a curve.

In order to reduce the degree of the polynomial and since we deal with pixels with discrete values,
we cut the function cosn � at the angle where function is less than a chosen �. This value is function
of the intensity of the light source. Then the curve evaluated at a value of � higher than this value
would be considered zero. In practice, we have found that a polynomial of degree 6 approximates
within � = 1

256
the specular intensity curve4. The degree of the polynomial can be reduced if the � is

larger. Then for each of the coe�cients n in a scene, the Chebyshev polynomials are computed and
stored. They are used at the rendering stage to easily approximate the specular integral.

5 Shadowing

The shadowing of linear light sources is very important to achieve a better realism. The solution of
simulating the linear light by a series of collinear points is still an alternative but as mentioned earlier,
the shadowing would be subject to sampling problems. Nishita et al. [Nish85] describe an algorithm
for a scene made exclusively of polygons. Given a linear light source and a polygon casting a shadow
on a surface, the polygon vertices are projected onto the surface, taking as center of projection the
two end points of the light. Once the contour lines of both shadows are determined, the convex hull
of these shadow polygons is established and stored. Later during the scanline process, if a point
is inside a penumbra region, the polygons casting these shadows are projected back onto the light

4If we consider a light source with an intensity of 1 unit and a given function cosn � approximated by
a degree 6 polynomial, the choice of � = 1

256
insures us that the intensity computed using the Chebyshev

polynomial will have an approximative maximum error of 1

256
.

P

Linear Light Source

X

Y

Figure 3: Visibility of the Light Source

source and the shading is computed for only the segments of the light source that are visible from
the surface.

Our approach is similar to this algorithm but extends the scene to other primitives. When point
P has to be shaded, the light source is �rst cut by the plane tangent to the normal at P because no
light can shine on P from an angle of more than �

2
. If a portion of the light source is visible from

P , a triangle (the light triangle) is formed by the end points of the linear light and P . If an object
intersects this triangle, its intersection is projected onto the light and the shading is computed only
for the visible segments of the light. In the case of the specular integral, the visible segments must
also be cut such that for all segment i, j�ij < �

2
and j�i + ij < �

2
in equation 3.

Let O be an object that may cast a shadow on P . The �rst test consists in intersecting the
plane containing the light triangle (the light plane) with object O. If the computations involved are
expensive, the test can be done onto the bounding volume of the object. If it is determined the
object does not intersect the light plane, then object O does not cast any shadow on P . Otherwise,
the light triangle is �rst transformed into the object coordinate system where more accurate tests
can be performed. Afterwards, if indeed the object O intersects the light plane, it is transformed
in such position that the light lies on the X axis with one end at the origin and the intersection
point P lies on the plane z = 0 on the positive side of Y (see �gure 3). This involves only a series
of rotations and translations, leaving the basic de�nition (shape) of the primitive unchanged. The
remaining work consists in identifying the intersection between a primitive and the plane z = 0 and
projecting in 2D this intersection onto the X axis.

Let us take a sphere as an example. The sphere can be transformed so it is not spherical any
more. The light triangle is therefore transformed in the sphere's own coordinate system where it is
easier to determine if the sphere intersects the light plane. The intersection between the plane and
a perfect sphere is either null, a point or a circle. In the �rst two cases, no shadow is produced. For
a circle, the two tangent points from P or the intersection between the circle and the X axis de�nes
the visible segments of the light source. Figure 3 illustrates these two cases.

For simple objects like polygons, the transformation in the object coordinate system is not re-
quired and the transformation matrix bringing the light triangle onto the plane z = 0 needs to be
computed only once per intersection point P . For certain objects like patches, this whole process
can be very complicated. In our implementation, when such a situation occurs, we simply rely on
shooting rays to approximate the projection of the object onto the light, thus avoiding any object
transformation. The number of rays is determined as a function of the angle at P (with the two
end points of the light). In a �rst pass, a regular set of rays are shot to roughly determine the two
edges (assuming convex objects only) of the projection. In a second pass, additional rays are used to
re�ne the projection edges. At this stage, some jittering is added to the ray directions, substituting
aliasing by noise, which was very e�ective within the penumbra region.

It is important to note here that as soon as the whole light is hidden, the shadowing process
is stopped. The intersection/projection scheme described above can be relatively expensive. It is
therefore essential to eliminate the objects not intersecting the light triangle as quickly as possible.
The next section will describe two algorithms that we implemented to reduce the number of objects
candidate to cast a shadow on the point to be shaded. Some results will also be discussed.

Table I: Linear vs Points

Primitive Shading Only Shading and Shadowing
Function Equivalent Function Equivalent

Square 0.39 + 0.14 l 4.36 0.16 + 0.10 l 8.35
Cube 0.34 + 0.11 l 6.00 0.15 + 0.10 l 8.50
Sphere 0.31 + 0.11 l 6.27 0.16 + 0.10 l 8.40
Disk 0.40 + 0.14 l 4.29 0.09 + 0.06 l 16.28
Patch 0.50 + 0.08 l 6.25 0.06 + 0.04 l 23.50

6 Results of the Shading and Shadowing Algorithms

Replacing a linear light source by a series of point light sources is, as we said earlier, prone to sampling
problems. The problems can appear on both the shading and the shadowing. Table I investigates
the relative cost of substituting a linear light source as described in this paper by a series of point
light sources. Plates 1 and 2 illustrates the typical scene we used.

A linear light source of length 10 is positioned at 5 units above a primitive located at 1 unit
above a plane. Each primitive has been scaled so the shadow area would cover a similar area. The
specular coe�cient n for (~Re � ~L)n is 64 for the primitive and 32 for the plane. The relative timings
are given from our implementation on our local ray tracer. The timings are normalised by the time
required to render the same scene with a linear light source. For instance, rendering a sphere (ray
casting) in our scene without any light source takes only 31% of the time required to shade it with
a linear light source. If point light sources are used, 11% must be added for each light. Therefore
in our benchmark, substituting a linear light source by more than 7 point light sources would be
more expensive. If shadows are considered, this number increases to 9. Plate 1 was computed with 7
point light sources and plate 2 with our approximate linear light source. On a 24-bit planes display,
the same scene was rendered with as much as 41 point light sources and Mach bands within the
penumbra region were still visible.

For a patch primitive, the number of point light sources equivalent, cpu-wise, to a linear light
source is as high as 24 because we relied on using additional rays (two passes solution described in
the previous section) to determine the projection of the patch onto the light source.

6.1 Speeding up Shadow Determination

In the scene used in Table I, only two objects are used. As the number of objects increases, the
complexity of shadowing increases as the square of the number of objects. Avoiding to compute
unnecessary and expensive projections onto the light source becomes primordial.

We present two di�erent schemes we implemented to achieve this goal. First, we use the regular
grid traversal described in Amanatides and Woo [Aman87]. Once an intersection point is found, a
light triangle is formed. This light triangle is then scan-converted in the 3D grid of the scene. The
objects occupying a same voxel than the light triangle are gathered and tested for uniqueness. This
smaller set of objects is then tested and projected onto the light source if necessary.

In our second scheme, a modi�ed light bu�er for linear light sources has been implemented. Our
linear light bu�er can be represented by an in�nite cylinder oriented along the light. This cylinder is
subdivided in arcs along its radius. Each arc has a list of objects contained (at least in parts) within
the limit of its angle. To improve the performance of the linear light bu�er, we also divide it in three
regions: the left, center and right side of the light source. This is illustrated in �gure 4. When
an intersection point P is found, it is located within an angular section of the linear light bu�er. If
it is positioned in the center region, only the objects at least partly in this angular section and in
the center region need to be tested. If P is in the left region, only the objects in the left and

Linear Light Source

Section

RightLeft Center

Figure 4: The Linear Light Bu�er

center regions need to be tested, and similarly for the right region.

In the scan-conversion of the light triangle in the 3D grid, the only additional memory is a link list
of pointers to the objects. No preprocessing is required but the scan-conversion process is expensive.
Table II and III illustrate our results for two test scenes5. In Table III, the rendering times have
been normalised by the time required to render the same scene with a grid of 53 voxels and without
using the scan-conversion of light triangles. In the tetrahedron scene, having a grid resolution of
53 is 25%more expensive than having no grid at all. This is due to the facts that just a few voxels
contain lots of small triangles and that identifying if a triangle intersects the light plane is relatively a
cheap process. However when the grid resolution increases, the number of tests on triangles is greatly
reduced in comparison with the extra processing of scan-conversion and gathering of the candidates,
reducing the rendering cost by as much as 75%. Notice that increasing the grid resolution does not
result always in a speed up factor. In the tetrahedron scene, a grid of 503 is less cost e�ective than
253. The sphere akes scene is more problematic and shows some unstability with the algorithm
of scan-converting the light triangle. The bottom square is much larger than the spheres that are
agglomerated in the center of the scene. Because of this situation, the scan-conversion is highly
sensible to variations in the grid resolution, as demonstrated by its non-predictable results.

In the linear light bu�er, the pointers to the objects for each region within each section of each
linear light bu�er need to be allocated. The assignment of an object to the appropriate sections and
regions is done in preprocessing and a simple location of the right section and region is added to the
rendering process. An adaptive subdivision of the angular sections can be extended for the linear
light bu�er but this has not been done yet in our implementation.

In Table III, the interest of the linear light bu�er is evaluated. All the rendering times are
normalised by the rendering time using no linear light bu�er (a single section per linear light bu�er)
and no grid. It is interesting to note that unlike the scan-conversion of the light triangle, this
algorithm is very stable for both scenes. As the grid resolution increases, the ratio of the ray
intersection time over the whole rendering time decreases and as such the importance of the speeding
up of the linear light bu�er is better shown.

Table II: Light Triangle

Database Light Grid Resolution
Triangle 53 103 153 203 253 503

akes Inactive 1.0000 0.9059 0.9022 0.8863 0.8742 0.8629
Active 1.2342 0.7969 0.9722 0.8245 0.8696 1.5742

tetrahedron Inactive 1.0000 0.8926 0.8719 0.8657 0.8615 0.8642
Active 1.2532 0.5239 0.2925 0.2689 0.2385 0.3740

5These two scenes, the sphere akes and the tetrahedron, have been suggested by Haines [Hain87] in
an attempt to help benchmarking rendering techniques. The sphere akes consists of 91 spheres de�ned
recursively above a square while the tetrahedron is represented by 4096 triangles forming a pyramid. To test
our algorithms, a linear light source is located above each scene.

Table III: Linear Light Bu�er

Database Grid Linear Light Bu�er Resolution
Resolution 1 24 36 72 144 360 720

13 1.0000 0.6656 0.6291 0.5751 0.5505 0.5332 0.5281
53 1.0270 0.6834 0.6449 0.5916 0.5678 0.5471 0.5497
103 0.9304 0.5809 0.5446 0.4876 0.4676 0.4479 0.4466

akes 153 0.9266 0.5782 0.5392 0.4858 0.4644 0.4449 0.4411
203 0.9103 0.5606 0.5229 0.4796 0.4481 0.4280 0.4258
253 0.8979 0.5486 0.5112 0.4688 0.4347 0.4156 0.4130
503 0.8863 0.5366 0.4974 0.4579 0.4212 0.4031 0.3990

13 1.0000 0.9732 0.9508 0.9425 0.9236 0.9120 0.9127
53 0.1429 0.0455 0.0410 0.0359 0.0333 0.0318 0.0314
103 0.1275 0.0303 0.0256 0.0206 0.0180 0.0166 0.0160

tetrahedron 153 0.1246 0.0418 0.0227 0.0177 0.0151 0.0138 0.0132
203 0.1237 0.0384 0.0223 0.0168 0.0142 0.0128 0.0123
253 0.1231 0.0341 0.0214 0.0163 0.0138 0.0122 0.0117
503 0.1235 0.0534 0.0209 0.0159 0.0133 0.0118 0.0114

7 Conclusions

In this paper, solutions have been presented for the di�use and specular components of surface shading
when illuminated by linear light sources. These solutions are also valid for any position of the light
source and any type of primitives. On a simple test scene, we observed that for a few primitives,
shading and shadowing with a linear light source is equivalent, cpu-wise, to replace the linear light
source by 10 point light sources. However using this few point light sources results in pictures showing
strong aliasing within the penumbra region. For primitives as complicated as patches, the equivalent
number of point light sources required is around 25.

An algorithm is introduced to correctly handle shadowing with more complex primitives than
polygons. This algorithm adds more exibility in the primitives casting shadows from a linear light
source, and this, at the cost of more expensive computations. In order to reduce the additional
cost of using this shadowing algorithm, two algorithms based on ray tracing's e�ciency schemes are
given. The scan-conversion algorithm has the advantage of requiring only an additional link list of
pointers to the objects. However the scan-conversion process is rather expensive and it is di�cult to
evaluate the dimension of the grid subdivision that would provide a good speed up of the shadowing
calculations. The linear light bu�er requires additional memory for each linear light source. However
its stability and the speed up observed made us choose this method for rendering many of our scenes.

For certain primitives, determining the visible portion of the linear light source is very compli-
cated. A general approach based on shooting rays to determine the visible portion of the light is
used. With such a process, we expect that the tradeo� of both algorithms over no culling will become
even more worthwhile.

The overall result is more exibility for artists to create special e�ects with commonly used
rendering techniques (see Plates 3 and 4). The authors are investigating whether similar approaches
can be used for other 2D and 3D light sources.

8 Acknowledgements

The authors would like to thank Alain Fournier, John Buchanan and Andrew Woo for their sugges-
tions. They are also grateful to NSERC and OGS for their �nancial support.

References

[Aman84] Amanatides, J., \Ray Tracing with Cones", Computer Graphics, (Proc. SIGGRAPH 84),
Vol. 18, No. 3, July 1984, pp. 129-135.

[Aman87] Amanatides, J. and Woo, A., \A Fast Voxel Traversal Algorithm for Ray Tracing", Euro-
graphics 87, August 1987, pp. 1-10.

[Blin77] Blinn, J., \Models of Light Reection for Computer Synthesized Pictures", Computer

Graphics, (Proc. SIGGRAPH 77), Vol. 11, No. 2, July 1977, pp. 192-198.

[Cabr87] Cabral, B., Max, N. and Springmeyer, R., \Bidirectional Reection Functions from Surface
Bump Maps", Computer Graphics, (Proc. SIGGRAPH 87), Vol. 21, No. 4, July 1987, pp.
273-281.

[Cohe85] Cohen, M.F. and Greenberg, D.P., \The Hemi-Cube, A Radiosity Solution for Complex
Environments", Computer Graphics, (Proc. SIGGRAPH 85), Vol. 19, No. 3, July 1985,
pp. 31-40.

[Cook81] Cook, R., Torrance, K., \A Reectance Model for Computer Graphics", Computer Graph-

ics, (Proc. SIGGRAPH 81), Vol. 15, No. 3, August 1981, pp. 307-316.

[Fole82] Foley, J.D. and Van Dam, A., Fundamentals of Interactive Computer Graphics, Addison-
Wesley, 1982.

[Four89] Fournier, A., Fiume, E., Ouellette, M. and Chee, C., \FIAT: Light Driven Global Il-
lumination", DGP Technical Memo DGP89-1, Dynamic Graphics Project, University of
Toronto, 1990.

[Gora84] Goral, C.M., Torrance, K.E., Greenberg, D.P. and Battaile, B., \Modeling the Interaction
of Light Between Di�use Surfaces", Computer Graphics, (Proc. SIGGRAPH 84), Vol. 18,
No. 3, July 1984, pp. 213-222.

[Grad65] Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series and Products, Academic
Press, New York, 1965.

[Hain87] Haines, E.A., \A Proposal for Standard Graphics Environments", IEEE Computer Graph-

ics and Applications, Vol. 7, No. 11, November 1987, pp.3-5.

[Kauf81] Kaufman, J.E. and Haynes, H., IES Lighting Handbook, Illuminating Engineering Society
of North America, New York, 1981.

[Nish85] Nishita, T., Okamura, I. and Nakamae, E., \Shading Models for Point and Linear Sources",
ACM Transaction on Graphics, Vol. 4, No. 2, April 1985, pp. 124-146.

[Phon75] Phong, B., \Illumination for Computer Generated Pictures", Communications of the

ACM, Vol. 18, No. 6, June 1975, pp. 311-317.

[Verb84] Verbeck, C.P. and Greenberg, D.P., \A Comprehensive Light-Source Description for Com-
puter Graphics", IEEE Computer Graphics and Applications, Vol. 4, No. 7, July 1984,
pp. 66-75.

[Warn83] Warn, D.R., \Lighting Controls for Synthetic Images", Computer Graphics, (Proc. SIG-
GRAPH 83), Vol. 17, No. 3, July 1983, pp. 13-21.

Plate 1: A sphere under 7 point light sources

Plate 2: A sphere under a linear light source

Plate 3: A typical cafeteria lit by 12 linear light sources

Plate 4: A desk under a linear light source

