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Abstract
The paper explores the physically-based modeling of a
blast wave impact on surrounding objects. We propose
a connected voxel representation of objects to model
explosions that result in realistic solid debris, rather
than flat polygons. The paper also presents improved
fracture algorithms capable of accounting for the dam-
age of multiple explosions. The important implementa-
tion issues and the results of the simulation are dis-
cussed.
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1 Introduction
Despite the growing interest in explosions, especially in
visual effects, recent publications on the topic can
hardly be found. Ever since the pioneering work of
Reeves [Reeves83], who proposed using particle sys-
tems to model explosions, the area of explosion anima-
tion seems to have been abandoned by researchers.
Particles are very effective at modeling certain after-
effects of an explosion—fire and smoke—and creators
of visual effects for commercial software have concen-
trated mainly on perfecting these two phenomena.

An important visual aspect of an explosion is the
blast wave it generates. Although the blast wave itself is
almost invisible, its influence on surrounding objects is
easily discernible and results in multiple deformations,
breakage and debris. Realistic simulation of the blast
wave impact and debris formation can enhance the vis-
ual perception of the explosion by a viewer. Unfortu-
nately, there is currently no tool on the market for mod-
eling realistic debris. Existing commercial solutions
either create flat polygonal debris, which is no longer
satisfactory for the growing demands of graphic artists,
or force users to design debris templates explicitly,
based on their best understanding of the explosion phe-
nomenon.

This paper is intended to fill the gap and generate
interest inside the graphics community in the physi-
cally-based modeling of explosions, by presenting a
model for the physically accurate simulation of debris
formation and motion. In this work, however, we dis-

cuss only the elementary blast wave equations, which
are used in our simulation to provide a well-balanced
trade-off between physical accuracy and simulation
speed. The full scientific simulation of the real physical
processes associated with explosions would be unnec-
essarily complex and too computationally expensive for
the field of computer graphics, which is focused mainly
on the visualization of the blast wave impact on sur-
rounding objects.

We introduce a connected voxel representation of
objects, which allows the creation of realistic volumet-
ric debris and eliminates certain disadvantages of the
spring-mass particle model that arise when attempting
to model rigid bodies. We also show how to incorporate
our blast wave model with a rigid body motion simula-
tor to produce realistic animation of flying debris.

2 Theory of Blast Waves
Any rapid release of energy in air, such as an explosion,
generates a blast wave. The front of this blast wave
exhibits a nearly discontinuous increase in pressure,
density, and temperature, and is called a shock front.

The transmission of real blast waves in air is an in-
herently nonlinear process involving nonlinear equa-
tions of motion. In this sense, a blast wave differs quite
significantly from an acoustic wave, which involves
only infinitesimal pressure changes and moves at sonic
velocity.

An ideal blast wave, which can be used as a suffi-
cient approximation, is generated under the assump-
tions that the medium—air—is still and homogenous,
and that the source is spherically symmetric. The shock
front of an ideal blast wave is perfectly spherical, and
therefore the characteristics of the blast wave are func-
tions only of distance R from the center of the source,
and the simulation time t [Baker73].

2.1 Blast Wave Pressure Profile
Since the blast wave’s impact on surrounding objects is
influenced primarily by pressure, we are mainly inter-
ested in simulating the pressure changes across the
shock front.

The pressure profile generated by an ideal blast
wave at some location removed from the center of ex-
plosion is shown in Figure 2-1. Before the shock front



reaches the given point, the pressure is equal to the am-
bient pressure p0. At arrival time ta, the pressure rises
discontinuously to the peak value of p0 + Ps

+. The
quantity Ps

+ is called the peak overpressure. The pres-
sure then decays to ambient in total time ta + T+ (posi-
tive phase), drops to a partial vacuum of value p0 - Ps

-

(negative phase), and eventually returns to the ambient
pressure p0 in total time ta + T+ + T -.

The pressure profile curve can be accurately de-
scribed by the modified Friedlander equation
[Baker73]:

 p(t) = p0 + Ps
+ (1 – t / T+ ) e bt T− +/          (2.1)

where time t is measured from time of arrival ta. The
blast wave parameters Ps

+, ta, T
+, and b allow freedom

to customize the pressure profile curve and the initial
decay rate for different explosions, at different dis-
tances from the source.

Given an ideal point source explosion, the peak
overpressure Ps

+ initially decays as the inverse of the
cube of the radius 1/R3, and as the shock approaches the
strength of a sound pulse, the decay approximates the
inverse of the radius 1/R.

2.2 Dynamic Fracture of Objects
The mechanism of body fracture and fragmentation
under sharp blast wave loads is different from that un-
der ordinary static loads. Blast wave propagation cre-
ates strong tensile stresses inside a solid object. Since
most materials are substantially weaker under tension
than under compression, the process of dynamic frac-
turing, called spalling, occurs. Spalling explains the
effect of multiple, nearly uniformly distributed fractur-
ing of solid bodies hit by a blast wave. Further propa-
gation of the wave causes the fractures to grow, and the
body is eventually fragmented into many parts. Due to
the initial presence of multiple micro-fractures, called
flaws, existing in most materials, spalling usually oc-

curs for stresses lower than theoretical predictions
[DGS96].

Davison and Stevens [Meyers94] proposed the con-
cept of a continuum measure of spalling, based on re-
viewing and systematizing existing spall criteria. Davi-
son and Stevens’  theory is phenomenological in the
sense that no detailed mechanisms for the initiation and
propagation of fracture is incorporated. According to
their compound-damage accumulation hypothesis, the
number of cracks (damage D) inside a flawed micro-
structure grows exponentially:
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where D* represents the damage at total separation, or
maximum possible damage, coefficients B and C are
material-dependent constants, σ  is the actual stress
caused by the blast wave load, and 0σ is a critical stress

below which there is no damage.

3 Modeling

3.1 Blast Wave Model
The blast wave model employs the Friedlander equation
(Equation 2.1) to compute physically accurate pressure
changes at any distance R from the source of the explo-
sion. The blast wave parameters required by (2.1) are
obtained from experimental data for a reference explo-
sion of one ton of TNT (trinitrotoluene) in a standard
atmosphere [Kinney62]. The experimental data contains
values for peak overpressure Ps

+, expected arrival time
ta, positive phase duration T+, and the pressure decay
coefficient b, measured at certain distances R1, R2, …,
Rn, from the source. The corresponding parameters for
any arbitrary distance R are obtained by interpolation.

Time and distance related parameters for explosions
with different yields than one ton of TNT are derived
from the reference explosion data by using an appropri-
ate scaling factor as determined by the scaling laws
[Kinney62]. This scaling factor is normally equal to the
inverse of the cube root of the energy of the derived
explosion.

In order to use our blast wave model in a dynamics
simulator, the forces exerted on objects have to be de-
rived from the pressure values. This process, however,
is better understood after discussing object representa-
tion. The force computation is presented in detail in
section 4.1.

Figure 2-1.  Pressure-time curve of an ideal blast
wave
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3.2 Object Representation
Modeling exploding objects requires creating a struc-
ture that incorporates some connectivity information, in
order to simulate the object’s fracture and fragmenta-
tion. A good example of a connectivity-based repre-
sentation is the spring-mass particle model, which was
initially proposed by Terzopoulos [TPBF87]. A well-
known problem with the spring-mass particle model is
its poor ability to model rigid, inflexible objects. In-
creasing the spring stiffness coefficient to make the
object more rigid leads to the “stiffness”  of the gov-
erning ordinary differential equations (ODEs), which
become difficult to solve. In such cases, the slightest
imbalance in the system eventually causes the system to
crash.

Another difficulty with the spring-mass particle
model is the fact that it represents only the object’s
skeleton and requires the association of a surface to the
particles before the modeled object can be rendered.
This problem can be avoided when the simulation speed
is not important, or when the number of objects in the
scene does not change during the simulation and the
surfaces can be computed during the initialization step.
Simulating an explosion, however, entails the continual
creation of new objects—debris—during the simula-
tion. Computing surfaces to these multiple bodies dy-
namically can get unacceptably expensive for the
simulation because the debris usually has a complex
shape, and the accurate computation of the exact sur-
faces is non-trivial.

To overcome the difficulties described above, we
propose modeling exploding bodies with connected
voxels. The connected voxel model is a simple volu-
metric representation of objects, based on spatial occu-
pancy enumeration [Foley90]. Connectivity information
is preserved by the introduction of links between adja-
cent voxels. Links can be thought of as springs that are
made infinitely stiff (in physical terms), and which do
not allow any flexibility in the body, keeping adjacent
voxels attached firmly together.

Objects represented with connected voxels are ani-
mated in a different way than objects represented with
the spring-mass particle model. In particle dynamics,
each particle is considered an independent moving ob-
ject, which does not make sense for connected voxels.
Connected voxels are immovable with respect to each
other and can be grouped into more complex structures,
namely bodies. The world position of a particular voxel

is computed from the position and orientation of the
body to which that voxel belongs.

Voxel-represented objects can be displayed by asso-
ciating a desired shape to voxels, for example, a cube.
Rendering time is linear on the number of voxels; how-
ever, only boundary voxels are visible and require ren-
dering. Since our representation already contains the
adjacency information, the determination of visible
surfaces is simply based on the observation that bound-
ary voxels lack at least one neighbor out of six. The
corresponding face is visible and has to be rendered.

Voxels, in principle, can be made as small as re-
quired in order to reduce the “staircased edges”  prob-
lem. If simulation speed is not of primary concern, ei-
ther the final image can be anti-aliased, or more sophis-
ticated volume-rendering algorithms can be used
[Kaufman91].

3.3 Simulating Fracture with Connected Voxels
The fracture of an object is simulated by “breaking”
links in the connected voxels structure, which imitates
the formation of cracks inside a solid. When the number
of broken links grows, the object may be split into
fragments. In order to compute the split fragments, the
entire scene is represented with a connectivity graph. Its
nodes are associated with voxels and its arcs with the
links that connect voxels. The connected components of
such a graph correspond to the independent bodies in
the scene.

Although simulating fracture with connectivity-
based models, in particular with spring-mass particle
models, is not new to computer graphics ([TF88],
[Norton91]), simulating fracture with connected voxels
is different in the sense that using links requires finding
new criteria for making a decision on when to break a
link. We utilize the capabilities of our blast wave model
to compute the pressure at the midpoint of each link. A
link is broken whenever the pressure exceeds the link’s
yield limit, which is the maximum pressure that the link
can withstand before breaking.

Figure 3-1.  Connected voxels
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Connected
components

Figure 3-2.  Graph representation of the connected voxel model



In our work, we have experimented with several
fracture algorithms. These fracture algorithms produce
different kinds of debris, and therefore the most appro-
priate one may be chosen for any particular case.

The simplest one relies on the variable link yield
limit, which is computed by perturbing some random
value, generated within a certain range, around some
mean value [TF88]:

 yield_limit1 = mean_yield ± rand(var_yield)    (3.1)

Assigning a variable yield limit creates a portion of
weak links, which naturally simulates the existence of
flaws in the material structure.

In the improved algorithm, links that encounter the
first explosion are weakened explicitly by reducing
their yield limit, which makes them an easy target for
subsequent explosions. This method simulates partial
damage to the object, which does not necessarily result
in link breakage.

A further improvement of the fracture algorithm ac-
counts for the orientation of the links relative to the
direction of the blast wave. In real explosions, the ten-
sile forces created by the blast wave inside an object are
much stronger in the direction parallel to the direction
of the wave than normal to it. Based on this observa-
tion, links that are parallel to the direction of the wave
are weakened by the orientation factor, computed as a
dot product of the wave’s radius vector and the link
vector.

A different approach to simulating fracture is an al-
gorithm that does not rely on the link yield limit, but
rather on observed fracture patterns. The algorithm em-
ploys the compound-damage accumulation hypothesis
of Davison and Stevens, discussed in section 2.2
(Equations 2.2 and 2.3). The incremental damage D is
computed for each voxel to determine the number of
links that have to be broken at the current simulation
step in order to produce a realistic simulation of dy-
namic fracture. Here, D* represents the maximum num-
ber of links that can be broken (six per voxel), and the
parameter Ε  is calculated as follows:
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where p(t) is a function that returns the pressure value
(see section 3.1) at the center of a given voxel at time t.

The fractures inside a solid object are computed dy-
namically. At each time step, the fracture simulator is
run in order to determine whether some links should be
broken. If at least one link is broken at this stage, we
run a breadth-first search to compute the fragments.

4 Implementation

4.1 Animation
A blast wave exerts forces on an object similar to those
created by a very strong wind. Our model evaluates
these forces at the centers of the voxels, as a product of
the pressure generated by the wave and the area of the
voxels projected onto the surface of the wave. Assum-
ing a spherical blast wave, the force vector is congruent
to the blast wave radius vector:

R

R
AtpF

�

�

�

⋅⋅= )(                          (4.1)

where  p(t) is a function that returns the pressure value
(see section 3.1) at the center of a given voxel at time
t, R

�

 is a radius vector from the source of the explosion
to the voxel, and A is the projected surface area of the
voxel. Simultaneously, we compute the torque on the
body as a result of the force acting on a specific voxel
of the body:
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where r
�

 is the relative position of the voxel to the
center of mass of the body. The force and torque vec-
tors only need to be computed for boundary voxels,
which approximate the surface of the body. The dy-
namic simulator then uses the summed up force and
torque vectors to update the body position and orienta-
tion respectively.

In our model, we used the generic rigid body motion
simulator described in [BW97]. We do not present the
basic mechanics equations here. The reader can refer to
[BW97], [Haug92], and [Shabana89] for a complete
description of the rigid body dynamics.  In order to
solve the governing ODEs, a desirable integration
method can be chosen. We opted for Euler’s method,
the simplest one, because we wanted to see how the
model behaves in the basic case.

Using quaternions to represent rotation instead of
rotation matrices is more advantageous, because the
quaternion normalization step can be used to eliminate
the rotation accumulation error, which may occur due
to the integration process. More information on quater-
nions can be found in [Shoemake85] and [BW97].

The linear and angular momentum of the newly cre-
ated body fragments are computed as weighted portions
of the initial momentum of the body before it has been
fragmented, which agrees with the law of conservation
of momentum and ensures smooth motion of the split
fragments.



4.2 Collision Detection
A discrete representation of the bodies using voxels is
employed to simplify collision detection. In this work,
we chose not to concentrate on efficient collision de-
tection, and instead used a simple pair-wise test be-
tween body voxels. Collision between two bodies is
considered to occur when the distance between their
voxels becomes less than the expected limit. The dis-
tance between two voxels is defined as the length of the
distance vector connecting the centers of the voxels.

To prevent inter-penetration of the bodies, the
proper collision response is computed. The collision
response algorithm changes the linear and angular mo-
mentum of the bodies discontinuously ([BW97],
[MC95]), simulating the collision with the little to no
deformation of the colliding objects specific to rigid
bodies. The computation of collision response requires
the determination of the collision region, which in-
cludes computing the point of collision and the vector
normal to the body surfaces at this point. To avoid the
time-consuming procedure of surface reconstruction,
we assume that the surfaces of the bodies are smooth.
We approximate the collision normal with the distance
vector between the colliding voxel, and the collision
point with the midpoint of the distance vector (Figure
4-1).

Due to the extremely high velocities of the bodies
hit by the blast wave, some bodies may interpenetrate
noticeably in a single time step. This problem is solved
by reducing the time step adaptively until the inter-
penetration is kept within a certain tolerance.

The voxel enumeration algorithm for collision de-
tection can be optimized by limiting collision testing to
only boundary voxels (see section 3.2). Further optimi-
zation of collision detection with buckets ([Norton91],
[MC95]) reduces the total number of required tests sig-
nificantly. In this approach, the scene is spatially subdi-
vided into smaller regions called buckets, and each
voxel is assigned the number of the bucket it is in at the
current moment in time. Only voxels from the same or
adjacent buckets need to be tested for collisions.

Unfortunately, optimization methods that rely on
any kind of pre-computation step offer little to no bene-
fits for explosion simulation because the number of
bodies in the scene changes continually due to body
fragmentation. Also, techniques that operate on polyhe-
dral objects—such as I-collide [Cohen95] and V-Clip
[Mirtich98]—are not directly applicable to our voxel-
represented model without the additional step of associ-
ating polygon surfaces to the bodies, which can be ex-
pensive.

4.3 User Tools
There is an important trade-off between complete
physical accuracy and increased user control over the
simulation. It is frequently the case that some unrealis-
tic simulation parameters can be chosen to produce
more spectacular visual effects. In our implementation,
the user can control the power of the explosion, as well
as the model parameters, such as the mean and variable
components of the link yield limit. Other controls in-
clude the base simulation time step, voxel mass, drag
and gravity coefficients, etc.

5 Results
We have generated several video clips showing a blast
wave impact on structures modeled with connected
voxels. The visual results of the simulation are very
similar to actual footage shot during nuclear bomb
testing. Depending on the fracture algorithm used, we
were able to generate various types of explosions. Even
though we used a simple Euler’s integration method,
the simulation was both smooth and robust. Selected
frames from the animations created using the connected
voxel model are shown in Figures 5-1 and 5-2.

For simple models, the dynamic simulator is capa-
ble of generating frames over the real-time threshold.
The bottleneck of the simulation is collision detection.
Without collision detection, the computational cost of
the dynamic fracture simulation process has an upper
bound of the time required to compute connected com-
ponents, which is O(n), where n is the number of voxels
in the scene. Collision detection, however, increases the
simulation time up to O(m2), where m is the number of
boundary voxels of all bodies in the scene. As the num-
ber of bodies grows due to fragmentation, so does the
number of boundary voxels, and the simulation slows
down. The use of buckets improves the frame rate by
approximately a factor of log m over the non-optimized
collision detection (see Table 5-1).

Smooth surface
approximation

Figure 4-1.  Collision approximation



6 Conclusions and Future Work
The paper has proposed a new model—connected vox-
els—for the realistic animation of a blast wave impact
on solid objects. Visual realism of the animation is
achieved due to both the volumetric representation of
an exploding object, which allows the creation of con-
vincing solid debris, and the use of physically-based
methods to compute object fracture and motion. Im-
proved fracture algorithms allow the simulation to take
into account the damage of multiple explosions. The
model can be successfully used in games, virtual reality
applications, and visual effects, by choosing the appro-
priate level of accuracy in the object representation and
the simulation methods.

Our current blast wave model leaves room for ex-
tensions and improvements, which would allow the
simulation of more complex wave interactions with the
environment. Possible refinements include the simula-
tion of non-uniform pressure over the wave front due to
shock absorbency of intervening objects, and modeling
the compression of air in front of impacted objects. The
implementation can be improved with more efficient
collision detection and more sophisticated fracture
simulation algorithms.
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Frames/sec
Number of
boundary

voxels

No
collision
detection

Collision
detection
without
buckets

Collision
detection

with buckets

1 – 10 > 100 > 100 > 100
10 – 100 70 20 15

100 - 1,000 15 0.25 5
1,000 - 10,000 < 1 < 0.017 < 0.33

Table 5-1.  Frame rates for connected voxel representation. The
experiments were performed on an Intel 333 MHz Pentium II,
Windows NT 4.0 SP 4, FireGL 1000 Pro graphics accelerator.
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Fig. 5-1. Explosion of a rigid body represented by connected voxels
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Fig. 5-2. Explosion of multiple rigid objects


