
Ray Tracing with Cones

John Amanatides

Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

Abstract

A new approach to ray tracing is intro-
duced. The definition of a "ray" is extended into a
cone by including information on the spread angle
and the virtual origin. The advantages of this
approach, which tries to model light propagation
with more fidelity, include a better method of
anti-aliasing, a way of calculating fuzzy shadows
and dull reflections, a method of calculating the
correct level of detail in a procedural model and
texture map, and finally, a procedure for faster
intersection calculation.

CR Categories and Subject Descriptions:I.3.3
[Computer Graphics]: Picture/Image Generation
- display algorithms; I.3.7 [Computer Graphics]:
Three-dimensional Graphics and Realism - Shad-
ing, Shadowing, Texture, Visible Line/Surface
Algorithms;

General Terms:Algorithms

Additional Keywords and Phrases: Ray Trac-
ing, Anti-Aliasing

Introduction

Ray tracing is a very powerful yet simple
approach to image synthesis. Though expensive
computationally, it has generated some of the
most realistic scenes to date [10, 13, 17]. It is
also used for entertainment and computer aided
design [9, 15]. However, apart from the computa-
tionally expensive method of supersampling, no
general method exists to remove artifacts created
by aliasing. Furthermore, at present, there is no
general procedure to decide what level of detail is
sufficient in a texture map or in a procedural or
hierarchical model of an object when ray tracing.
This is primarily because individual rays are
infinitesimally thick and thus we cannot exploit
area-sampling techniques to avoid aliasing arti-
facts. This paper goes beyond some of these limi-
tations by redefining the concept of "ray".

The Problem

In ray tracing, rays are shot from the eye
into the world. They are constrained so that they
pass through the center of the pixels in the virtual
screen. Once they hav e left, any relationship
between the ray and the pixel on which the results
will be displayed is severed. This is because a ray
is defined as a starting point and a direction which
together form a line. This simple definition
allows for straightforward and fast intersection
calculations with various objects [11, 13, 14].
Unfortunately, it also has drawbacks.

The main drawback with the above stan-
dard approach is that there is not enough informa-
tion associated with the ray to perform anti-alias-
ing [5]. Rays allow us only to sample at the one
point in the center of a pixel. There is no way of
knowing or calculating what else is visible in the
neighborhood surrounding the sample point.



The only way to anti-alias within standard
ray tracing is to go to higher resolution. Whitted
proposed adaptive supersampling and it is now
almost universally used [17]. There are a couple
of problems associated with this approach, how-
ev er. First, the amount of computation can go up
drastically in pixels where large variances of
intensity occur. Small polygons with a texture
mapped on them are a case in point. The second
problem is that small details may "fall through the
cracks" of the sample points. This is especially
true of objects that are reflected or refracted by
other objects.

One way of attacking the sampling problem
outlined above is to modify the definition of
"ray". The pixel should represent not a point but
an area of the screen. This fact can be encorpo-
rated if the ray becomes a pyramid with the apex
at the eye and the base defined by the four planes
that cut the borders of the pixel. Intersection cal-
culations between this extended ray and an object
can decide not only if there is an intersection but
also what fraction of the ray intersects the object.
This fractional coverage information is sufficient
to perform simple area anti-aliasing. Also, noth-
ing can "fall through the cracks" as the ray covers
the whole pixel. Now, only one ray per pixel is
sufficient regardless of scene complexity.

The penalty of traveling this route, how-
ev er, is that intersection calculations can become
quite involved.1 If a ray is reflected or refracted by
a curved surface the resulting ray can be very dis-
torted, furthering the complexity of the intersec-
tion calculations. Also, consider an object, A,
that intersects only a portion of the ray. To cor-
rectly render objects behind A, the ray should be
modified to indicate the portion that is blocked by
A. The proposed new definition of a ray must be
further extended to handle this. Approximations,
such as coverage masks [7], may be used but
these calculations quickly become prohibitive.

An Approximation: Cones

The above extended definition of a ray is
too complex to be easily implemented so a simpli-
fying approximation is proposed: Let the new def-
inition of a ray be a circular pyramid or cone.
This will be made possible by including the angle
of spread and virtual origin of the ray in the defi-
nition which originally included only the origin

1. In fact, Whitted started work in this direction
but abandoned it due to the complexity of the
intersection calculations [17].

and direction of the ray. The spread angle is
defined as the angle between the center line of the
cone and the cone boundary as measured at the
apex of the cone. This angle is chosen such that
when the ray is sent from the eye the radius of the
cone at the distance of the virtual screen is the
width of the pixel. The virtual origin is the dis-
tance from the apex of the cone to the origin.
This will not be zero for reflected or refracted
cones. Reflected and refracted rays continue to
keep this symmetric shape, modifying the spread
angle and distance to the virtual origin so that a
good approximation of the cone is constantly
maintained.

Calculating the intersection between a cone
and an object is still rather complex. This will be
described in the next section. The result from the
intersection calculations should indicate not only
if there is an intersection but also the fraction of
the cone that is blocked by the object. A sorted
list is maintained of the eight closest objects that
intersect the ray. This list is used for anti-alias-
ing. If the closest object does not completely fill
the ray then the next object in the list contributes
to the pixel value. Since at present only the frac-
tional coverage value is used in mixing the contri-
butions from the various objects, overlapping sur-
faces will be calculated correctly but abutting sur-
faces will not. Additional information in the
sorted intersection list can be used to rectify this
shortcoming.

Reflection and refraction calculations must
take into account that the ray is now a cone. The
new direction of the ray is calculated in the same
manner as standard ray tracing and uses the center
line of the cone. To calculate the new virtual ori-
gin and spread angle the surface curvature is
required. A constant curvature is assumed
throughout the area of intersection and the optical
laws of spherical mirrors and lenses are used [12].
Unfortunately, we cannot use the simple lens
equations that depend on the "paraxial" approxi-
mation (the incident angle of the incoming ray is
close to zero). The more general equations are
required.

Intersection Calculations

We now describe the intersection calcula-
tions between a cone and various objects. These
objects include spheres, planes and polygons. In
general, each intersection calculation should con-
sist of two parts: a fast in/out test and then a more
complicated area intersection approximation. The
quick first test is desirable since most objects will



intersect relatively few rays.

The intersection calculation between a
sphere and a cone consists of two parts. The first
part tests if an intersection will occur and the sec-
ond part calculates the fractional coverage.

This test begins by finding the point on the
cone’s center line (CP) that is closest to the center
of the sphere and the distance between the two
points (SEP). In standard ray tracing this must
also be performed with the test being negative if
SEP is greater than the radius of the sphere. The
above comparison must be modified to take into
account that the ray is a cone. Let the distance
between CP and the virtual origin of the ray be T,
the spread angle A and the radius of the sphere R.
We calculate the following:

D = T*tan(A) + R/cos(A)

If D is less than SEP, then there is no intersection
between the ray and the sphere (see fig. 1). The
above calculation requires the evaluation of two
trigonometric functions. Notice, however, that
these functions only depend on the spread angle
and need be evaluated once, before any intersec-
tion calculations begin. This results in a test that
is only a few floating point operations more
expensive that regular ray tracing.

The second part of the intersection calcula-
tion evaluates the fractional coverage of the
sphere within the ray. This is equivalent to find-
ing the area of intersection of two circles, the out-
line of the sphere and the outline of the cone
where it is closest to the sphere. To calculate this
quickly an approximate solution involving a sim-
ple polynomial evaluation is performed.

The intersection calculation between a ray
and a plane is now described. The calculation
begins with a quick test to make sure that the
plane is not behind the origin of the ray by calcu-
lating the intersection between the center line of
the ray and the plane. If the intersection is behind
the origin of the ray then the plane is discarded.
Otherwise, the angle between the centerline of the
ray and the plane normal is computed. This angle
and the spread angle of the ray are compared and
it is a simple matter to test for intersection.

The next part of the intersection calculation
computes the fractional coverage. The problem
can be reduced to two dimensions and involves
finding the area of intersection between a circle
(the cross section of the cone) and a half plane
(the horizon). The spread angle and the angle
between the ray and plane computed above

together indicate how the distance between the
center of the circle and the edge of the half plane.
Given this distance, the area of intersection is
computed using a polynomial approximation.
This completes the intersection calculation for
planes.

The intersection calculation between a cone
and a polygon is now outlined. There are two rea-
sonable strategies we can use. The first requires
we intersect the cone with the plane defined by
the polygon and perform an intersection test
between the polygon and the cross section
obtained. The cross section of a conic can be
either a circle, ellipse, hyperbola or a parabola.
This makes intersection calculations more com-
plicated. The second strategy requires that we
project the vertices of the polygon onto a plane
perpendicular to the direction vector of the cone.
Now the cross section of the cone with that plane
is always a circle. We then must calculate the
intersection between the projected polygon and a
circle. This can be accomplished by calculating
the distance from the center of the circle to each
of the edges and then using the circle - half plane
intersection estimation mentioned earlier.

Choosing a Representative

Most anti-aliasing schemes make some
assumptions within a pixel to simplify the algo-
rithm. Two common assumptions are that the
depth (z value) and intensity of any individual
object are constant within the pixel [5, 7]. But the
choice of the representative, the sample point on
the object within the pixel at which the intersec-
tion calculations will be performed, must be made
with care or the attempt at anti-aliasing will falter.

There are two variables that can be altered
when making this decision. The first is which
point on the object should be chosen? The center
of the pixel is universally used. Problems arise
when the object does not occupy this point. Solu-
tions that only pick the point on the object that is
closest to the center (as seen from the eye) can
lead one astray. For example, consider the case in
which a cone partially intersects an infinite plane
but the center of the cone does not intersect. The
point closest to the center would be on the hori-
zon. If we model the attenuation of light with dis-
tance this will result in an intensity of zero for
this point since the distance to the horizon is infi-
nite.

The second variable one has when choosing
the representative is what surface properties



should the sample point be given? They do not
have to be exactly the same as the values found at
the sample point. Why you may want to change
these values is illustrated below:

Specular highlights can be a problem when
the surface normal varies greatly within a pixel [6,
18]. By reducing the directional dependence of
the specular highlight in these trouble spots the
problem is diminished. For example, if we are
using Phong shading, we can clamp the value of
n, the power to which the specular dot product is
raised, to a value that will subdue this form of
aliasing.

Levels of Detail

A recurring problem with procedural and
hierarchical models of objects is the level of detail
to which they should be generated [3]. In classi-
cal ray tracing there is no good answer as there is
no way of knowing how much of the screen an
object will fill. Stochastic surfaces are a good
example [8, 13]. If we do not subdivide the sur-
face enough we will see the resulting polygons. If
we subdivide too far, howev er, we will encounter
two problems: First, we will waste computing
resources and second, we will be forced to under-
sample. This is because further subdivision will
introduce higher frequency components into the
stochastic surface, frequencies that cannot be
reproduced faithfully. We can use cones to
advantage here. By calculating the size of the
intersection, we can decide what level of detail is
sufficient. Thus two different views of the same
object, one direct and one reflecting off another
surface, can both be rendered at the correct level
of detail. Kajiya has performed ray tracing with
prisms and surfaces of revolution [13]. His
implementation of these objects require the use of
strip trees, a hierarchical structure which repre-
sents a curve at various resolutions. We can speed
up the intersection calculation with these objects
by only subdividing the strip tree to a level suffi-
cient for display.

Cones can also be used to anti-alias texture.
At each intersection an estimate of the size and
shape of the intersection can be calculated. This
information can be used to generate the filter to
av erage the texture map.

Fuzzy Shadows

Virtually all graphics systems model light
as either a point source or as a direction from
which parallel light beams emanate [4].

Consequently, shadows cast by these light sources
exhibit sharp boundaries. Cones allow us to
extend our repertoire of light sources to include
ones that cast fuzzy boundaries at almost no extra
cost. For example, we can add spheres of varying
radii as light sources. At each intersection, when
a ray is sent to the light source to calculate the
shadow, we broaden the ray to the size of the light
source. By calculating how much of the light
source is blocked by intervening objects, we have
enough information to generate fuzzy shadows.
Note that this does not produce completely cor-
rect shadows. The shadows of transparent objects
will still be wrong. The concentration of light by
these refracting surfaces cannot be generated
using this simple approach.

Dull Reflections

In his classic paper [17], Turner Whitted
raised the issue of generating specular highlights
using ray tracing techniques. His approach, how-
ev er, suffered from aliasing and fired off many
rays at each intersection point. This is very
expensive computationally and was thus aban-
doned. We produce similar results by simply
broadening the reflected ray. In this manner, only
one ray is required. When rays are broadened,
reflecting surfaces become less glossy. This
results in reflections that are less detailed. In a
similar manner, translucency can be modeled by
broadening the transmitted ray.

The above remarks suggest that the amount
of ambient lighting can be estimated by firing
very broad rays from each surface and using sim-
ple lighting models to prevent an infinite regress
of rays.

Reducing Intersection Calculations

The cone approach provides a basis for
reducing the number of intersection calculations
required for ray tracing. By recursively firing
cones of various sizes at the screen, we can per-
form a Warnock style culling process [16]. This
can significantly reduce the number of intersec-
tion calculations required at each pixel by capital-
izing on image coherence. A test case of six
spheres (without reflection, refraction or shadows)
resulted in an order of magnitude reduction in
intersection calculations. This result can be
immediately applied to ray casting [1], and with
some modifications, to ray tracing in general.



Results

Figures 2 - 5 are examples of images gener-
ated using some of the above improvements to ray
tracing. They all took approximately 50 minutes
each to compute on a VAX 780. Figure 2 illus-
trates anti-aliasing and fuzzy shadows. The light
source is a sphere of radius 20 units (each
checkerboard is one unit wide) and approximately
300 units away from the scene. The checkerboard
is modeled as a procedural texture map.

Figure 3 illustrates dull reflections. The
balls become progressively less glossy from left
to right. This is evidenced by the reflected
checkerboard that varies in detail form ball to
ball. The extra angular spread of the reflected
rays for each of the balls in left to right order is
0., .2 and .4 radians.

Figures 4 and 5 illustrate ray tracing tex-
tures. The method of pyramidal parametrics [18]
was used to filter the texture.

Conclusions

We hav e introduced a new approach to ray
tracing: cones. With cones, only one ray per pixel
is now required to perform anti-aliasing. The
cone approach can also easily be used to decide
the correct level of detail, generate fuzzy shadows
and dull reflections and reduce intersection calcu-
lations. Work is still required to find efficient
intersection algorithms for more complicated
objects.

Acknowledgements

I wish to thank Alain Fournier for his sup-
port and valuable comments. I also wish to thank
Eugene Fiume, Ralph Hill, Michael Hollosi and
Delfin Montuno who were a sounding board for
many ideas and contributed numerous sugges-
tions.

References

1. Amanatides, J., and Fournier, A., "Ray Casting using
Divide and Conquer in Screen Space",Proc. Intl.
Conf. of Engineering and Computer Graphics,Beijing,
China, Aug. 27 - Sept. 1 1984.

2. Blinn, J.F., and Newell, M.E., "Texture and Reflection
in Computer Generated Images",Comm. ACM,Vol.
19(10), October 1976, pp. 542-547.

3. Clark, J.H., "Hierarchical Geometric Models for Visi-
ble Surface Algorithms",Comm. ACM,Vol. 19(10),
October 1976, pp.547-554.

4. Crow, F.C., "Shadow Algorithms for Computer Graph-
ics", Computer Graphics,Vol. 11(3), July 1977, pp.
242-248.

5. Crow, F.C., "The Aliasing Problem in Computer-Gen-
erated Shaded Images",Comm. ACM,Vol. 20(11),
November 1977, pp. 799-805.

6. Crow, F.C., "A Comparison of Antialiasing Tech-
niques", IEEE Computer Graphics and Applications,
Vol. 1(1), January 1981, pp. 40-48.

7. Fiume, E., Fournier, A., and Rudolph, L., "A Parallel
Scan Conversion Algorithm with Anti-Aliasing for a
General Purpose Ultracomputer",Computer Graphics,
Vol. 17(3), July 1983, pp. 141-150.

8. Fournier, A., Fussell, D., and Carpenter, L., "Computer
Rendering of Stochastic Models",Comm. ACM,Vol.
25(6), June 1982, pp. 371-384.

9. Goldstein, R.A., and Nagel, R., "3-D Visual Simula-
tion", Simulation,January 1971, pp. 25-31.

10. Hall, R.A., and Greenberg, D.P., "A Testbed for Real-
istic Image Synthesis",IEEE Computer Graphics and
Applications,Vol. 3(8), November 1983, pp. 10-20.

11. Hanrahan, P., "Ray Tracing Algebraic Surfaces",Com-
puter Graphics,Vol. 17(3), July 1983, pp.83-90.

12. Hect, E., and Zajac, A.,OPTICS, Addison Wesley
Publishing Company, Reading Massachusetts, 1974.

13. Kajiya, J.T., "New Techniques For Ray Tracing Proce-
durally Defined Objects",Computer Graphics,Vol.
17(3), July 1983, pp. 91-102.

14. Rubin, S.M., and Whitted, T., "A 3-Dimensional Rep-
resentation for Fast Rendering of Complex Scenes",
Computer Graphics,Vol. 14(3), July 1980, pp.
110-116.

15. Roth, S.D., "Ray Casting for Modeling Solids",Com-
puter Graphics and Image Processing,Vol. 18, 1982,
pp. 109-144.

16. Warnock, J.,A Hidden-Surface Algorithm for Com-
puter Generated Half-Tone Pictures,Univ. Utah Com-
puter Sci. Dept., TR 4-15, 1969, NTIS AD-733 671.

17. Whitted, T., "An Improved Illumination Model for
Shaded Display",Comm. ACM,Vol. 23(6), June 1980,
pp. 343-349.

18. Williams, L., "Pyramidal Parametrics",Computer
Graphics,Vol. 17(3), July 1983, pp. 1-11.


