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ABSTRACT 
This paper presents a new recursive formulation for computing 
the Walsh-Hadamard Transform (WHT) that allows the 
generation of higher order (longer size) 2-D WHT architectures 
from four lower order (shorter sizes) WHT architectures. Our 
methodology is based on manipulating tensor product forms so 
that they can be mapped directly into modular parallel 
architectures.  The resulting WHT circuits have very simple 
modular structure and regular topology. 

1. INTRODUCTION 

The Walsh-Hadamard Transform (WHT) has been used in many 
DSP, image, and video processing applications such as filter 
generating systems [9], block orthogonal transforms (BOTs) [5], 
and block wavelet transforms [2]. Other applications in 
communications are in CDMA [1] and spread spectrum [6].  
This paper proposes an efficient and cost-effective methodology 
for mapping WHT onto VLSI structures. The main objective of 
this paper is to derive a design methodology and recursive 
formulation for computing the multidimensional (m-d) WHT 
which is useful for the true modularization and parallelization of 
the resulting computation.  
 
The main result reported in this paper shows that a large two-
dimensional 2-D WHT computation on an  input image 
can be decomposed recursively into three stages as shown in 
Fig. 1 for the case . The second stage is constructed 
recursively from four parallel (data-independent) blocks each 
realizing a smaller-size WHT. The pre-additions and the post-
permutations stages serve as "glue" circuits that combine the 2

nn×

4=n

2 
lower order WHT blocks to construct the higher order WHT 
architecture.  
Observe that, we have drawn our networks such that data flows 
from right to left. We chose this convention to show the direct 
correspondence between the derived algorithms and the 
proposed VLSI networks. 
Although, as far as we know from the literature, the recursive 1-
D WHT algorithm is widely presented in the literature [8], [11], 
neither the proposed 2-D WHT algorithm nor the modular forms 
were previously derived.  
 
 
 
 
 

Our work is based on a non-trivial generalization of the 1-D 
WHT using tensor product. When coupled with permutation 
matrices, tensor products provide a unifying framework for 
describing a wide range of fast recursive algorithms for various 
transform [3], [4], [10].  
 
Some of the tensor product properties that will be used 
throughout this paper are [3], [10]: 
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Where ⊗  denotes the tensor product,  is the identity matrix 

of size n, and  is an 
nI

snP , nn×  binary matrix specifying an n/s 

shuffle (or s-stride) permutation.  
 
This paper is organized as follows. In Section 2 we modify the 
original 1-D WHT. In Section 3 we then propose the 2-D WHT 
recursive algorithm. Finally, we conclude our results. 

2. THE MODIFIED FORMULATIONS OF   
     THE 1-D WHT 
  
In this section, we modify the original 1-D WHT to the iterative 
form that allows a hardware saving without affecting the 
processing speed.  
The original 1-D WHT transform matrix is defined as [8], [11] 
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where W  is the 2-point WHT.  2
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2.1 The 1-D WHT Iterative Formulation 

Let , we can write equation (6) in the iterative 
tensor-product form 
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which using property (4), can be modified to 
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As an example, we can express W  as 8
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The realization of W  is shown in Fig. 2 (a). 8
Applying property (5) to equation (9), now the adjacent 
permutations  (from the first and the second stages) 

will be replaced by the single permutation and the adjacent 

permutations   (from the second and the third stages) 

will be replaced by the single permutation as shown in Fig. 

2 (b). 
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Similarly, equation (8) can be simplified to 
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Thus, W  can be computed by the cascaded product of k similar 
stages (independent of i) of double matrix products instead of the 
triple matrix products in equation (8). Alternatively, we can 
realize (10) by a single block of and take 

the output after  iterations as shown in Fig. 3 for the case 
. 
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2.2 The 1-D WHT Recursive Formulation 
Applying property (1), equation (7) can be modified to 
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where 
)( 2/2 nn IWQ ⊗=                                                (12) 

 
Equation (11) represents the two-stage recursive tensor product 
formulation of the 1-D WHT in which the first stage is the pre-
additions ( ), followed by the second stage of the core 

computation  that consists of a parallel stage of 

two identical smaller WHT computations each of size  as 
shown in Fig.4.  
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3. THE PROPOSED FORMULATION OF    
      THE 2-D WHT 
This section will develop two recursive methodologies for 
realizing the 2-D WHT computations from smaller WHT 
computations. First, we present a direct method for realizing the 
2-D WHT computations using the conventional row-column 
decomposition of the 1-D WHT in a tensor product form. The 
second methodology provides a truly 2-D recursive structures 
that employ one stage of smaller 2-D WHTs to realize the large 
2-D WHT.  

3.1 Conventional Row-Column Decomposition 
Since the WHT matrix is separable [7], the 2-D WHT for an 
input image of dimension 21 nn ×  can be computed by a stage 

of  parallel 1-D WHT computations on  points each, 

followed by another stage of  parallel 1-D WHT 

computations on  points each. This can be represented by the 
matrix-vector form                

2n 1n

1n

2n

   ,                                                     (13)  xWX nn 21,=

where is the 2-D WHT transform matrix for an 
21,nnW

21 nn ×  image, X and x are the output and input column-
scanned vectors, respectively.  
For separable transforms, the matrix W can  

21,nn
be represented by the tensor product form [7] 
 
    W

212,1 nnnn WW ⊗=                                        (14) 

where and are the row and column 1-D WHT 

operators, as defined by equation (7), on x, respectively. 
1nW 2nW

By substituting (14) in (13), we have 

xWWX nn )( 21 ⊗= .                                     (15) 

Which using equation  (7) can be expressed as 
     xWX nn 21×=               (16) 

Therefore, the 2-D WHT on an  input is equivalent to a 

1-D WHT on a 1-D input vector of size n  that can be 
implemented using either the modified 1-D iterative algorithm 
given by (10) or the modified 1-D recursive algorithm given by 
(11). 

21 nn ×

21 n×

3.2 The Truly Recursive Formulation of the   
       2-D WHT 
Now we will derive a truly 2-D recursive formulation of the 
WHT by further manipulation of equation (15). Substituting (11) 
in (15), the 2-D WHT transform matrix can be written as 
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Applying property (1), we can write W as 
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Now, from property (2), we can write C  in the form 
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Applying property (4), we can write (20) in the form 
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Finally, substituting (21) in (18), we have 
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Equation (23) represents the truly recursive 2-D WHT in which 

2,1
~

nnQ and 2,1
~

nnR are the pre- and post-processing glue 

structures, respectively, that combine  identical lower-order 
2-D WHT modules each of size  in parallel, to 

construct the higher order 2-D WHT of size n  as shown 
previously in Fig. 1. 
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4. CONCLUSIONS 
In this paper, we showed that a large two-Dimensional 2-D WHT 
computation on an nn×  input image can be decomposed 
recursively into three stages. The middle stage is constructed 
recursively from four parallel (data-independent) blocks each 
realizing a smaller-size WHT. The pre-additions and the post-
permutations stages serve as "glue" circuits that combine the 22 
lower order WHT blocks to construct the higher order WHT 
architecture. The resulting networks have a very simple modular 
structure and highly regular topology.  
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         Figure 1 The proposed 2-d WHT recursive realization for a 44×  input image 
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    Figure 2 The realization of W :      (a) The original 1-d WHT iterative algorithm.      (b) The modified 1-d WHT algorithm. 8

 
 
 
 
 
 
 
 
 
 
 
 

 

             Figure 3 The reduced hardware realization of                                 Figure 4 The realization of the recursive 1-d WHT 
                            the modified 1-d WHT algorithm 
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