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Abstract - Internet server provisioning is a very challenging 
problem for content providers and large server farms. In this 
paper we investigate the control theoretic approaches of 
managing servers in order to satisfy a required Quality of 
Service (QoS). We compare between two widely used models 
in the literature and our proposed simple technique. First 
model is a queueing based M/G/1 model with a PI controller. 
The second technique represents the server as a second order 
system and estimates the system parameters on line every 
sampling period. The estimated parameters are used in the 
design of a first order filter/controller in order to track the 
required QoS. Finally we present a simple technique based on 
the Additive Increase Multiplicative Decreases used in TCP 
congestion avoidance. We use simulation to compare these 
three techniques. Surprisingly, the AIMD performs the best 
among these three and it requires the least computation 
overhead among the three. 

Keywords: Quality of Service, web server provisioning, 
response time control, performance guarantees. 

 

1 Introduction 
  The Internet is growing with an unprecedented rate and is 
infiltrating every aspect of our lives. E-commerce sites, mail 
servers, file servers, content servers, and search engines are 
few examples of applications that we use almost every day of 
our lives. It is difficult to imagine our lives without the heavy 
use of the Internet. 

These sites are powered by powerful servers (or in many 
cases a large server farms where hundreds and may be 
thousands of servers are used) that receive users’ requests, 
process them and send back the response. One of the major 
problems facing providers is how to condition the servers in 
order to produce the agreed-upon quality of service (QoS) and 
at the same time minimize their cost. 

The Qos is either an agreed-upon contract between the servers 
owners and the content provider that must be maintained by 
the server owners, or a generally accepted criterion that is 
enforced by the server owners in order not to drive clients 
away. The consumers are known to be impatient, if the 
response is not within a specific period of time (that period 
varies greatly according to the application) the customer will 

probably terminate the session and navigate away to another 
site (the just-a-click-away syndrome).  

Throwing hardware at the problem (also known as over 
provisioning) is not the optimal solution. Designing the 
system to work at the peak capacity wastes a lot of resources 
that most of the time would be unused. What is required is a 
policy that achieves the required QoS without wasting a lot of 
hardware. That is usually achieved by using admission 
control, where requests will be turned down if accepting the 
request results in a longer response time than what is required 
in the QoS agreement. If the system is overloaded, accepting a 
request not only means that this request will suffer more than 
usual response time, but also it means that all requests 
arriving after that request will suffer a longer than normal 
response time. By turning down one request, we lost one 
request but the following ones will be served according to the 
required QoS agreement. 

Recently, there have been a lot of studies that suggests the use 
of classical feedback control theory in order to control access 
to the server and maintain the required response time. The 
argument is just as in the case of a controller controlling the 
gas rate going into a furnace in order to maintain the output 
(temperature) at a specific level, a controller to control the 
request rate delivered to the server can maintain the required 
output (response time) at a specific level. 

However, the main differences between systems where 
classical control showed a lot of promise and internet servers 
are: 

• Systems where classical control is very promising are very 
well understood; usually its behavior is governed by 
differential equations (difference equations in case of 
discrete systems). This lends itself very nicely to classical 
control theory. Where controllers are designed in the 
continuous time (discrete time) case using Laplace (Z) 
transform. 

• Servers work in a highly unpredictable environment with 
probabilistic inputs (at best) and a lot of randomness in 
both arrival pattern and service time. Queuing theory has 
been successfully used to describe such a system. 
However almost all queuing theory results are based on a 
stable system and are valid at the steady state (average). 

 



In this paper, we study the problem controlling the arrival rate 
in order to maintain the required QoS. We use 2 methods 
from classical control theory and one method that has proved 
itself to be successful in controlling congestion in TCP/IP 
traffic. We use simulation to compare these three methods. 

The remainder of the paper is organized as follows: Section II 
describes our motivation and surveys previous work in this 
area. Section III describes the setting and the proposed 
solutions. Section IV shows the result of our work and 
compares it with previous solutions. Section V concludes the 
paper and describes our future work. 

2 Motivation and Related Work 
2.1 Motivation 
 Our motivation is to control the response time of an 
Internet server. Usually, and specifically in E-commerce 
applications the service is structured as 3-tier server. The first 
tier deals with static contents. The server gets a request to 
send a specific page, and it responds by sending the page. 
The second tier deals with dynamic contents. Requests arrive 
to the second tier server that fetches and calculate dynamic 
contents and sends it back. Third tier deals with database 
accesses.  

Although 3-tier architecture is quite common in E-commerce 
applications, in this paper Our motivation is to control the 
response time of an Internet server. Usually, and specifically 
in E-commerce applications the service is structured as 3-tier 
server. The first tier deals with static contents. The server gets 
a request to send a specific page, and it responds by sending 
the page. The second tier deals with dynamic contents. 
Requests arrive to the second tier server that fetches and 
calculate dynamic contents and sends it back. Third tier deals 
with database accesses.  

Although 3-tier architecture is quite common in E-commerce 
applications, in this paper we deal with single tier services 
only. The reason for that is we are concentrating on 
comparing the different approaches of admission control. 
Currently we are in the process of building a low power 
server with a 3-tier architecture. Once this system is built, we 
will test it using the three approaches mentioned here. Our 
objective is to implement a low power server that could 
achieve the same performance as bigger, more powerful, and 
more power hungry servers. 

2.2 Previous Work 
A lot of work is done in improving the performance of web 
servers and achieving a specific QoS. Earlier work in this area 
was mainly either service differentiation  [3] or using data 
prefetching  [4].  In service differentiation customers 
(requests) are treated differently giving a priority for one type 
of requests (more important customers) over the others. In 

prefetching, data we think will be requested soon is 
prefetched ahead of being actually requested. Both of these 2 
techniques can improve the performance of the system (for 
only one group of requests in service differentiation case) but 
there are no guarantees that a specific level of performance is 
met. 

Service differentiation is combined with admission control in 
 [12]. They classified incoming requests into two categories, 
and admission control is based on the queue size of each 
category and some real time system measurements. They 
tested their system using Apache with static contents and 
some basic form of dynamic content. 

A self tuning controller is proposed in  [11]. They used a 
queuing model known as processor sharing model and a 
proportional integral (PI) controller to satisfy a target 
response time. Their queuing mode is M/G/1 where the 
response time is given by the equation 
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Where λ is the arrival rate (assumed to be Poisson arrival) and 
E [X] is the Expected value of the service time. They also 
linearize the model around the operating point. Equation (1) 
that describes the system is valid only in the steady state and 
for stable queues (by stable we mean average arrival rate is 
less than average service rate). For short time periods and in 
heavy traffic the arrival rate may be greater than the service 
rate. Although the objective of the controller is to avoid such 
a case, but when it happens the equation used to model the 
system is not valid anymore. 

The authors in  [13] proposed an admission control to control 
the response time of the server. In their model they used Eq. 
(1) to represent the system. They also proposed an adaptive 
control scheme where the model parameters are estimated on 
line (using RLS technique) and is used to modify the 
controller parameters  [2]. While in  [16] the authors proposed 
an adaptive architecture that performs admission control. 
Their technique depends on using TCP SYN policer and an 
HTTP header-based connection control in order to maintain 
the required response time limit.  

Malarait et al in  [14] proposed a nonlinear continuous time 
model using fluid approximation for the server. They used 
this model to obtain an optimal configuration of the server in 
order to achieve maximum availability with performance 
constraints and maximum performance with availability 
constraints. They also validated their design using TPC-C 
benchmark. 

Elnikety et al in  [7] proposed a proxy called Gatekeeper to 
perform admission control as well as user-level request 
scheduling. Their idea depends on estimating the cost of the 



request, then deciding if admitting that request will exceed the 
system capacity or not (system capacity is determined by 
using offline profiling). they noted that since the proxy is 
external to the server, no server modification is required for 
their gatekeeper. 

Guitart in  [8] proposed a session based admission control for 
secure environment. In their technique, they gave preference 
for connections  that could use existing SSL connections on 
the server. They also estimated the service time for incoming 
requests in order to prevent overloading the server. 

Blanquer et al  [5] proposed a software solution for QoS 
provisioning for large scale Internet servers. They proposed 
the use of traffic shaping and admission control together with 
monitoring response time and weighted fair queuing in order 
to guarantee the required QoS.  For an excellent review of 
performance management for internet applications, the reader 
is referred to  [9]. 

Almost everyone who used Control theory used the average 
response time as the parameter to control. One major problem 
with that is the QoS requested is not on the form of average 
response time or average delay. The QoS is usually on the 
form x% of requests have a response time better than y msec. 
Guarantees to average response time do not solve this 
problem. 

In this paper we investigate this problem. We compare 
between using average response time and the actual QoS 
percentage of the requests that satisfied the required response 
time guarantees. We also present a simpler technique that 
does require much less overhead compared with control 
theoretic approaches and produces better results in our 
simulation. 

3 System Setup 
As we mentioned before, most of the work done using control 
theoretic approach to control quality of service considered the 
average response time as the parameter to control. The 
problem of that approach is that most of the required QoS is 
not about the average response time  [11]. Usually, the QoS 
requirement is described as 90% of the requests face a 
processing delay of not more than 150 milliseconds.  
Controlling the average response time will not lead us to a 
specific condition such as the one described above. 

The reason for that is the Internet traffic is highly volatile and 
unpredictable. Classic queuing theory deals with such 
scenarios if we know the distribution of the incoming traffic 
and service time (or at least know some parameters about the 
underlying distribution such as the average and the standard 
deviation).  For example consider the simplest type of queues 
known as M/M/1. The cumulative probability distribution of 
the response time is  [10]. 

)1(1)( ρτμτ −−−= eF                                                          (2) 

Where, μ is the service rate and ρ is the server utilization. 
Since the average time spent in the system for M/M/1 is 
1/(μ(1-ρ)) = 1/(μ-λ), where λ is the arrival rate. By simple 
substitution of τ to be the average time spent in the system, 
we find that the probability that any customer meets a 
response time more than the average to be 36.8%. 

Another problem with using control theoretic approach is how 
to handle the overhead in calculating and adjusting the system 
and the controller parameters. Consider for example 
admission control. The system output should be monitored to 
collect statistics about the parameter to be controlled. Every 
sampling period, the collected data are used in order to 
calculate the admission probability and modulate the arrival 
with this probability to meet the required service performance 
measure. The major question here is how should we select the 
sampling period? 

The requests arrivals to a server are usually in the 
milliseconds range, or even less for very powerful servers.  
Now, what should be the sampling period? If we consider the 
sampling period to be on order of seconds, that is good from 
the overhead point of view. After all we do not want to 
overload the server with control calculation since that time is 
taken from serving incoming requests. However, since the 
web traffic is highly volatile and unpredictable, what 
happened few seconds ago might not have an impact on the 
current operation of the system. For examples 3-5 seconds 
ago we received a rush of requests that resulted in prolonging 
the response time and not meeting the required QoS, Now we 
reduce the admission probability in order to slow down the 
arrival, but there is very little arrival now. That leads to 
wasting CPU cycles because of the time difference between 
the sampling rate and traffic variations. 

The second choice is taking the sampling time in the order of 
milliseconds. Although the response will be much faster than 
the previous case, however that is too much overhead for the 
CPU. Even the online recursive estimator in  [15] requires a 
number of large matrix multiplications every sample period in 
order to estimate the system parameters. 

In this paper, we present three different techniques for QoS 
guarantees in a web server. First we consider a simple M/G/1 
model similar to the one proposed in  [13]. This model 
predicts the response time, so the only controllable parameter 
here is the average response time. Then we consider a general 
model for the system. We assume a second order model and 
we estimate the system parameters on line. Then a first order 
controller/filter is used to control the average response time. 
Our third model is a variation of the previous one where the 
parameter to control is the percentage of the requests that 
failed the QoS requirements. Finally we consider a fourth 
model where we used a simple variation of the Added 



Increase Multiplicative Decrease AIMD that was successfully 
implemented in congestion avoidance for TCP/IP protocols 
 [1]. 

3.1 Using PI Controller 
This is the method proposed in  [11]. Eq 1 is considered to 
represent the system where TRT represents the response time. 
The schematic diagram of the controller is shown in Figure 1 
where the server is represented by Eq. 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
In Fi.g 1 τ represents the response time, τref is the required 
average response time, P0 is the admission probability derived 
from Eq. 1 in order to make τ =τref. λ0 is the unmodulated 
arrival rate, and Δp is the correction produced by the 
controller to p in order to guarantee the required τref. 

Linearizing Eq. 1 using Taylor series around the operating 
point λ0 we can solve for the PI controller. The results of this 
scheme together with some comments about the scheme is 
discussed in the next section. 

3.2 Estimating the System Parameters 
Similar to  [13] we assume no knowledge of the system under 
control (the server). By monitoring the input and output of the 
server we derive the model parameters. Here the system under 
control is the server with input λ0 and output either the 
average response time or the percentage of the requests that 
confirm to the required QoS. We tried several models for the 
system and found out that the best fit is a second order 
system. In this part, we consider two solutions one that adjusts 
the average response time and one that adjusts the percentage 
of requests conforming to QoS. 
In this case, we assume that the system output y (no matter 
what the output is, it could be response time, or the 
percentage of packets that missed the service time threshold) 
can be represented as a second degree system where the input 
u is the arrival rate as follows. 
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Where Z-1 is the delay operator. The parameters ai and bi are 
estimated on line by measuring the output y and the input u 
and averaging them over the sampling period. We use a well 
known recursive least square estimator  [15]. 
 
 
 
 
 
 
 
 
 
 
 
The controller was designed as a PI controller on the form 
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α0, α1, β0, β1, and K0 are chosen in order to achieve a 
reasonable overshot, settling time within the sampling period 
and the proper tracking of the output for K0 

3.3 Additive Increase Multiplicative Decrease 
This idea came from the sliding window control in TCP  [1]. 
In TCP the window size is decreased (by a multiplicative 
factor) if there is a lost packet and is increased (by an additive 
factor) for successful transmission of a packet  [6]. 

The proposed scheme works as follows. If the queue size 
grows beyond a high threshold Nhigh the probability of 
accepting a new packet is multiplied by γ, where 0 <γ < 1. If 
the queue size drops below Nlow, the admission probability is 
increased by η, where 0<η<1. The probability is bounded in 
the interval [0.1, 1] for practical purposes. 

The obvious question is how to choose the values of Nhigh, 
Nlow,γ, and η, The proper choice of these parameters depend 
on the service time and inter-arrival time distributions. In our 
simulation, we tried different values for the parameters and 
found that the best choice for Nhigh is the target delay divided 
by the average service time, while Nlow = Nhigh/2. We also 
found the best values for η =0.4, and γ=0.8-0.9. Clearly the 
optimal values for these parameters depend on the arrival and 
service distribution and can be fine tuned online. 

4 Results and Discussion 
In this section we show the results of our simulation using 
Matlab for the four cases proposed in Section III. 

For all the experiment we ran the simulation for 1600 seconds 
using Matlab. We collected the percentage of the requests 
accepted, the percentage of the requests that required less than 
150 msec. and the average response time. For every 
experiment we considered two traffic scenarios. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic diagram of the controller
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Fig. 2 Schematic diagram of the controller where we estimate 

the system parameters. 

Server 
Eq. 3 

 
Controller ⊕K0 

τref p 



• Traffic A: This is the baseline system, we assumed an 
average exponential interarrival time of 55 msec. and an 
average exponential service time of 35 msec. (64% 
utilization). The target response time is 150 msec. 

• Traffic B: In this scenario, we start as in Traffic A. At 
the simulation midpoint (after 800 seconds) we increase 
the arrival rate by decreasing the interarrival time to 45 
msec. (utilization of 78%). The objective here is to see 
how the controller reacts to increasing the arrival rate in 
order to satisfy the QoS requirements. 

Fig 3 shows that response time for a 20 minutes simulated run 
under traffic B. We can see that after 800 msec. the average 
response time increases. The main function of any controller 
is to adjust the admitting probability in order to avoid such a 
scenario. 

Figure 3. Response time without a PI controller under traffic B 

Fig. 4 (same setting as Fig. 3) shows the response time and 
the acceptance probability as a function of time. It is obvious 
that the controller suppressed the input in the second half of 
the simulation leading to a more consistent (equal) response 
time. One thing that is very noticeable here is the rapid 
changes in the admitting probability compared to the other 
method we used. Although the probability changes very 
rapidly, the performance is the worse compared to the other 
techniques. One possible explaination this is that Eq. (1) does 
not describe the system when the traffic increases beyond 
stability even for a short period of time  

 

Fig. 4. Response time and admitting probability under traffic B for a PI 
controller 

Then we consider our technique where we assume a second 
order system and estimate system parameters on line. Once 
the parameters are estimated on line, the parameters are used 
to choose the parameters of a first order controller/filter in 
order to track the required QoS criterion either directly by 
controlling the percentage of conforming packets, or 
indirectly through controlling the average response time. 

 

Fig 5. Response time and admitting probability assuming a second order 
system and a first order filter under traffic A (c0ntrolling averge response 

time). 

Figure 5 shows the response time and admitting probability 
for our system under traffic A assuming a 2nd order system 
with on-line parameters estimation. While Fig. 6 shows the 
same system under traffic B scenario. The parameter to be 
controlled in this case is the average response time.  

 

Fig 6. Response time and admitting probability assuming a second order 
system and a first order filter under traffic B (controlling average response 

time). 

The changes in the admitting probability for this system is 
much less than the case of a PI controller. That is by itself is 
not an advantage (however it might give an indication that the 



system is stable and does not oscillate) but as we will see in 
Table 1, the performance here is much better than the PI 
controller case. 

 

Fig 7. Response time and admitting probability assuming a second order 
system and a first order filter under traffic A (controlling QoS). 

Figure 7 and 8 shows the same results as Figures 5 and 6 but 
in this case we use the percentage of the conforming requests 
as the parameter to control. Although it is difficult to see, 
directly from the Figures, which one is better in maintaining 
the required QoS, controlling the response time, or the 
percentage of conforming packets directly from the Figures, 
Table 1 shows that in fact controlling the percentage of 
conforming packets produces better results. 

 

Fig 8. Response time and admitting probability assuming a second order 
system and a first order filter under traffic B (controlling QoS). 

Figures 9 shows the system using AIMD with Nhigh 
=Ttarget/τav, Nlow = Nhigh/2. η =0.4, and γ=0.8. Where Ttarget is 
the target delay and is set to 150 msec. and τav is the average 
response time under traffic A. Figure 10 shows the same 
setting under traffic B. The admitting probability varies very 
quickly compared to Fig 5,6,7,8. However that is expected 

since the changes in the admitting probability is calculated 
every time the queue size grows beyond a specific threshold, 
or decreases below another threshold. However as we will see 
in Table 1, this is the best performance among the three 
techniques. 

Fig 9 Response time and admitting probability using Additive Increase 
Multiplicative Decrease AIMD under traffic A 

 

 

Fig 10 Response time and admitting probability using Additive Increase 
Multiplicative Decrease AIMD under traffic B 

We summarize the results in Table 1. The first column shows 
the 4 different techniques we used. The second column shows 
for every technique the results under traffic A and traffic B. 

The actual results are shown in columns 3, 4, and 5. Column 3 
shows the percentage of admitted requests. Column 4 shows 
the percentage of the requests that is conforming to the 
required QoS. The first number shows the percentage of 
conforming requests to all arrived requests, while the number 
in parenthesis shows the percentage of conforming requests to 
admitted requests only. Finally column 5 shows the average 
response time for all admitted packets. 



From Table 1 we can also see that AIMD has the highest 
admitting policy under traffic A (97%), while PI has the 
lowest (61%). It also shows that AMD has the highest 
conforming percentage under traffic A. Under traffic B 
assuming a 2nd order system with online parameters 
estimation has slightly higher admitting probability than 
AIMD (94% vs. 93%), however the percentage of conforming 
requests is much higher for AIMD (compared to all arriving 
requests or admitted requests). basically that states that the 
AIMD rejects a very small percentage of incoming requests, 
but it rejects the tight ones.  

 

5 Conclusions 
 In this paper we investigated 3 different techniques for 
controlling admitting probability in an internet server in order 
to conform to a required QoS. Using simulation we show that 
a simple AIMD technique outperforms more complicated 
control-theoretic approaches, and it requires much less 
overhead compared to the control-theoretic approaches. 

For future work, we are building a low power server using 
small embedded microprocessors. We will be testing these 
proposed methods under realistic traffic when the server is up 
and running 
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TABLE 1 COMPARISON BETWEEN THE FOUR RPOPOSED METHODS 

Technique  % 
accepted 

% 
conforming 

Av. delay 
msec. 

A 61% 53%(86%) 74 
PI 

B 57% 48%(84%) 80 

A 92% 73%(79%) 90 
Est.(tresp) 

B 88% 63%(72%) 119 

A 95% 75%(79%) 95 
Est. (Tresp) 

B 94% 66%(70%) 125 

A 97% 83%(86%) 78 
AIMD 

B 93% 77%(83%) 85 


