
Modified Hotspot Cache Architecture: A Low
Energy Fast Cache for Embedded Processors

Kashif Ali Mokhtar Aboelaze

Dept. of Computer Science and Engineering
York University

Toronto, ON. CANADA
Email: {kashif,aboelaze,datta}@cs.yorku.ca

Suprakash Datta

Abstract— The cache memory plays a crucial role in the perfor-
mance of any processor. The cache memory (SRAM), especially
the on chip cache, is 3-4 times faster than the main memory
(DRAM). It can vastly improve the processor performance and
speed. Also the cache consumes much less energy than the
main memory. That leads to a huge power saving which is
very important for embedded applications. In today’s processors,
although the cache memory reduces the energy consumption of
the processor, however the energy consumption in the on-chip
cache account to almost 40% of the total energy consumption
of the processor. In this paper, we propose a cache architecture,
for the instruction cache, that is a modification of the hotspot
architecture. Our proposed architecture consists of a small filter
cache in parallel with the hotspot cache, between the L1 cache
and the main memory. The small filter cache is to hold the code
that was not captured by the hotspot cache. We also propose a
prediction mechanism to steer the memory access to either the
hotspot cache, the filter cache, or the L1 cache. Our design has
both a faster access time and less energy consumption compared
to both the filter cache and the hotspot cache architectures. We
use Mibench and Mediabench benchmarks, together with the
simplescalar simulator in order to evaluate the performance of
our proposed architecture and compares it with the filter cache
and the hotspot cache architectures. The simulation results show
that our design outperforms both the filter cache and the hotspot
cache in both the average memory access time and the energy
consumption.

I. INTRODUCTION

The processor speed is, and has been for a long time,
advancing at a much higher rate than the main memory
access time. That led to a big, and still growing, gap between
the processor speed and the main memory speed. Cache,
especially on-chip cache, is considered to be the main solution
for the processor-memory gap. By placing a small cache
memory on the chip between the CPU and the main memory,
and having a good cache management scheme, we can reduce
the memory access time to 1 or 2 cycles in most processors.
On-chip cache is considered to be a standard on almost all
different types of processors.

Another reason for the popularity of caches is the growing
demand for mobile (battery operated) devices that include
one or more processors. Cache is ideal for such applications
since it consumes much less energy than the main memory.
Although SRAM technology that is used for cache requires

more energy per bit access than the DRAM memory used in
the main memory, however, the small size of the cache, and the
fact that it is on chip results in much less power consumption
per access compared with the main memory. Even for more
powerful desktop computers, the power consumption is a very
important factor in the design process since it affects both the
reliability of the system, as well as the price of the system
because of the need of sophisticated cooling systems for high
power processors.

For modern processor systems, more than half of the chip
area, and more than half the transistors count on the chip is
dedicated to the cache. That means the power dissipation in the
cache is an important part of the overall power consumption
in modern processors. It also means that reducing the cache
power consumption is very important objective for today’s
processor’s designers.

Energy consumption in the cache can be reduced using
three different techniques. The first is at the physical (VLSI)
level. In this approach, cache memory is designed with a
reduced power consumption in mind. This can be achieved by
reducing the voltage levels, reducing the capacitance, or re-
ducing the switching frequency. Second, at the compiler level,
some techniques are used in order to fully utilize every data
element that was brought to the cache before replacing it (may
require some transformations on the source code level). The
third approach at the cache management level. This approach
includes using different associativity, different levels/types of
cache, prediction schemes, and different replacement policies.
This approach is usually referred to as cache architecture.
In this paper we concentrate on the third approach, cache
architecture level.

In this paper, we introduce a new instruction cache architec-
ture that results in reducing the average memory response time
as well as the power consumption. Detailed simulation using
the Simplescalar simulator with Mibench and Mediabench
benchmarks, shows that our architecture has a better response
time and less power consumption than the hotspot architecture
and the filter cache architecture.

The organization of the paper is as follows: Section 2
presents a brief overview of the previous attempts to reduce
memory access time and/or the cache power consumption.



In Section 3 we present our architecture and the prediction
mechanism. Section 4 presents our simulation results (both
energy consumption and average cache access time) for our
architecture and compares it with two similar architectures
(filter cache and hotspot cache). Section 5 is a conclusion.

II. LOW ENERGY CACHE

With increasing the size of the on-chip cache, and having
more than one level of caches on chip, that resulted in more
power dissipation in the cache. Coupled with the fact that
caches are implemented using SRAM instead of the more
power thrifty DRAM technology for speed purpose, addressing
the power dissipation in caches and trying to minimize it
became a very important issue in the design of today’s
processors. In the rest of this section we present some previous
attempts in reducing the cache energy consumption and/or the
average cache access time.

Jouppi in [6] introduced victim caches, and stream buffers
in order to improve the performance of baseline caches. The
victim cache is a small cache (1-5 lines) that holds the victims
of recent misses. In case of a miss, the victim cache is
checked before the main memory. Victim cache reduces the
conflict miss in a low associativity (including direct mapped)
cache. Stream buffers are buffers that hold prefetched lines
starting at the miss address, which was found to be effective
in reducing capacity and compulsory cache misses. Their
extensive simulation showed that both victim cache and stream
buffers could improve the performance of a baseline cache.

The authors in [3] proposed a cache architecture to re-
duce energy consumption. Their technique depends on three
improvements in order to reduce power. They used multiple
line buffers. They check the line buffer in parallel with tag
checking in cache, if the data is found in one of the line
buffers, the ache access is aborted. Second, they divided the
data array into sub-banks, thus saving power on the bit line
energy. Finally, they used bit line segmentation for a further
power saving. They compared their design to a conventional
cache with no line buffer, and showed a large energy reduction.

In [14], the authors proposed the use of a small, energy-
efficient filter cache. The authors proposed a small filter cache,
and they used the spatial hit/miss pattern in order to predict
the next access and to minimize the total cache energy, as
well as the total cache access delay. Their design resulted in
an energy delay saving of 7%.

Way prediction and selective direct mapping was used in
[12] in order to reduce the L1 cache dynamic energy without
degrading the cache access time. Their objective was to reduce
the energy wasted in accessing all the ways in a set associative
cache. Since, at most, the data is found in only one way, they
predicted the access way and accessed it as a direct mapped.
Their technique resulted in achieving the energy-delay of a
sequential access while maintaining the the performance level
of a parallel access.

In [15], the authors proposed the hotspot cache in order
to reduce energy consumption in embedded systems. In their
design, they proposed a small filter cache (known as the

hotspot cache) between the L1 cache and the CPU. Their
goal is to capture loops in the hotspot cache whose access
requires much less energy than the much bigger L1 cache.
They modified the Branch Target Buffer (BTB) in order to
determine which loops will be loaded into the hotspot cache.
Their results show up to 52% energy reduction in cache access
using mediabench suite without performance degradation.

The authors in [1] proposed a highly associative cache using
CAM design. Since CAM requires high-energy consumption,
they used a last-used prediction technique in order to reduce
energy using a 32-way set associative cache; they showed 30-
40% energy reduction using Mibench [4].

In [5] the authors proposed a technique for way prediction.
By accessing only the predicted way instead of accessing all
the ways in a set associative cache, energy consumption can
be reduced. Their results show a reduction in the energy-delay
product of 60-70%.

In [11] the authors proposed a replacement policy to reduce
energy consumption in data caches. They used a skewed
mapping function such that data close to each other in the
memory are no longer close to each other in the cache. They
compared their replacement policy to LRU policy and show
that their design consume less energy (average saving of 35%)
compared to the LRU policy.

Location cache was introduced in [10] as a level-2 cache
in order to reduce energy consumption. Their technique ap-
plies to large set-associative caches and depends on a small
cache called location cache that stores the locations of future
cache reference. If the location cache can correctly predict
the location of the next reference, the cache is accessed as
direct mapped cache instead of a set associative cache. Direct
mapped cache consumes less energy since there is only one
access to the tag.

Victim cache was proposed in [9] to reduce the delay-
energy product and the delay-energy-area product. They used a
comparison between the tag high/low order bits and the access
high/low order bit in order to quickly detect most of the miss
in the filter cache and direct the access to the L1 cache. Their
proposed scheme resulted in an average saving of 8.6% for
energy and 3.8% for execution time.

Cluster miss prediction was used in [2] in combination with
prefetch on miss in order to minimize miss rate for ready
CPU cores where the designer does not have complete access
to cache configuration. Their simulation shows a reduction in
the miss rate

III. PROPOSED ARCHITECTURE

In this section we start with a brief description of both the
filter cache and the hotspot cache, then the motivation of our
work showing some of the shortcomings of the hotspot cache,
and why do we propose to modify it. Then, we propose and
discuss our proposed architecture.

A. Filter Cache

Filter Cache, introduced in [8], adds a small cache (L0
cache, usually 512 bytes) in front of level-1 cache. The main



idea is to capture the most recent accessed instruction to
avoid accessing level-1 cache. For each memory access, the
filter cache is accessed first and L1 cache is accessed only if
the filter cache misses. Filter caches usually result in energy
saving, but increase the average cache access time. Filter cache
is shown in Fig-1.

Fig. 1. Filter Cache

B. Hotspot Cache

Hotspot cache [15] avoids such performance degradation by
having a steering mechanism to dynamically select between
the L0 (hotspot cache) and the L1 cache. The L1 cache is
augmented with a block buffer to capture spatial locality as
shown in Fig-2. The main idea of the hotspot cache is to
capture hot basic blocks (blocks of code that are executed
more than a specific number of times) during various phases
of the execution.

Fig. 2. Hotspot Cache

The block detection mechanism is incorporated into Branch
Target Buffer (BTB) and is shown in Fig-3. Each entry in
the BTB is augmented with a valid bit, an execution counter,

Hot-Block Flag, and Prev-Hot Flag. Execution counter is
used to identify hot blocks (the counters in the BTB are
used to count the frequency of taken branch or how many
times a specific loop was executed). A Hot Block is detected
when this execution counter reaches a certain threshold. The
system operates in two modes: profiling and monitoring. In the
profiling stage, the system counts how many times each branch
in the BTB is executed. Once a hot block is detected (using
execution counter), that block is transferred to the hotspot
cache and monitoring stage starts. In the monitoring stage,
the hotspot access is monitored to be sure that it accounts to
at least 50% of the cache access. Once the percentage of the
hotspot access falls below 50% the system goes back to the
profiling stage in order to detect a new hotblock.

An up/down counter called monitor counter (8-bits, initially
set to 128) is used to count of the number of times each branch
in the BTB is executed. This counter is decremented by one
whenever a hot branch is executed and incremented otherwise.
When this counter overflows the system goes back to profiling
stage, clearing execution counter, and reseting the Hot-Block-
Flag for every BTB entries. The system still allow access to
L0 cache for hot Block during profiling stage, by keeping the
hot block information for previous phase in Prev-Hot-Flag. For
each access, if either hot-block or Prev-Hot-Flag is set, it will
be directed to L0 cache. The Prev-Hot Flag is cleared once
the system goes back into monitoring stage. Mode controller
controls whether the instruction will be fetched from L0 or
L1 cache during Instruction Fetch (IF) stage. The prediction
mechanism to access the hotspot or the L1 cache helps to
minimize the number of misses in the hotspot cache.

Fig. 3. Block Diagram of Hotspot Cache

C. Motivation

The hotspot cache [15] has good performance in both miss
ratio and energy consumption. However detailed simulation
using the Mibench suite [4] and the simplescalar simulator
[13] show the following.

• Loops whose number of iterations were less than the
threshold were not marked as hotspot and never moved
into the hotspot cache

• All the hotspot cacheable code below the threshold value
was accessed from the L1 cache.



• Multiple hotspot cache code that could not fit simultane-
ously in the hotspot cache are replacing each other in the
hotspot cache.

Table-I shows the percentage of loop iterations that were not
caught by the hotspot Cache for various types of applications.
Each application ran a maximum of 500 Millions instructions.
(See IV-A for more details about the simulation). The Table
shows results for the loop iterations that were not caught by
the hotspot cache due to the above mentioned reasons. As
we can see, for some applications in communication, video
and voice hotspot capture loops iteration quite effectively but
not so for other types. For example, for applications in Data,
Image and Mp3 type, up to 36% of the loop iterations were
handled by L1 cache.

TABLE I
AVERAGE LOOP ITERATIONS NOT CAPTURED BY THE HOTSPOT FOR

VARIOUS APPLICATION TYPES

Application Loops not
Type captured (%)
Communication 1.05
Data 26.25
Image 10.79
Mp3 36.23
Video 2.48
Voice 2.48

For applications with low L0 (hotspot) cache utilization,
such as Mp3 and data applications, low energy consumption
can still be achieved by using block buffer. It was reported in
[15] that for such applications, if using hot spot cache without
block buffer, the energy consumption is even higher then Filter
Cache. We can see from Table I that, for such application, up
to 36% of iterations were handled by the relatively high energy
L1 cache.

The use of the block buffer reduces energy consumption
since accessing the block buffer requires less energy than the
cache. There are three different ways to access the block buffer

• The block buffer is accessed separately in one cycle, if
there is a miss, we go to the L1 cache. That approach
saves energy by accessing the L1 cache only if there is
a miss in the block buffer. The price we have to pay is
to waste one cycle in case of a block buffer miss.

• The block buffer is accessed in parallel with the l1 cache.
That is fast, but negates the main reason for using block
buffer and that is to save energy by not accessing L1
cache.

• The block buffer is accessed first, then if there is a miss,
we sequentially access the l1 cache in the same cycle.
That saves one cycle, but we have to sequentially access
both the block buffer and the cache in the same cycle.
usually cache access is on the critical path, which may
results in prolonging the cycle time and may result in a
slower processor.

• An intermediate solution is to access the block buffer
in parallel with accessing the cache tag. If the block

buffer hits, we abort the cache access. That means we do
not need to extend the cycle time, and the extra energy
consumption is reduced, but not eliminated.

In our comparison with the hotspot cache, we simulated the
hotspot cache using both the first and third scenarios above.

D. Modified Hotspot Architecture

We now propose our scheme which enjoys a faster memory
access time than the hotspot cache, and less energy consump-
tion than the Filter Cache. In our scheme, we did not augment
the L1 cache with block buffer for the reasons mentioned
above (either longer cycle time, or high energy consumption).

Our proposed architecture is as follows: There are 2 parallel
caches between the L1 cache and the CPU, the hotspot cache,
and a filter cache. The hotspot cache is used to capture the hot
blocks according to [15]. The filter cache is used to capture
the loops that were not captured by the hotspot cache. We also
used a steering mechanism to forward the memory access to
the hotspot cache, the filter cache, or the L1 cache. In case
of a misprediction by either the hotspot cache or the filter
cache, we go to the L1 cache. If a miss by the L1 cache, then
we access the main memory or the L2 cache depending on
the architecture. Fig-4 shows the architecture of our proposed
cache.

We assumed the same mechanism used in [15] for the
hotspot cache. The BTB is augmented with a counter for every
branch in the table. the counter counts how many times the
branch is taken. If that counter reaches a threshold value, the
block is assumed to be a hot block and is moved to the hotspot
cache. While the block is in the hotspot cache, the block is
monitored to be sure that at least 50% of the references are
from the hotspot cache. If the ratio falls below that, the block
is considered a cold block and the search for another hot block
starts.

Fig. 4. Modified Hotspot Cache



Fig. 5. Flow Diagram for Steering Mechanism

Our basic Idea is to avoid accessing the L-1 cache and
capture branches whose execution threshold did not promote
them into hot spot cache into the parallel filter cache. Our
steering mechanism chooses between hotspot cache, filter
cache and the L1 cache. A flow diagram for our steering
mechanism is shown in Fig. 5. The flow diagram shows
how the prediction mechanism works. fetch mode indicates the
memory we access for the next instruction. For all the non-
control transfer instructions, we use the last set fetch-mode.
For the control transfer instructions, if the branch is marked
as a hot block in the BTB, we set the mode to fetch from HS. If
the instruction is not a hot block instruction, then if it is a non-
conditional control transfer (probably jumping to a function or
a subroutine), we fetch from L1 and place the block in the filter
cache, the fetching mode is set to fetch from FC. Otherwise,
we fetch from the filter cache and set the fetching mode to
fetch from FC. In case of a miss, we go to L1 cache. Now we
present our simulation results and compare it with the hotspot
cache and the filter cache.

IV. SIMULATION RESULTS

A. Experimental Methodology

We used Simplescalar toolset [13] and CACTI 3.2 [7]
to conduct our experiments. We have modified Simplescalar
to simulate Filter Cache, Hotspot cache, and our proposed

modified hotspot cache. Our base architecture is using 16KB
direct-mapped level-1 cache with 32 bytes line size. The line
buffer used in the hotspot cache is 32 bytes. We also assumed
512 bytes, direct-mapped L0 cache for the modified hotspot
cache. The BTB is 4-way set-associative with 512 sets and
2-level branch predictor. We evaluated energy consumption
using 0.35µm process technology. For the hotspot cache, we
used value of 16 as candidate threshold as was suggested
in [15]. We simulated hotspot cache twice. Once assuming
that the block buffer is accessed sequentially in the same
cycle as the L1 cache, and another time assuming it will be
accessed in a separate cycle. Since we are using the number of
cycles as a measure of memory delay, that underestimate our
proposed architecture by not taking into account the increase
in the cycle required to access the block buffer and the L1
cache in the same cycle in the hotspot cache architecture. We
ran our simulation for a up to 500 millions instructions per
program, or to program completion if less than 500 millions
instructions. As we are interested in multimedia applications,
we use Mediabench and Mibench benchmarks to evaluate
the various schemes. We simulated our architecture using
the entire Mediabench and Mibench benchmarks. However,
we choose to report the results of some representative pro-
grams because of space limitations. We reported on sets of
encoder/decoder for different media types data, voice, image,
video and communication. The results for the rest of the
programs are almost identical to the ones reported here. Table-
II shows the programs we reported on in this paper. Table-III
shows energy per cache access and is obtained from CACTI.

TABLE II
BENCHMARK APPLICATIONS SUMMARY

Application Type Benchmark
crc32/fft Communication Mibench
epic Data Mediabench
G721 Voice Mediabench
Jpeg Image Mediabench
Lame Mp3 Mibench
mpeg2 Video Mediabench

TABLE III
ENERGY CONSUMED PER ACCESS

Cache Energy

256 L0 Cache 0.62nJ
512 L0 Cache 0.69nJ
Line Buffer 0.12nJ
16KB Direct-Map 1.63nJ
512KB Direct-Map 12.04nJ

B. Energy

We now compare the energy consumption of our proposed
architecture with the energy consumption of the filter cache
and hotspot Cache. Figure-6 shows the energy consumption
of some representative programs in Mibench and Mediabench



benchmarks normalized to the baseline architecture (assuming
that the baseline architecture energy consumption is 1), which
is the direct-mapped cache. For our scheme we used 256 and
512 bytes filter cache along with 512 bytes hotspot cache.
Table IV shows the average (over all the simulated programs
in Mibench and Mediabench) energy consumption of our
proposed architecture and compares it with the other two
architectures. Note that in this table, hotspot cache* means
the hotspot architecture where the line buffer will be accessed
in a separate cycle in order to not increase the cycle time. We
can see that our proposed architecture consumes less energy
than the Filter cache, and almost the same energy consumption
as the hotspot Cache. As we will see the delay and the off-
chip memory access of our proposed architecture is better
than the hotspot and filter cache. For communication and data
application, such as crc32 and epic, using 256 Filter cache
along with 512 hotspot cache perform slightly better than
the other two architectures. The main reason is because for
such applications, over 90% of branch targets are at fixed PC-
relative distance and doesn’t require bigger cache.

TABLE IV
AVERAGE ENERGY AND DELAY FOR VARIOUS SCHEMES NORMALIZED

TO BASE ARCHITECTURE

Scheme Energy Delay Energy*Delay

Filter Cache 0.58 1.096 0.60
Hotspot Cache 0.51 1.056 0.53
Hotspot Cache* 0.51 1.172 0.60
Hotspot with 256 FC 0.52 1.069 0.54
Hotspot with 512 FC 0.51 1.026 0.50

TABLE V
AVERAGE ENERGY AND DELAY FOR VARIOUS SCHEMES (DELAY IN

CYCLES PER MEMORY ACCESS

Scheme Energy Delay Energy*Delay

Filter Cache 0.58 1.311 0.78
Hotspot Cache 0.51 1.248 0.65
Hotspot Cache* 0.51 1.420 0.74
Hotspot with 256 FC 0.52 1.255 0.67
Hotspot with 512 FC 0.51 1.155 0.59

C. Delay

The filter Cache and the hotspot Cache significantly reduce
the energy consumption by avoiding energy expensive level-
1 cache access. Both of them have performance overhead.
Table-IV shows normalized delay for the filter cache and the
hotspot cache. On the average, for simulated applications, up
to 10% and 6% performance degradation was observed for
Filter Cache and HotSpot Cache respectively compared to the
baseline architecture. Using our proposed scheme we reduced
the performance overhead to only 2%. As our scheme doesn’t
use line buffer between level-1 cache and L0 cache, we avoid
increasing cache access time. Note also that, in terms of cycles

Fig. 6. Normalized Energy Consumption for Filter Cache, Hotspot Cache,
Hotspot with 256 bytes Filter Cache and Hotspot with 512 bytes Filter Cache

per memory access, our proposed architecture outperfoms the
hotspot cache even when we consider the hotspot cache access
the line buffer and the L1 cache in the same cycle.

Fig. 7. Normalized Delay for Filter Cache, Hotspot Cache, Hotspot with
256 bytes Filter Cache and Hotspot with 512 bytes Filter Cache

Fig-7 shows the delay normalized to the baseline architec-
ture for filter cache, hotspot cache, modified hotspot with 256
bytes filter cache and modified hotspot with 512 bytes filter
cache. As with energy, for both data and communication appli-
cation the delay is lower when using the modified hotspot with
256 bytes filter cache. Whereas for all other applications the
modified hotspot cache with 256 bytes filter cache is actually
worse than the original hotspot cache. For the modified hotspot
cache with 512 Filter cache, the delay for all programs for
various types of applications are better than all other schemes.
Fig-8 shows the average memory access time in cycles per
memory access for the different architectures.

Fig 9 shows the energy-delay product for all the schemes
using representative programs form Mibench and Mediabench,



Fig. 8. Delay in cycles per memory access for Filter Cache, Hotspot Cache,
Hotspot with 256 bytes Filter Cache and Hotspot with 512 bytes Filter Cache.

with the average values shown in Table-IV, table-V shows the
same results with delay in cycles per memory access instead of
normalized delay to the base architecture. Our schemes shows,
on average, up to 50% improvement in energy-delay product.

Fig. 9. Normalized Energy*Delay for Filter Cache, Hotspot Cache, Hotspot
with 256 bytes Filter Cache and Hotspot with 512 bytes Filter Cache

D. Off-chip memory access

Accessing the off-chip memory is expensive, both in terms
of energy consumption and delay. Off-chip memory could
be the main memory, or an off-chip second level cache (L2
cache). Direct-mapped cache, although comparatively have
fast access, can suffers from thrashing problem. Thrashing
occurs when two memory lines map to same line in the
cache. Thrashing can cause performance degradation as most
of the time is being spent in moving data between memory
and caches. Thrashing can be avoided if the loop-block can
be captured in upper level cache hence avoiding conflicts.
Normalized off-chip memory access for various schemes are

Fig. 10. Energy*Delay for Filter Cache, Hotspot Cache, Hotspot with 256
bytes Filter Cache and Hotspot with 512 bytes Filter Cache

shown in Fig-11. For some applications such as ’lame’ and
’jpeg decode’, our proposed architecture reduces off-chips
memory access by up to 75%.

TABLE VI
VARIOUS SCHEMES AVERAGE NORMALIZED OFF-CHIP MEMORY ACCESS

Scheme Normalized
Memory Access

Filter Cache 0.992
Hotspot Cache 0.970
Hotspot with 256 FC 0.884
Hotspot with 512 FC 0.539

Table-VI shows the average normalized memory access for
hotspot, filter cache and our scheme. As shown, when using
our proposed scheme with 512 bytes filter cache reduces
off-chips memory access by up to 48%. This in turns will
further reduces overall memory (cache and RAM) energy
consumption. Fig-12 shows the normalized total (on-chip and
off-chip access) energy consumption of the three architectures
normalized ot the direct mapped cache.

V. CONCLUSION

In this paper, we proposed a new cache architecture for the
instruction cache to minimize both the average cache access
time and the energy consumption. Our proposed architecture
combines the low miss rate of the hotspot cache architecture
and the low energy of the filter cache architecture. Our
simulation, using Simplescalar, Mediabench and Mibench,
shows a reduction in both the average memory access time and
the cache energy consumption compared to both the hotspot
architecture and the filter cache architecture.

REFERENCES

[1] Efthymiou, A.; Garside, J.D. ”A CAM with mixed serial-parallel
comparison for use in low energy caches”. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems. Volume 12, Issue 3,
March 2004 Page(s): 325 - 329



Fig. 11. Normalized Off-Chip Memory Access

Fig. 12. Normalized Energy Consumption (including off-chip memory access
energy consumption) for Filter Cache, Hotspot Cache, Hotspot with 256 bytes
Filter Cache and Hotspot with 512 bytes Filter Cache

[2] Batcher, K.; and Walker, W. ”Cluster miss prediction with prefetch
on miss for embedded CPU instruction cache”. Proc. of CASE’04
pp 24-34 Washington D.C. Sept. 22-25 2004.

[3] Ghose, K; and Kamble, M. B. ”Reducing power in superscalar
processor caches using subbanking, multiple line buffers and bit-
line segmentation”. Proc. of ISLPED99, San Diego, CA pp 70-75

[4] Guthaus M.; Marsman, E.; McCorquodale, M.; Gebara, F.; Kraver.
K.; Zolotov V. ”Mibench: A free, commercially representative em-
bedded benchmark suit”. IEEE 4th Annual Workshop on Workload
Characterization. Austin, TX, Dec. 2001

[5] Inoue, K.; Ishihara, T.; Murakami, K ”Way-predicting set-
associative cache for high performance and low energy consump-
tion”. Proc. of International Symposium on Low Power Electronics
and Design ISLPED99 pp: 273 - 275. 1999.

[6] Jouppi, N. ”Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers”.
Proc. of the 17th Annual Symposium on Computer Architecture.
pp 364-373. May 1990

[7] Jouppi, N. ”CACTI” can be found at
www.hpl.hp.com/personal/Norman Jouppi/cacti4.html

[8] Kin, J.; Gupta, M.; Mangione-Smith, W. ”The filter cache: An
energy efficient memory structure”. Proc. of the 30th Annual
International Symposium on Microarchitecture December 1997

[9] Memik G.; Reinman G.; and Mangione-Smith, W. ”Reducing

energy and delay using efficient victim caches”. Proc. of the
International Symposium on Low Power Electronics and Design
ISLPED’03. August 25-27 Seoul Korea pp 262-265 2003.

[10] Min, R,; Jone, W.-B.; and Hu, Y. ”Location cache: A low-power
L2 cache system”. Proc. of of the 20004 International Symposium
on Low Power Electronics and Design ISLPED’04 August 9-11
Newport Beach, CA. pp 120-125.

[11] Musalappa, S.; Sundaram, S.; and Chu, Y. ”A replacement policy to
save energy for data cache”. Proc. of the 19th International Sympo-
sium on High Performance Computing Systems and Applications
HPCS’05. pp641-642. April 2005.

[12] Powell M; Agarwal, A. Vijaykumar, T. N; Falsafi, B; and Roy,
K. ”reducing set-associative cache energy via way-prediction and
selective direct mapping”. Proc. of the International Symposium
on Microarchitecture, 2001

[13] www.simplescalar.com The simplescalar LLC Oct. 2005
[14] Vivekanandarajah, K; Srikanthan, T.; and Bhattacharyya S.

”Energy-delay efficient filter cache hierarchy using pattern pre-
diction scheme”. IEE Proc. on Computers and Digital Techniques.
Vol. 151, Issue 2, pp 141-146 March 2004

[15] Yang, C.-L; and Lee C.-H ”Hotspot cache: joint temporal and
spatial locality exploitation for I-cache energy reduction”. Proc.
of the 20004 International Symposium on Low Power Electronics
and Design ISLPED04 pp 114-119 Aug. 2004


