
Abstract — Today, most routing problems are solved using Dijk-
stra’s shortest path algorithm. Many efficient implementations of
Dijkstra’s algorithm exist and can handle large networks in short
runtimes. Despite these advances, it is difficult to incorporate user-
specific conditions on the solution when using Dijkstra’s algorithm.
Such conditions can include forcing the path to go through a specif-
ic node, forcing the path to avoid a specific node, using any combi-
nation of inclusion/exclusion of nodes in the path, etc. In this paper,
we propose a new approach to solving the shortest path problem us-
ing advanced Boolean satisfiability (SAT) techniques. SAT has been
heavily researched in the last few years. Significant advances have
been proposed and has lead to the development of powerful SAT
solvers that can handle very large problems. SAT solvers use intel-
ligent search algorithms that can traverse the search space and ef-
ficiently prune parts that contain no solutions. These solvers have
recently been used to solve many problems in Engineering and
Computer Science. In this paper, we show how to formulate the
shortest path problem as a SAT problem. Our approach is verified
on various network topologies. The results are promising and indi-
cate that using the proposed approach can improve on previous
techniques.

I.   INTRODUCTION
The Internet has started in the late 1970, ever since its inception, the

traffic, the nodes, and the users are growing at an unprecedented pace.
Today the Internet handles completely different types of traffic com-
pared to the 1970’s and 1980’s Internet. Link bandwidth and Internet
traffic are continuously increasing. Routing protocols are constantly be-
ing proposed and improved in order to handle the constant changes in
the traffic, link bandwidth, and the required quality of service in today’s
Internet.

Internet routing is dominated by link state routing protocols such as
the OSPF [21]. In this protocol, routers exchange link state information
with neighboring routers, then they calculate the shortest path tree by
using shortest path algorithms such as Dijkstra’s shortest path algorithm
[15]. This algorithm is one of the most widely used, and one of the ear-
liest algorithms for Internet routing. Fault Torrance link state protocol
was introduced in [29] without using flooding to send changes to link
states. Scalability has been considered to be a major problem especially
in the Internet Exterior Routing Protocol [6].

A compact routing scheme for internet like graphs was introduced in
[23]. Their protocol has a near optimal memory requirements per node.
Modifications to the shortest path algorithm were introduced in [25] and
are known as the widest-shortest path and shortest-widest path algo-
rithms. In the widest-shortest path algorithm, the algorithm computes
the shortest path(s), if there is more than one, the path with the maxi-
mum reservable bandwidth is chosen. In the shortest-widest path, the
widest path(s) are calculated, if there is more than one, the one with the
minimum path is chosen.

A minimum interference algorithm was introduced in [22]. this algo-
rithm finds a path that minimizes the expected future interference be-
tween the traffic requesting the path and the existing traffic. An alternate
path routing algorithm was proposed in [33]. In this algorithm, several
routes are identified and the algorithm finds the links that are responsi-

ble for congestion. The traffic is routed through the paths that have the
least number of such links.

The shortest path algorithm is very effective in finding the shortest
path between two nodes. However more factors could be taken into con-
sideration in routing than minimizing the source/destination path. Some
of these factors include: (1) optimizing the use of the links bandwidth,
(2) distributing the traffic all over the network, (3) minimizing the num-
ber of hops, (4) avoiding specific nodes or any combination of nodes,
and (5) redirecting existing traffic to satisfy the above mentioned crite-
rias.

The routing problem using the shortest path algorithm has very effi-
cient algorithms. However, when we generalize the problem and in-
clude many constraints, it becomes an NP-complete problem [33]. The
objective of this paper is to formulate the routing problem as a Boolean
satisfiability (SAT) instance and explore the possibility of using ad-
vanced SAT techniques to solve the routing problem.

Recently, SAT have been shown to be very successful in solving
complex problems in various Engineering and Computer Science appli-
cations. Such applications include: Formal Verification [7], FPGA rout-
ing [28], Power Optimization [4], etc. SAT has also been extended to a
variety of applications in Artificial Intelligence including other well
known NP-complete problems such as graph colorability, vertex cover,
hamiltonian path, and independent sets [12]. Despite SAT being an NP-
Complete problem [11], many researchers have developed powerful
SAT solvers that are able of handling problems consisting of thousands
of variables and millions of constraints. Briefly defined, the SAT prob-
lem consists of a set of Boolean variables and a set of constraints ex-
pressed in product-of-sum form. The goal is to identify an assignment
to the variables that would satisfy all constraints or prove that no such
assignment exists.

In this paper, we present a SAT-based approach to solving the rout-
ing problem in computer networks. We show how to formulate the prob-
lem as a SAT instance. We report results using randomly-generated
network topologies. Initial results indicate the effectivity of the pro-
posed approach. The proposed approach is complete and is guaranteed
to identify the shortest path. The approach also allows user-specific con-
ditions to be easily added to the problem, which was not as easy to add
in previous approaches.

This paper is organized as follows. Section II provides a general
overview of SAT. Section III shows how to formulate the routing prob-
lem as a SAT instance. Experimental results are presented and discussed
in Section IV. Finally, the paper is concluded in Section V.

II.   BOOLEAN SATISFIABILITY
The last few years have seen significant advances in Boolean satisfi-

ability (SAT) solving. These advances have lead to the successful de-
ployment of SAT solvers in a wide range of problems in Engineering
and Computer Science. Given a set of Boolean variables and a set of
constraints expressed in product-of-sum form, the goal is to find a vari-
able assignment that satisfies all constraints or prove that no such as-
signment exists. The term “Satisfiability” emerges from that fact that we
are asked to find a satisfying assignment, while the term “Boolean”
comes from the fact that such assignment consists of only true or false
variable states. 
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The SAT problem is usually expressed in conjunctive normal form
(CNF). A CNF formula  on  binary variables  is the con-
junction (AND) of  clauses  each of which is a disjunc-
tion (OR) of one or more literals, where a literal is the occurrence of a
variable or its complement. A formula  denotes a unique -variable
Boolean function  and each of its clauses corresponds to an
implicate of  [20]. Clearly, a function  can be represented by many
equivalent CNF formulas. We will refer to a CNF formula as a clause
database and use “formula” and “CNF formula” interchangeably. Final-
ly, a variable  is monoform if it is possible to write a CNF formula for
the function  in which all literals on  are either exclusively  or .

A variable  is said to be assigned when its logical value is set to 0
or 1 and unassigned otherwise. A literal  is a true (false) literal if it
evaluates to 1 (0) under the current assignment to its associated variable,
and a free literal if its associated variable is unassigned. A clause is said
to be satisfied if at least one of its literals is true, unsatisfied if all of its
literals are set to false, unit if all but a single literal are set to false, and
unresolved otherwise. A formula is said to be satisfied if all its clauses
are satisfied, and unsatisfied if at least one of its clauses is unsatisfied.
In general, the SAT problem is defined as follows: Given a Boolean for-
mula in CNF, find an assignment of variables that satisfies the formula
or prove that no such assignment exists.

In the following example, the CNF formula:

 (1)
consists of 3 variables, 3 clauses, and 6 literals. The assignment

 violates the third clause and unsatisfies ,
whereas the assignment  satisfies . Note that a
problem with n variables will have  possible assignments to test. The
above example with 3 variables has 8 possible assignments.

Despite the SAT problem being NP-Complete [11], there have been
dramatic improvements in SAT solver technology over the past decade.
This has lead to the development of several powerful SAT algorithms
that are capable of solving problems consisting of thousands of vari-
ables and millions of constraints. Such solvers include: GRASP [26],
zChaff [27], and Berkmin [18]. In the next three sections, we describe
the basic SAT search algorithm, recent extensions to the SAT solver in-
put, and the use of hardware with SAT.

A. Backtrack Search
Most modern complete SAT algorithms can be classified as enhance-

ments to the basic Davis-Logemann-Loveland (DLL) backtrack search
approach [14]. The DLL procedure performs a search process that
traverses the space of  variable assignments until a satisfying assign-
ment is found (the formula is satisfiable), or all combinations have been
exhausted (the formula is unsatisfiable). It maintains a decision tree to
keep track of variable assignments and can be viewed as consisting of
three main engines: (1) Decision engine that makes elective assignments
to the variables, (2) Deduction engine that determines the consequences
of these assignments, typically yielding additional forced assignments
to, i.e. implications of, other variables, and (3) Diagnosis engine that
handles the occurrence of conflicts, i.e. assignments that cause the for-
mula to become unsatisfiable, and backtracks appropriately. 

Recent studies have proposed the use of the conflict analysis proce-
dure in the diagnosis engine [26]. The idea is whenever a conflict is de-
tected, the procedure analyzes the variable assignments that cause one
or more clauses to become unsatisfied. Such analysis can identify a
small subset of variables whose current assignments can be blamed for
the conflict. These assignments are turned into a conflict-induced clause
and augmented with the clause database to avoid regenerating the same
conflict in future parts of the search process. In essence, the procedure

performs a form of learning from the encountered conflicts. Today, con-
flict analysis is implemented in almost all SAT solvers [18, 26, 27]. 

B. More Expressive Input
Restricting the input of SAT solvers to CNF formulas can restrict

their usage in various domains. Therefore, researchers have focused on
extending SAT solvers to handle stronger input representations. Specif-
ically, SAT solvers [3, 10, 16, 30] have recently been extended to handle
pseudo-Boolean (PB) constraints which are linear inequalities with in-
teger coefficients that can be expressed in the normalized form [3] of:

(2)

where  and  are literals of Boolean variables. Note that any
CNF clause can be viewed as a PB constraint, e.g. clause  is
equivalent to . 

PB constraints can, in some cases, replace an exponential number of
CNF constraints. They have been found to be very efficient in express-
ing “counting constraints” [3]. Furthermore, PB extends SAT solvers to
handle optimization problems as opposed to only decision problems.
Subject to a given set of CNF and PB constraints, one can request the
minimization (or maximization) of an objective function which consists
of a linear combination of the problem’s variables. 

(3)

This feature has introduced many new applications to the SAT do-
main. Recent studies has also shown that SAT-based optimization solv-
ers can in fact compete with the best generic integer linear programming
(ILP) solvers [3, 10].

C. Hardware-Based SAT Solvers
Note that SAT solvers can be implemented in hardware. Several

studies proposed the use of FPGA reconfigurable systems to solve SAT
problems [1, 36]. Hardware solvers could be a standalone or as an ac-
celerator where the problem is partitioned between the hardware solver
and the attached computer using software. Many different architecture
were proposed to solve SAT problems in hardware. Linearly connected
set of finite state machines, control unit, and deduction logic was pro-
posed in [36]. The authors in [36] implemented their algorithm on Xil-
inx XC4028 FPGA. While in [1], the authors proposed a technique for
modeling any boolean expression. Their objective is to set the function
output to 1. A backtrack algorithm is used to propagate the output back
to the input and finding an assignment of the inputs to satisfy a logical
1 at the output.

The authors in [13] proposed an architecture for evaluating clauses
in parallel. In their architecture, the clauses are separated into a number
of groups and the deduction is performed in parallel. Then the results are
merged together to allow the assignment to the variables.

A software/hardware solver for SAT was introduced in [31]. In their
approach, they minimized the hardware compilation time which greatly
reduces the total time to solve the problem. They also implemented their
solver on FPGA.

III.   PROBLEM FORMULATION
In this paper we are interested in using advanced SAT solvers to

identify the shortest path between two nodes in a network grid. To illus-
trate our approach, lets consider the network in Figure 1. In the figure,
each node is labeled by an upper-case letter, and each link is marked by
(x,n) where x is the name of the link and n is a positive integer that rep-
resents the weight, i.e. cost, of the link. Node I and H are the source and
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destination nodes, respectively. The objective is to find a path from I to
H that minimizes the total path cost (sum of weights of all links in the
path). 

Two sets of variables are defined for the problem: 
• A Boolean variable is defined for each node. A value of 1 (0) for

each variable indicates that the corresponding node is (is not)
included in the optimal path from the source node to the destination
node.

• A Boolean variable is also defined for each link. Again, a value of
1 (0) for each variable indicates that the corresponding edge is (is
not) included in the optimal path from the source node to the
destination node.

In the above example, 21 variables are declared, 9 of which represent
the nodes (A, B, C,..., I) and 12 represent the edges (a, b, c,..., l). The fol-
lowing set of constraints are generated: 

• For both source and destination nodes, only one of the neighboring
edges will be part of the path. This can be expressed using two PB
constraints in the above example:

 and (4)
• All other nodes (except the source and destination nodes) will

either be (i) part of the path or (ii) not part of the path. In the first
case, exactly two edges connected to that node will be part of the
path. In the second case, none of the edges connected to the node
will be part of the path. This can be expressed using a PB
constraint. In the above example the PB expression for node A is as
follows:

(5)
If node A within the path, that means A is true. Hence  and the

expression reduces to . The only way to satisfy the ex-
pression is to set two edges to true, i.e. making them part of the path.
If node A is not within the path, then A is set to 0. Hence  and the
expression reduces to . The only way to satisfy this ex-
pression is to set all three edges to 0, i.e. none of the edges are part of
the path. Similar PB constraints are generated for the other nodes as fol-
lows:

 ; ... ; (6)
The above two sets of constraints guarantee that a complete path will

be formulated from the source node to the destination node. To mini-
mize the total cost of the path, a PB objective function consisting of all
edge variables is created as follows:

(7)
In general, the minimization could be represented as

(8)

where weighti and vari represent the cost and variable of edge i.
By formulating the problem as such, we can do more than finding the

minimum cost path. We can incorporate any restrictions that we can
think of in the resulting path. For example, by adding the PB constraint

, we are forcing node A to be part of the minimal cost path. Sim-
ilarly, we can exclude node A from the solution by adding the PB con-
straint . 

We can also add dependencies between nodes. For example, we can
force one of two nodes, e.g. J and B, to exist in the resulting path. This
can be expressed by adding the following two CNF constraints:

. (9)
We can also force certain nodes to be in the path only if a specific

node is. For example, we can force nodes B, C, and D to be part of the
solution if and only if node A is. This is expressed using the following
set of CNF constraints:

(10)
Note that the complexity of converting the graph into a SAT problem is

, where v is the number of nodes, e is the number of edges,
and k is the number of graph restrictions (e.g. (9)).

IV.   EXPERIMENTAL RESULTS
In this section, we evaluate the use of SAT solvers in identifying the

shortest path in a network. The routing problem was encoded as a SAT
instance as shown in Section III. Topology generation has been an ac-
tive area of research [2, 9, 17]. Therefore, we decided to use the BRITE
topology generator [8] to produce different random topologies to test
our approach. BRITE can produce multiple generation models and can
assign links attributes such as bandwidth and delay.

We created networks of different sizes with the number of nodes
ranging from 20-500 and number of links per node ranging from 2-5.
Nodes are placed randomly in a plane with a side of 1000 units. We con-
sidered the weight of the link as the Euclidean length of the link (we can
choose any weight factor but choose the distance since it is already gen-
erated by the topology simulator). The topology model is Waxman
model [34] with parameters . 

The network is stored in a text file and passed to a PERL script that
converts it into a SAT-encoded problem. The SAT problem is then
solved by advanced SAT solvers. For our experiments, we used the PBS
solver [3, 5]. PBS is a new solver than can handle both CNF and PB con-
straints and can solve decision and optimization problems. It imple-
ments the latest enhancements in the SAT domain and can solve
optimization problems using a linear-based or binary-based search
scheme. Both schemes have shown competitive performance on various
optimization instances that consists of CNF-only or CNF/PB con-
straints. The experiments were conducted on a Pentium Xeon 3.2 Ghz
machine, equipped with 4 GBytes of RAM, and running Linux. The
runtime limit was set to 1000 seconds. 

Table 1 lists the runtime results for the routing benchmarks. The ta-
ble lists the name of the instance, the runtime in seconds of PBS using
a linear-based and binary-based search, and the size of the shortest path.
The name of the instance of the form X_Y_u_A_B indicates that the in-
stance has X nodes and the number of links per node is Y. For each grid
two random nodes A and B are selected as the source and destination
nodes. A “*” in the PBS shortest-path value column indicates that PBS
didn’t complete the search process because it exceeded either the al-
lowed runtime or memory limits. In such a case, the size of the shortest
path detected so far is shown. Several observations are in order:
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• PBS was able to identify the shortest path in all reported cases
using the binary-base search scheme.

• The linear search scheme is not as competitive as the binary search
scheme for these instances.

• The larger the network grid, the longer is the search runtime.
• The approach is complete and is guaranteed to find the shortest path

given enough time and memory resources.

V.   CONCLUSION
In this paper, we presented a new approach to detecting the shortest

path between two nodes in large networks using advanced Boolean sat-
isfiability (SAT) solvers. We show how to formulate the shortest path
problem as a SAT instance. The approach was tested on a number of
networks of various sizes and showed promising results. The presented
approach is complete and will find the shortest possible path. One of the
advantages of the new approach is the ability to add user-specific con-
straints that can restrict the existence of certain nodes and edges in the
resulting path.
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TABLE 1. Experimental results on various size network grids 
using the PBS4 SAT Solver. (S. Path = Shortest Path)

Instance Name
PBS4

Binary Search Linear Search
Time S. Path Time S. Path

20_2_u__17_12 0 700 0 700
20_3_u_10_9 0 112 0 112
20_5_u_3_0 0 189 0.03 189
50_2_u__8_45 0 309 0.03 309
50_3_u__15_13 0.01 123 0.09 123
50_5_u__22_20 0.28 821 9.13 821
100_2_u__98_56 0.07 1145 0.89 1145
100_3_u__3_91 0.06 590 1.42 590
100_5_u__50_25 0.03 400 0.31 400
500_2_u__103_309 2.69 1521 25.38 1521
500_2_u__248_483 0.8 984 7.63 984
500_2_u__254_391 0.48 909 2.65 909
500_2_u__345_119 2.63 1873 >1000 6102*
500_3_u__164_158 3.12 863 >1000 4740*
500_3_u__197_189 0.54 761 265.19 761
500_3_u__212_366 47.3 782 347.94 782
500_3_u__307_177 225 1361 >1000 8543*
500_5_u__11_453 29 658 >1000 7504*
500_5_u__160_453 3.62 524 >1000 4903*
500_5_u__311_49 148 685 >1000 5596*
500_5_u__369_466 254 580 >1000 3908*


