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1 Introduction 

The Traveling Salesman Problem (TSP) is widely studied in Computer Science.  

There are many publications on the TSP, ranging back to at least the late 1940’s.  The 

TSP has held the interests of computer scientists and mathematicians because, even after 

about half a decade of research, the problem has not been completely solved.  The TSP 

falls in a distinguished category of hard problems.  The TSP can be applied to solve many 

practical problems within our daily lives.  Thus, a solution to the TSP would be very 

beneficial.  When we talk about a solution to the TSP, we are talking about a polynomial 

time solution to the general TSP, which will be explained further in chapter two. 

 This report aims to survey the TSP in a broad fashion.  This survey will cover the 

TSP from its debut into computer science until present, including examples of practical 

applications of the problem.  In chapter two, you will be given a definition of the general 

TSP and the history of the problem from its roots in mathematics and computer science 

up to present time.  Chapter three provides an overview on the categories of NP-hard and 

NP-complete problems.  This chapter then discusses why the TSP is NP-complete.  

Chapter four presents some real life uses of a solution to the TSP.  The purpose of this 

chapter is to emphasize the usefulness of a solution to the general TSP.  Chapter five 

attempts to shed some light on the NP-hard nature of the TSP by presenting and 

explaining some known polynomial time solutions to variations of the TSP.  In chapter 

six, we explore variations of the TSP that are more specific to real life instances of the 

problem, but are still considered NP-hard.  In chapter seven, we consider approximation 

algorithmic solutions to variations of the TSP mentioned in chapter six.  Finally, we end 

the survey by presenting some insights on the TSP by exploring attempts to achieve an 
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exact efficient solution to the problem.  In addition, we will look at the options being 

considered in future research to work towards a feasible solution. 

2 The Problem – Definition and History 

The TSP is stated as, given a complete graph, G, with a set of vertices, V, a set of 

edges, E, and a cost, cij, associated with each edge in E. The value cij is the cost incurred 

when traversing from vertex i ∈ V to vertex j ∈ V.  Given this information, a solution to 

the TSP must return the cheapest Hamiltonian cycle of G.  A Hamiltonian cycle is a cycle 

that visits each node in a graph exactly once.  This is referred to as a tour in TSP terms.   

The essence of the traveling salesman problem is evident within many practical 

applications in real life.  From a mail delivery person trying to figure out the most 

optimal route that will cover all of his/her daily stops, to a network architect trying to 

design the most efficient ring topology that will connect hundreds of computers.  In all of 

these instances, the cost or distance between each location, whether it be a city, building 

or node in a network, is know.  With this information, the fundamental goal is to find the 

optimal tour.  That is, to determine an order in which each location should be visited such 

that each location is visited only once, and the total distance traveled, or cost incurred, is 

minimal.   In the general TSP, there are no restrictions on the distance/cost values.  

 So, how and when did the traveling salesman problem first emerge within 

Mathematics and Computer Science studies?  According to Lawler, Lenstra, Rinnooy 

Kan & Shmoys [15], no one really knows.  The origins range back to the 1920’s, when a 

mathematician by the name of Karl Menger brought it to the attention of his colleagues in 

Vienna [1].  The problem then worked its way into Princeton’s mathematical community 

during the 1930’s [1]. Then, in the 1940’s, mathematician Merrill Meeks Flood, 
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publicized the name, TSP, within the mathematical community at mass [15].  It was the 

year 1948 that Flood publicized the traveling salesman problem by presenting it at the 

RAND Corporation [15]; according to Flood “when I was struggling with the problem in 

connecting with a school-bus routing study in New Jersey” (Flood, 1956).  The RAND 

Corporation is a non-profit organization that is the focus of intellectual research and 

development within the United States [27].  In its early days, RAND provided research 

and analysis to the United States armed forces, but then expanded to provide such 

services for the government and other organizations [27].  The TSP soon became very 

popular.  This popularity was probably attributed to a few factors, one of which is the 

prestige of the RAND Corporation.  Another factor is the connection between the TSP 

problem and the rising combinatorial problems within linear programming.  Finally, its 

title is definitely a factor, which demonstrates relevance towards many tasks evident 

within people’s daily lives.   

 The TSP demonstrates all the aspects of combinatorial optimization.  During the 

1950’s, Linear Programming was becoming a vital force in computing solutions to 

combinatorial optimization problems.  This was due to the funding provided by the U.S. 

Air Force in the interest of obtaining optimal solutions to combinatorial transportation 

problems.  As mentioned, this is one of the reasons why the TSP was in the interest of 

RAND.  Attempts to solve the TSP were futile until the mid-1950’s when Dantzig, 

Fulkerson, and Johnson [9] presented a method for solving the TSP.  They showed the 

effectiveness of their method by solving a 49-city instance [9]. However, it became 

evident, as early as the mid 1960’s, that the general instance of the TSP could not be 

solved in polynomial time using Linear Programming techniques.  In fact, it was 
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conjectured that the TSP, and problems alike, posed such computational complexity that 

any programmable efforts to solve such problems would grow superpolynomially with 

the problem size.  These categories of problems became known as NP-hard, which will 

be discussed in more detail in chapter three.  There has been a lot of progress in dealing 

with NP-hard problem such as the TSP.  Solutions have been found to instances of the 

TSP with limited input sizes, some of which are mentioned in chapter eight.  Polynomial 

time solutions have been found for special cases of the TSP.  Some of these special cases 

are covered in chapter five.  Researchers have even resorted to finding polynomial time 

approximation algorithms for NP-hard variations of the TSP, as discussed in chapters six 

and seven.  However, until this very day, an efficient solution to the general case TSP, or 

even to any of its NP-hard variations, has not been found. 

3 NP-Completeness and the TSP 

 In this chapter, you will be given a brief overview of NP-hardness and NP-

completeness, including definitions, as well has an explanation on why the traveling 

salesman problem is NP-complete in the general case, and is NP-hard even in many 

special cases.   

 In order to understand NP-completeness, you must first understand the theory that 

is used to classify all computational problems and the algorithms used to solve them.  

That is the theory of Computational Complexity [22].  Recall that an algorithm is a set of 

step-by-step instructions that, when executed in the order specified, will solve a certain 

problem.  Problems are basically classified as being within one of two categories.  A 

problem is considered ‘easy’ if it can be solved by an algorithm that runs in polynomial 

time.  On the other hand, a problem is considered 'hard’ if it cannot be solved in 
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polynomial time. Of course, these two classifications or definitions are not very elegant, 

but they are the basis of the computational complexity theory of problems that was 

developed.  

The computational complexity theory divides problems into two classes.  A 

complexity class is a set of all problems that can be solved in some certain amount of 

time, and that uses a certain amount of computing resources.  An important note is that 

any problem that has been proven to be ‘hard’, in the sense that there exists only an 

exponential or superexponential solution to the problem, or that no algorithmic solution 

to the problem exists, does not fall within a complexity class.  The reason for this is 

because it is not known how much time it will take to solve such a ‘hard’ problem.  Even 

with the super computers that exist today, it may take years to reach a solution, and the 

computer’s resources will probably run out by that time.  In essence, algorithms for 

problems that are proven to be ‘hard’ are not practical and are very unpredictable.    

Formally, the computational complexity theory is restricted to only decision 

problems [15].  A decision problem is one in which the solution to the problem is either a 

‘yes’ or ‘no’ answer.  As constricting as it may sound to limit ourselves only to decision 

problems, in reality all problems can be reformulated as decision problems.  To see this, 

let us briefly consider how one would go about reformulating the TSP into a decision 

problem.  

The basic idea used to transform the TSP into a decision problem is to have two 

algorithms.  One will be known as TSP_SOLUTION.  This algorithm takes as input a 

graph, G, with a set of vertices, V, a set of edges, E, and a cost, cij, associated with each 

edge in E.  TSP_SOLUTION then calls a helper algorithm known as TSP_DECISION.  
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TSP_DECISION takes as input the same graph, G, and a numeric bound value, B.  

TSP_DECISION returns ‘yes’ if there is a tour that exists in G, whose cost is less than B, 

and returns ‘no’ otherwise.  TSP_SOLUTION must run in polynomial time, not taking 

into account the running time of TSP_DECISION.  Therefore, TSP_SOLUTION calls 

TSP_DECISION a polynomial amount of times.  TSP_SOLUTION finds the optimal tour 

by first using TSP_DECISION to determine the cost, C, of an optimal tour, if one exists.  

Once this cost is know, TSP_SOLUTION determines which edges are not traversed in 

some optimal tour.   This is done by going through each edge, one at a time, setting the 

cost for that edge to infinity, and then using TSP_DECISION to determine if a tour with 

cost C still exists.  If so, then that edge is removed.  In the end, only the edges in an 

optimal tour will be present.  Thus, the running time of TSP_SOLUTION will be 

polynomial in running time if and only if TSP_DECISION runs in polynomial time.    

 This brings us to the formal definitions of the two classifications of decision 

problems defined by the computational complexity theory.  The first classification is the 

P class.  If a problem can be solved by a deterministic algorithm in Polynomial time, then 

it is considered to be part of the P class of problems [21].  For a problem to be solved in 

polynomial time means that a correct ‘yes’ or ‘no’ answer will be returned in polynomial 

time based on the input size.  The second classification of problems is the NP class, 

which stands for the Non-deterministic Polynomial [21].  An important relation between 

P and NP is that P ⊆ NP, which is because a deterministic algorithm is just a special case 

of a non-deterministic algorithm [15].  The NP classification of problems is a very 

important concept that is not as easily defined as the P class.  The NP class is defined by 

three equivalent formulations.  
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The first formulation is the succinct property [15].  This property states that any 

‘yes’ result can be certified in polynomial time [15].  In other words, a ‘yes’ instance to 

the problem contains a ‘succinct certificate’, which means that a certification or check 

program can be run on the ‘yes’ result and confirm, in polynomial time, that the result is 

in fact correct [15].  

The second formulation involves the non-deterministic construct [15].   This 

formulation holds when a non-deterministic algorithm is used to solve the problem at 

hand.  You can classify an algorithm as non-deterministic if the algorithm contains an 

instruction of the following form [15]. 

 go to both label 1, label 2 

In this case, the algorithm launches two paralleled streams of computation.  Consider 

now the case when ‘label x’, for all x > 0, executes an instruction of this form.  You will 

end up with an exponential explosion of paralleled streams, or branches, of computation.  

This could continue until all of the available computing resources are depleted, in which 

case a solution would not be reached.  However, such a non-deterministic algorithm 

could have a polynomial bound.  In this case, an input to the algorithm would be a ‘Yes’ 

instance if any one of the branching paths returns ‘Yes’ within a polynomial number of 

steps.  Otherwise, the input would be a ‘No’ instance. 

 Finally, the third formulation is one which was studied by Dantzig and it involves 

Integer Programming [15].  For more detail on Integer Programming, please refer to G. 

B. Dantzig [10, 11].  A problem would fall under this formulation if that problem could 

be reduced to Integer Programming in Polynomial Time [15]. 
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 These three formulations are equivalent to each other.  Together, they define the 

class of NP decision problems.  As formally stated, if A is a decision problem, then A has 

a succinct certificate property, A ∈ NP and A is transferable to Integer Programming in 

polynomial time [15].  Since P ⊆ NP, then if A ∈ P, then A ∈ NP.   A problem B is 

considered to be NP-hard if for all problems B′ ∈ NP, you can show that there exists a 

polynomial time many-one reduction to B [26]. 

So, where does NP-completeness come into the picture?  Let us say that we were 

able to show that every NP-hard problem can be reduced to some other NP-hard problem 

B.  That is, any NP-hard problem X ∈ NP can be transformed to B in polynomial time so 

that a solution to B would yield a solution to X.  In this case, B is considered to be NP-

complete.  The interesting characteristic of NP-complete problems is that if you can 

prove that an NP-complete problem B ∈ P, then you have shown that P = NP, which 

means that every NP-complete problem can be solved in polynomial time in the worst 

case.  On the other hand, if you can prove that an NP-complete problem B ∉  P, then you 

have shown that P ≠ NP, which means that none of the NP-complete problems can be 

solved in polynomial time in the worst case.  It thus stands that the million dollar 

question is, does P = NP?  Literally, “The Clay Mathematics Institute has offered a USD 

1,000,000 prize for a correct solution” [22].  Currently, no one has been able to prove that 

P = NP or that P ≠ NP.  However, it is highly speculated that P ≠ NP.  For many years, 

researchers have tried to find ways of solving NP-hard problems in polynomial time, 

including the TSP.  Therefore, if you can show that a problem is NP-hard, then you know 

that it is extremely unlikely that you will find a polynomial time solution to the problem.  
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It is without a doubt that the TSP’s NP-completeness has attributed greatly to its 

popularity. 

 So, what is it about the TSP that makes it NP-complete?  Moreover, how does one 

go about proving that a problem, such as the TSP, is NP-complete?  To answer both of 

these questions in a simplistic manner, because a detailed proof and explanation is far 

beyond the scope of this survey, we will use the popular reduction method.  We will take 

a problem, call it H, that has already been proven to be NP-complete.  Then, we will 

show that you can solve H by reducing it to the TSP.  Once we have shown this, we can 

say that if TSP is solvable in polynomial time, then we can solve H in polynomial time.  

At which point we reach a contradiction. We then conclude that TSP cannot be solved in 

polynomial time because it has already been proven that H cannot be solved in 

polynomial time.  Moreover, TSP must be NP-complete because H is NP-complete.   

In proving that TSP is NP-complete, we will choose H to be the popular 

Hamiltonian Cycle problem, which is known to be NP-complete.  At a close look, it is 

evident that the Hamiltonian Cycle problem is a special case of the TSP.  Simply modify 

the input graph to the TSP algorithm by setting the costs of all the existing edges to be 

some fixed finite constant.   Then, if any tour is found, that tour is a Hamiltonian Cycle.  

Thus, the TSP must be NP-complete because it has been proven that the Hamiltonian 

Cycle problem is NP-complete. 

4 Applications – Real Life Uses of the Problem 

 There are many practical real life uses of the TSP.  Of course, the most common 

of which are transportation routing problems.  In this chapter, some of the most popular 
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applications will be mentioned.  In addition, this chapter will touch upon some generic 

instances of the TSP that can easily be adapted for use within many real life problems. 

 The most popular application of the TSP that comes to mind is finding a route that 

a salesman would take in order to visit every geographical location in a specified list such 

that minimum total distance is traveled.  Consider the case of a salesman traveling from 

door to door in a certain sub-division of homes.   Would it not be very convenient if the 

salesperson could obtain a list of all the homes in that subdivision specified in the most 

optimal order to visit.  How about a salesperson that needs to visit hundreds of cities 

spread throughout an entire country?  Or, what about a musical band going on tour 

throughout the world?  Knowing the optimal tour that will visit each city once could 

potentially save the traveler days or even weeks of traveling time.  Consider a postal 

delivery person who goes to work in the morning with a truck full of parcels to deliver.  

In what order should those parcels be delivered to minimize the total distance traveled? 

For all the instances mentioned so far, the nodes in the graph would correspond to 

the geographical locations, and the distances would be metric values based on the lengths 

of the roads connecting the locations.  Presently, most of the world, including cities, 

buildings and land marks, has already been mapped electronically in a plane.  To solve 

these instances mentioned, one would only need to specify the desired locations to be 

visited, and then let a TSP solution algorithm do the rest. 

There are other important practical uses of the TSP.  Consider some of the 

machines in an assembly line.  There are machines whose sole purposes are to drill 

various holes in a certain piece of material.  The material may be a circuit board, the 

frame of a vehicle, or even a piece of wood to be used building a book shelf.  The drill is 
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repositioned by motors that slide along tracks such that the drill could move to any 

position within a certain area.  It will take a certain amount of time to reposition the drill 

depending on the distance that drill needs to move.  A solution to the TSP could be used 

to find the optimal order in which the holes should be drilled.  In the case of an assembly 

line, saving several seconds to complete the process for each work-piece means 

producing much more work-pieces by the end of the day.  To solve this problem using 

the TSP application, simply let the vertices represent the locations that the holes need to 

be drilled and let the edges be the distances between them. 

Another application that a solution to the TSP can be applied to is electronic or 

mechanical connection placement.  Consider the wiring of a circuit board, or the 

electrical wiring within a large building, or even the plumbing layout within a building.  

In many of these cases, the connections need to be laid out such that the components are 

all connected in a cycle.  In the case of a circuit board, the connections are the wires and 

the components are the transistors, resistors, etc.  When talking about the electrical setup 

of a building, the connections are the wires and the components are the switches, plugs, 

light fixtures, etc.  Finally, for the plumbing layout of a building, the connections are the 

pipes and the components are the faucets and water taps.  In all of these cases, you will be 

trying to find a shortest Hamiltonian path in order to save material and to optimize flow 

by reducing the length of the cycle.  Connecting circuits or wiring electronic components 

so that the current has to travel as minimum a distance as possible will ultimately 

increase efficiency and overall performance.  

 The final application that we will look at is the multiple salesmen model.  

Consider the task of having to visit a set of cities, where each city has to be visited 
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exactly once by any of the m salesmen on your staff.  If you hire salesman j, then you 

must pay salesman j a fixed cost of dj.  Each of the m salesmen must complete a subtour, 

and the combination of all the subtours that each of the m salesmen embark on must 

result in each city in set being visited exactly once.  The salesmen start and end their sub 

tours at the same home base location.  The object it to determine which salesmen to hire 

and what the subtours should be in order to minimize the total distance traveled and the 

cost of hiring the salesmen.  This problem can be modeled as the original TSP by adding 

(m – 1) additional vertices, denoted –1, …, –(m – 1) to the input graph.  Now, the m 

salesmen, numbered 0 to (m – 1), are represented by the source vertex and the new        

(m – 1) vertices, where the source vertex represents salesman 0.  Then, edges are added to 

connect these (m – 1) new vertices to the rest of the vertices in the original graph.  The 

costs of the newly added edges are determined by adding the costs dj, for 0 ≤ j ≤ (m – 1), 

to the cost of existing edges in the graph.  For more details on transforming a m salesmen 

graph into a TSP graph, please refer to page 24 of Lawler, Lenstra, Rinnooy Kan and  

Shmoys [15]. 

5 Polynomial Time Solvable Variations 

This chapter talks about some of the special cases of the TSP for which there exist 

efficient polynomial time solutions.  These well-solved special cases are divided into two 

categories.  In the first category are cases in which restrictions are put on the matrix that 

contains the costs of the edges in the graph, but there are no restrictions on the structure 

of the graph.  In the second category are cases in which restrictions are put on the 

structure of the graph, but there are no restrictions on the edge costs.  To clarify, a cost 

matrix of a graph G refers to an n x n matrix, where cij, for 1 ≤ i ≤ n and 1 ≤ j ≤ n, refers 
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to the cost incurred when traversing the edge in G that connects vertices i and j. Some of 

the most popular cases of the TSP that fall in these categories will be listed here. 

The first variation we will look at is known as the Small TSP.  In this variation, 

restrictions are put on the cost matrix.  A cost matrix C is considered small if there exists 

n-dimensional vectors a and b, where a1 ≤ a2 ≤ … ≤ an and  b1 ≤ b2 ≤ … ≤ bn.  This 

instance can be effectively solved in polynomial time because there is a small amount of 

different values to consider when looking for the most inexpensive tour.  A detailed 

solution to this instance is available in E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan 

and D. B. Shmoys [15]. 

The Upper Triangular Matrices version of the TSP can also be solved in 

polynomial time.  A matrix C is considered upper triangular if i ≥ j implies cij = 0.  Thus, 

more than half of the matrix is filled with 0’s, and the non-zero values form a right angle 

triangle whose right angle is at the top right corner of the matrix.  Please refer to E. L. 

Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys [15] for the details of a 

polynomial time solution to this instance of the TSP. 

S. Kaushal [14] talks about the bitonic TSP.  In this instance, the vertex set is V = 

{0, 1, 2, …, n-1}, for some n ≥ 1, and the distances between the vertices are Euclidean.  

A tour t = (0, i1, i2, …, ik, n – 1, ik+1, ik+2, …, in-2) of V is considered bitonic if and only if 

0 < i1 < i2 < … < ik < n – 1 and n – 1 > ik+1 > ik+2 > … > in-2 > 0.  This tour can be found 

very efficiently.  One simply starts at vertex 0 and then visits the rest of the vertices based 

on their x-coordinate value.  The solution is obtained via a dynamic programming 

algorithm [14].  Please refer to S. Kaushal [14] for a detailed solution. 
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Finally, we consider the Chinese Postman Problem, which is essentially the same 

as the TSP, but with one important distinction.  The goal in this problem is to find the 

shortest closed walk, containing all of the edges in the graph at least once.  In a closed 

walk, vertices can be visited more than once, and hence edges can be traversed more than 

once.  This problem’s complexity is known to be polynomial for both the directed and 

undirected graph versions of it [19].  The Chinese Postman Problem has many 

applications, but unfortunately is has not been given nearly as much attention as the TSP 

[19].  The Chinese Postman Problem, like the TSP, is easily states, but not easily solved.  

The polynomial time solutions to the Chinese Postman Problem is rather complicated 

[19].   

6 NP-hard Variations 

This chapter talks about some of the popular variations of the TSP problem that 

are more useful in real life applications.  Restrictions are put on the general TSP, either to 

make it easier to solve, or simply because such restrictions allow the problem to reflect 

certain applications.  For instance, a restriction that says all of the edge costs must be 

non-negative values may be placed on the general TSP.  This restriction is necessary 

when the input instance involves physical locations of buildings and the edge costs 

represent the distances between the different buildings.  It is obvious that distance values 

cannot be negative.   

Bellow, we will list variations of the general TSP in which restrictions are placed.  

However, despite theses restrictions, the variations listed here are still considered NP-

hard.  The input for each of these variations is a graph G that contains a set of vertices V 

and a set of edges E connecting the vertices in V.   
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In the symmetric TSP variation, all of the edge costs are symmetric.  This means 

that, for all nodes in the graph, the cost incurred, when moving from node a to node b, is 

the same as the cost incurred when moving from node b to node a.   On the other hand, 

the asymmetric TSP does not have such constraints.  The general TSP is considered 

asymmetric.  The input to the asymmetric TSP would be a directed graph. 

In the Metric TSP, all of the edge costs are symmetric and they satisfy the triangle 

inequality.  The triangle inequality property means that for any three nodes a, b and c, the 

cost of going from node a directly to node c is always cheaper than going from node a to 

node c by passing through node b.  In addition, the nodes are points in some space.  The 

edge costs are determined by calculating the metric distance between the points. 

Finally, in the Euclidean TSP, all of the nodes lie in the plane, which means it is 

symmetric and the triangle inequality holds.  The cost of each edge e, connecting nodes a 

and b, is defined by the Euclidean distance between the nodes a and b.  In general, the 

plane can be d-dimensional, where d > 1.  

7 Approximate Solutions to NP-hard Variations 

 Unfortunately, many of the real life applications of the Traveling Salesman 

Problem involve the NP-hard variations.  As previously mentioned, an efficient exact 

solution to any of these NP-hard variations has not been found.  Moreover, the exact 

solutions that we do have are unpractical for most uses even with today’s super 

computers. However, there is some light at then end of the tunnel.  Efficient 

approximation algorithms have been developed, which can be very useful in practice.  

The approximation technique is a popular approach in tackling NP-hard problems.  The 

idea is that, although it may be near impossible to find an efficient exact solution to NP-
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hard problems, we can try to find efficient approximation solutions; a rather successful 

approach.  An approximation algorithm is one in which, for some fixed constant c, solves 

a problem by returning a solution that is within a factor c of the optimal solution.  The 

running time is required to be polynomial, otherwise the algorithm is intractable on large 

instances.   If there exists a polynomial time approximation algorithm for an NP-hard 

problem N, then N is considered to be approximable.  Note that it is possible to show that 

an NP-hard problem is not approximable [20].   

The polynomial running times of approximation algorithms can be quite costly, 

for instance, O(n1000). However, there are more useful classes of approximation algorithm 

known as approximation schemes.  A Polynomial Time Approximation Scheme (PTAS) 

is an algorithm that takes as input an instance of an optimization problem and a value c.   

It then returns a solution to that optimization problem that is within a c factor of the 

optimal solution, where epsilon (ε) = (c-1) is the relative error in the approximation.  The 

running time of a PTAS must be polynomial in the input size for any fixed value of c, but 

may or may not be polynomial in 1/(c-1). A subset of PTAS is the Fully Polynomial 

Time Approximation Scheme (FPTAS).  FPTAS algorithms behave identical to PTAS 

algorithm except for a restriction that is added to the running time requirements.  For 

FPTAS algorithms, the running time must be polynomial in the input size and in 1/(c-1).   

It was recently proved by S. Arora, C. Lund, R. Motwani, M. Suden, and M. 

Szegedy [6] that if P ≠ NP, then the Metric TSP does not have a PTAS.  However, we 

have found constant approximation algorithms for the metric TSP.  The best of which is 

Christofides’ algorithm, done in CSE4101, with an approximation ratio of 3/2 [7].  There 

is another algorithm, known as the Held-Karp heuristic [3], which has been conjectured 
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to have an approximation ratio of 4/3.  However, because this approximation ratio has not 

been proven to be a worst-case upper bound, Christofides’ 3/2 remains the best know 

upper-bound approximation solution to the metric TSP [3]. 

A very simple and popular approximation algorithm for the Metric TSP is the 

Double-MST [8, CSE4101].  In this algorithm, you begin by finding the minimum 

spanning tree, or MST, of the graph.  You then list the vertices based on the order they 

are visited in a preorder walk of the MST.   This ordered list is the tour that is returned.  It 

has been proven that this algorithm returns a tour whose cost is no more than twice the 

optimal tour. 

Although a PTAS algorithm has not been found for the metric TSP, the same 

cannot be said for the Euclidean TSP.   After Christofides’ discovery, many researchers 

attempted to find a better approximation algorithm or a PTAS for the Euclidean TSP. 

Eventually S. Arora succeeded in discovering a PTAS for the Euclidean TSP around the 

year 1996 [3].  Arora’s algorithm computes a tour with approximation ratio (1 + c), for 

any given c > 0.  The algorithm recursively partitions the plane and then uses dynamic 

programming to find a tour that crosses each line of the partition at most O(c) times.  The 

running time of such an algorithm in a 2-demensional plane is O(n(log n)O(c)).  The 

algorithm also works in for a d-dimensional plane, with a running time 

of ))(log(
1))(( −dcdOnnO .  Please refer to S. Arora [4] for details on the solution to this 

PTAS.  

 J. S. B. Mitchell [17] also discovered a PTAS for the Euclidean TSP around the 

same time that Arora did.  Mitchell’s algorithm uses an “m-guillotine subdivision” 

concept, which is a polygonal subdivision with one added property [17].  In a polygonal 
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subdivision, a line, also referred to as a cut, is drawn through a subdivisions S, thus 

splitting S into two new subdivisions S1 and S2. The added property is that the cut’s 

intersection with the edges in S consists of O(m) connected components, and the new 

subdivisions, S1 and S2, are also m-guillotine” [17].  Mitchell’s PTAS algorithm returns 

a tour whose cost is within a factor of (1 + m
22 ) from an optimal tour cost [17].  The 

algorithm accomplishes this in O (n20m+5) time [17].  Refer to J. S. B. Mitchell [17] for 

more details on this PTAS solution. 

S. Arora, M. Grigni, D. Karger, P. Klein and A. Woloszyn [5] present a PTAS for 

a planar graph containing edge weights or costs.  (A planar graph is a graph that does not 

contain any edge crossings, and can be drawn on the plane.)  Thus, a weighted planar 

graph version of the TSP is a special case of the Euclidean TSP.  The algorithm produces 

a tour that is within a factor (1 + c), for some specified constant c > 0, of the optimal tour.  

The running time for this approximation algorithm is .  The algorithm begins by 

finding a spanner of the input graph, with edge weights preserved.  Then, it obtains a step-by-step 

decomposition of the input graph.  Each step partitions each of the current components into at 

least two pieces, where each piece contains a constant factor of the vertices in its parent piece.  

Please refer to S. Arora, M. Grigni, D. Karger, P. Klein and A. Woloszyn [5] for the 

details on this PTAS algorithms.   

)/1( 2cOn

8 Working Towards an Exact Solution  

 One of the ultimate goals in computer science is to find computationally feasible 

exact solutions to all the known NP-Hard problems; a goal that may never be reached.   
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Feasible exact solutions for the TSP have been found, but there are restrictions on the 

input sizes.   

An exact solution was found for a 318-City problem [Crowder & Padberg, 1980].  

The basic idea in achieving this solution involves three phases.  In the first phase, a true 

lower bound on the optimal tour is found.  In the second phase, the result in the first 

phase is used to eliminate about ninety-seven percent of all the possible tours.  Thus, only 

about three percent of the possible tours need to be considered.  In the third phase, the 

reduced problem is solved by brute force.  This solution has been implemented and used 

in practice. Experimental results by AppleGate, Bixby, Chvatal and Cook [1] showed that 

running this algorithm, implemented in the C programming language and executed on a 

400MHz machine, would produce a result in 24.6 seconds of running time.   

 Other exact solutions have been found.  As mention in [1], a 120-city problem by 

Grötschel [1980], a 532-city problem by Padberg and Rinaldi [1987], a 666-city problem 

by Grötschel and Holland [1991], a 1,002-city problem and a 2,392-city problem by 

Padberg and Rinaldi [1991].  However, none of the algorithms that provide an exact 

solution for input instances of over a thousand cities are practical for everyday use.  Even 

with today’s super computers, the execution time of such exact solution algorithms for 

TSPs involving thousands of cities could take days.  What does this say for the circuit 

board wiring applications of the TSP, where the total amount of components are in the 

tens of thousands, or even millions? 

 Computer hardware researchers have been making astonishing progress in 

manufacturing evermore powerful computing chips.  Moore’s Law [25], which states that 

the number of transistors that can fit on a chip will double after every 18 months, has held 
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ground since 1965.  This basically means that computing power has doubled every 18 

months since then.  Thus, we have been able to solve larger instances of NP-hard 

problems, but algorithm complexity has still remained exponential.  Moreover, it is 

highly speculated that this trend will come to an end because there is a limit to the 

miniaturization of transistors.  Presently, the sizes of transistors are approaching the size 

of atoms.  With the speeds of computer processors rounding the 5GHz mark, and talks 

about an exponential increase in speeds of up to 100GHz [25], one might consider the 

possibility of us exceeding any further need of computational performance.  However, 

this is not the case.  Although computing speeds may increase exponentially, they are, 

and will continue to be, surpassed by the exponential increase in algorithmic complexity 

as problem sizes continue to grow.  Moore’s law may continue to hold true for another 

decade or so, but different methods of computing are being researched.  The most notable 

one in the context of this survey is Quantum computing.   

 In a quantum computer, particles are used to represent data by manipulating their 

quantum properties.  In a transistor based computer, otherwise known as a classical 

computer, data is represented in bits.  Quantum computers use qubits to represent data.  

The major distinction between the two is that an n bit register is always in a definite state 

defined by a combination of n 0s and 1s, whereas an n qubit register can be in a 

superposition of all the 2n different states [28].  This means that to record the data in an n 

qubit register would require 2n complex numbers [28].  This phenomenon of the quantum 

computer, in relation to complexity theory, is that it has been shown that it may be 

possible to solve NP-complete problems in polynomial time.  The key is to first figure out 

how to design a quantum computer with nonlinear operators [28].  If this can be done, 
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then we end up with a powerful method of computing, referred to as Quantum 

Parallelism (David Deutsch, 1985). To see this, consider a non-deterministic algorithm N 

that contains a command such as ‘go to both label1, label2’.  If the input size to N is n, 

the ‘go to both label1, label2’ command will typically be called n times.  Thus, there will 

be 2n paralleled streams of computation, and therefore 2n different possible results.  A 

Quantum Parallel computer could perform these computations in a paralleled fashion, 

thus performing the necessary calculations in polynomial time [16, 28].  Each of these 2n 

different possible solutions can be represented within a single n qubit register.  

Unfortunately, a detailed discussion on the theory of quantum computing is far beyond 

the scope of this survey.   For more details on Quantum Computing you are encouraged 

to read S. Lloyd [16]. 
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