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1 Introduction 

 The Traveling Salesman Problem, or TSP, is an on going study in computer 

science.  The TSP has a long history ranging back to the 1920’s [1].  The TSP became 

popular after it was publicized by a mathematician named Merrill Flood at the RAND 

corporations in 1948 [9].  The TSP problem is defined as, given a complete graph G with 

Vertices V and edges E, where each edge eij ∈ E has an associated cost cij incurred when 

traversing from vertex i ∈ V to j ∈ V, find the optimal, or cheapest, Hamiltonian cycle of 

G.  The vertices can be considered buildings, landmarks or other geographical locations.  

Thus, a Hamiltonian cycle of G is also considered a Tour. 

There are different variations of the TSP.  In the general case, there are no restrictions 

on the edge costs.  Therefore, each edge may have two associated costs, cij ∈ ℜ and cji∈ 

ℜ, that may not necessarily be equal.  Thus, G can be a directed graph and the edge costs 

can be negative.  The general TSP is NP-complete.  In this report, we will be considering 

the Euclidean TSP.   In the Euclidean TSP, all of the vertices are points in the plane.  The 

plane can be 2-dimensional, as in the xy-plane, or d-dimensional in general.  The edge 

costs are the Euclidean distances between the points.  Since we are working in the plane, 

there are restrictions on the edge costs, and some assumptions can be made, which 

simplify the problem.  First of all, edge costs are non-negative real numbers, and cij = cji 

for all i, j ∈ V.  Moreover, the triangle inequality holds, which means that for any three 

vertices A, B and C, if you wish to go from vertex A to vertex C, it is always cheaper to 

go from A directly to C rather than passing through B.  Despite these added restrictions, 

the Euclidean TSP is still NP-hard.   
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For the Euclidean TSP, it is known that there exists a superpolynomial time exact 

solution to the problem [12].  However, the running time of such an algorithm is not 

reasonable, even for input graphs containing less than a thousand vertices or points.  To 

give you an idea of how unpractical an exact superpolynomial time solution may be, 

consider an exact solution of input instance being 15,112 German cities.  The 

benchmarking of this TSP instance was conducted by TSBLIB [10] in 2001.  The 

algorithm to solve this instance was run on a network of 110 workstations.  The total 

execution time spent was equivalent to almost 30 years on a single 500MHz processor 

[12]. 

2 The Approximation Approach to NP-hard Problem 

 Since we have not been able to find an efficient exact solution to the Euclidean 

TSP, and since one probably does not exist, alternate approaches have been considered.  

A popular approach has been to find approximation solution algorithms to solve the 

problem.  Approximating optimal solutions has become a popular technique in tackling 

NP-hard problems.  The argument is, if we cannot find feasible exact solutions, then at 

least we can find efficient approximation solutions that can be used in practice. 

 To clarify, an approximation algorithm is one in which, for some fixed constant a, 

solves a problem by returning a solution that costs no more than a times the cost of an 

optimal solution. This solution is found in polynomial time. An NP-hard problem is 

considered approximable if there exists a polynomial time approximation NP-hard 

algorithm to that problem.  The Euclidean TSP is approximable.   

 To expand on this approximation approach, let us consider a more useful class of 

approximation solutions knows as approximation schemes.   In an approximation scheme, 
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the constant factor value c is not fixed.  The inputs to an approximation scheme consist of 

a data set of size n and a constant value c > 0.  A (1 + c)-approximation algorithm is an 

algorithm that returns a result whose cost is at most (1 + c) times the cost of an optimal 

solution.  We consider two approximation schemes.  The first is a Polynomial Time 

Approximation Scheme, or PTAS, and the second is a Fully Polynomial Approximation 

Scheme, or FPTAS, where FPTAS ⊂ PTAS.  The only distinction between these two 

approximation schemes lies in the running times.  The running time of a PTAS must be 

polynomial in the input size, but may or may not depend on c. Whereas, the running time 

of a FPTAS must be polynomial in both the input size and in 1/c.   

 It has been proven that there does not exist a PTAS for the general case of the 

TSP [2].    Moreover, it was show my Garey and Johnston [6] that many NP-complete 

problems do not have FPTAS.  However, there does exist polynomial time approximation 

schemes for the Euclidean TSP. 

3 PTAS Algorithms on the Euclidean TSP 

 The polynomial time approximation schemes for the Euclidean TSP are useful in 

practice.  Of course, there is a direct relation between the running time of such 

approximation schemes and the accuracy of the solution.  Since one is able to specify an 

upper-bound on the optimality ratio of the approximate solution to the optimal solution, 

one can tailor the algorithm to produce a solution that is suitable to his/her needs.  For 

instance, in some applications the accuracy of the solution is much more important than 

the running time to find that solution, and vice versa.   

 In this section, we will look at the available PTAS for the Euclidean TSP.  The 

first solution we will look at is Arora’s PTAS.  Arora was the first person to find a PTAS 
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for the Euclidean TSP.  The second solution we will look at is Mitchell’s PTAS.  Mitchell 

independently found a PTAS for the Euclidean TSP only months after Arora.   Finally, 

we will look at a PTAS for the weighted planar graph version of the TSP, which is a 

special case of the Euclidean TSP.  This solution was found by Grigni, Karger, Klein and 

Woloszyn [7].  All of the solutions listed in this report were discovered during the late 

1990’s.   

3.1 Arora’s PTAS for the Euclidean TSP 

Sanjeev Arora discovered a PTAS for the Euclidean TSP in the year 1996 [3].  

The approximation ratio of Arora’s algorithm in ℜ2 is (1 + 1/c), for any given c > 1 [3].   

The main idea of Arora’s solution is to recursively partition the plane, and then use 

dynamic programming to find a tour that crosses each line of the partition at most O(c) 

times.  When Arora first presented this PTAS, it had a proven running time of nO(1/c) time 

[5].  About a year later, he was able to improve the running time of his algorithm to 

O(n(log n)O(c)) in ℜ2.  Moreover, in general, the algorithm can be applied to the 

Euclidean TSP in ℜd, where a (1 + 1/c)-approximate solution will be found 

in ))(log(
1))(( −dcdOnnO , which is nearly linear time for any fixed c, d [4]. 

 As mentioned, Arora’a PTAS performs a recursive geometric partitioning of the 

plane such that a (1 + 1/c)-approximation tour crosses each line of a partition no more 

than O(c) times [3].  The portion of the plane that is considered in the algorithm is only 

the bounding box, which is the smallest rectangular portion of the plane that encompasses 

all of the nodes in the graph.  The partitioning is determined by using some randomized 

variant of the quadtree.  A quadtree is a tree data structure that is often used to 
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recursively partition a plane [13].  Each node in the quadtree can have up to four 

children, where the node represents a partition and its children represent the quadrants or 

regions of that partition [13].  In Arora’s application, the partitions are always squares, 

where each partition is recursively divided into four equal sections [3].  Arora refers to 

this partitioning of the bounding box as dissection.  Arora [3] also mentions that the idea 

of partitioning a plane, in order to find a more efficient solution to NP-hard problems in 

ℜ2, has already been done.  It had previously been used to find an exact solution to the 2-

demensional Euclidean TSP in )(2 nO  time [3].  Arora took advantage of this useful 

approach in order to develop his PTAS for the Euclidean TSP.   

For each line in any given partition, the algorithm tries to guess where the tour 

will cross it, and in what order those crossings occur (more detail on these crossings is 

provided in the explanation of Arora’s Structure Theorem below).  It then recurses on 

both sides of the line.  Arora [3] notes that there are O(n log n) different regions in a 

given partition containing n nodes.  Furthermore, the accuracy of the guessing depends 

on c, so that it spends, at most, (log n)O(c) on each region [3].  Thus, the total time is 

n⋅(log n)O(c) [3].  Experimentations have shown that the best known achievement, in terms 

of tour optimality thus far, is when c ≈ 10 [3].  However Arora believes this can be 

improved. 

   Arora’s PTAS algorithm is based on a theorem, which he calls the ‘Structure 

Theorem’.  We will state the theorem here, and then provide a brief explanation of it.   

 

Structure Theorem:  “Let the minimum nonzero internode distance in a TSP instance be 

8 and let L be the size of its bounding box. Let shifts 0 ≤ a, b ≤ L be picked randomly. 
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Then with probability at least 1/2, there is a salesman path of cost at most (1 + 1/c)-OPT 

that is (m, r)-light with respect to the dissection with shift (a, b), where m = O(c log L) 

and r = O(c).” [3] 

 

This theorem basically states that the crossings over the partition lines happen 

over a small amount of pre-specified points.  These points are called portals.  This is 

made possible by allowing the virtual salesman to stray from a straight-line path between 

two nodes, forcing the salesman to pass through a portal in order to exit a square.  Each 

square has four portals, one at each corner, and an additional m equally spaced portals on 

each side of the square [3].   Arora [3] then defines a salesman path, which is any path 

that visits each node in the 2-demensional plane once, but can pass through any portal 

more than once.  

Let us now define an (a, b)-shift.  The values of a and b are integer values 

between 0 and L, where L is the size of the bounding box.   To perform an (a, b)-shift 

means to modify all of the x and y coordinates of the partition lines in the following 

manner:  The new x values are determined by evaluating the equation, (a + x) mod L, for 

each old x value [3].  The new y values are determined by evaluating the equation, (b + y) 

mod L, for each old y value [3].   Wraparound of the square occurs where applicable.  

That is, when squares fall outside of the bounding box due to shifting, they wraparound 

to the opposite side of the bounding box.   

 Finally, the last thing that you will need to know in order to understand the 

Structure Theorem is the definition of an (m, r)-light salesman path.  The salesman path 

is considered (m, r)-light, taking into account the (a, b)-shifting of the dissection, if the 
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path crosses only crosses through portals, and does not cross a side of each square more 

than r times [3].   

 We can now list, and briefly describe, the three steps of Arora’s PTAS. 

 

Step 1:  Make the Input Instance Well Rounded. 

 

 In this step, the input instance needs to be modified to be made well-rounded [3], 

which means that the instance must be prepared to reflect the Structure Theorem. All of 

the coordinates must be of integral value, and the resulting values must meet the 

following criteria:  Nonzero distance values need to be greater than or equal to eight 

units.  Lastly, the maximum distance value must be O(n).  This well rounding 

modification of the input instance is done in linear time [3]. 

 

Step 2:  Construct a Shifted Quadtree 

 

 The dissection is performed.  Random values for a and b are chosen, and the 

bounding box is partitioned until each square has a size ≤ 1, which means that each 

square will have at most one node.  The shifted quadtree is created during this dissection.  

Since L = O(n), the depth of the quadtree is O(log n), and it can easily be built in O(n log2 

n) time [3].   

 

Step 3:  Solve by Dynamic Programming.  
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 In this final step, dynamic programming is used to the find the optimal (m, r)-light 

salesman path [3] using the quadtree that was constructed in step 2.   

 

 For more details on the solution of Arora’s PTAS for the Euclidean TSP, the 

reader is encouraged to refer to S. Arora [3]. 

3.2 Mitchell’s PTAS for the Euclidean TSP 

Joseph S. B. Mitchell independently discovered a PTAS for the Euclidean TSP 

softly after Arora.  Mitchell’s algorithm is very much similar to Arora’s PTAS in that it 

first partitions the plane, and then uses dynamic programming to reach a solution.   

To partition the plane, Mitchell’s algorithm exploits the concept of an “m-guillotine 

subdivision” [8].   

Mitchell defines an m-guillotine subdivision as being vary similar to a polygonal 

subdivision.  Partitions or subdivisions are made via “cuts”, where a single “cut” is 

basically a straight line that divides a partition into two new partitions.  A given partition 

is said to be m-guillotine if there exists a “cut” that intersect with existing subdivision 

“cuts”, creating only O(m) connected components, and the two new partitions are also m-

guillotine [8].   

Mitchell then submits a theorem that is the basis for his PTAS.  The theorem 

states that any polygonal subdivision can be converted into an m-guillotine subdivision 

[8].  This can be accomplished by adding c/m times more edges in the new subdivision 

then in the original subdivision [8].   Using this theorem, and applying dynamic 

programming to obtain optimal results from a collection of m-guillotine subdivisions, 
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Mitchell is able to produce a (1 + m
22 )-approximation algorithm for the Euclidean 

TSP that runs in O(n20m+5) time [8].  The value of m is any non-zero positive integer 

specified as part of the input to the algorithm [8]. 

Unfortunately, the details of Mitchell’s PTAS are much more complex than that 

of Arora’s PTAS.  For this reason, the specifics of Mitchell’s method are not included 

within this report.  For an in-depth explanation of Mitchell’s PTAS, please refer to J. S. B 

Mitchell [8]. 
  

3.3 Grigni, Karger, Klein and Woloszyn’s PTAS for the Weighted 

Planar TSP 

 Grigni, Karger, Klein and Woloszyn [5, 6] were able to produce a PTAS for a 

weighted planar graph containing edge weights or costs.  This PTAS is included in this 

report because a weighted planar graph is a special case of the Euclidean TSP.  A planar 

graph can be drawn on the plane, just as the Euclidean TSP.  The difference in a planar 

graph is that edges in the graph are not allowed to cross each other.   

 Grigni, Karger, Klein and Woloszyn [5] present a PTAS for the weighted-planar-

graph TSP that, given a graph G and some constant value c > 0, produces a (1 + c)-

approximation salesman tour [5].  The algorithm that accomplishes this approximation 

runs in  [5].  The algorithm proceeds by first simplifying the input graph G into a 

spanner subgraph G′.  The graph G′ has the same set of vertices as in G, except that the 

distance between any two vertices in G′ can be up to (1 + c) times the distance between 

the corresponding two vertices in G [7].   Moreover, the sum of the costs of all the edges 

in G′ must be O(1/c) times the cost of  a minimum spanning tree of G [7].  

)/1( 2cOn
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The spanner subgraph G′ is then hierarchically partitioned.   The hierarchical 

orderings of the partitions are maintained within a tree data structure, such as a quadtree.   

Grigni, Karger, Klein and Woloszyn refer to this partitioning process as a hierarchical 

decomposition of G′, and the resulting tree is denoted as a decomposition tree [7].  The 

proof of the PTAS’s (1 + c) approximation ratio is dependent on this decomposition tree 

[7].  While performing the decomposition, edges in G′ are contracted in such a manner 

that assures costs are not modified too much as to rending the approximation solution 

infeasible.  G′ is now considered a contacted graph.   

Dynamic programming is then used to extract a tour from G′. Dynamic 

programming methods allow Grigni, Karger, Klein and Woloszyn to find, in polynomial 

time, the optimal tour T′ in G′ [7].  Note that the tour T′ of the contracted graph G′ is a 

sub-optimal tour of the original graph G.  Finally, the optimal tour T′ of G′ is then 

translated into a valid tour T of G.  Tour T will have a cost that is marginally greater than 

the cost of tour T′, which is due to the translation.  However, Grigni, Karger, Klein and 

Woloszyn [5, 7] were able to prove that the tour T of G, which is returned by their PTAS 

algorithm, has a cost no more than (1 + c) times an optimal tour of G. 
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