
Dynamic Joint Variational Graph Autoencoders

Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An

1 Department of Electrical Engineering and Computer Science, York University
2 {smahdavi,khoshraf,aan}@eecs.yorku.ca

Abstract. Learning network representations is a fundamental task for many graph
applications such as link prediction, node classification, graph clustering, and
graph visualization. Many real-world networks are interpreted as dynamic net-
works and evolve over time. Most existing graph embedding algorithms were
developed for static graphs mainly and cannot capture the evolution of a large
dynamic network. In this paper, we propose Dynamic joint Variational Graph Au-
toencoders (Dyn-VGAE) that can learn both local structures and temporal evo-
lutionary patterns in a dynamic network. Dyn-VGAE provides a joint learning
framework for computing temporal representations of all graph snapshots simul-
taneously. Each auto-encoder embeds a graph snapshot based on its local struc-
ture and can also learn temporal dependencies by collaborating with other autoen-
coders. We conduct experimental studies on dynamic real-world graph datasets
and the results demonstrate the effectiveness of the proposed method.

Keywords: Graph Representation· Network Embedding · Generative Model ·
Dynamic Networks · Variational Autoencoder.

1 Introduction

Many real world data can be formulated as graphs to represent complex relationships
among the objects in the data. Dealing with high dimensional graph structures is a
highly challenging task for many machine learning algorithms. Graph embedding meth-
ods are helpful to reduce the high dimensionality of graph data by learning low-dimensional
features as latent representations. Many embedding algorithms [26, 10, 22, 1, 14, 20,
6, 6, 1, 31, 2] have been proposed to capture different characteristics of a network and
they provide effective ways to extract low-dimensional latent representations of graphs.

Most of the embedding approaches are designed as static methods, assuming that
the nodes and edges in the graph are fixed. However, real networks are often dy-
namic, consisting of vertices and edges that may occur and disappear at different time
points. In modeling a dynamic network, it is essential to take temporal dependencies
and changes into account for characterizing evolving nodes and edges. Capturing these
temporal factors requires a dynamic model that can learn the evolution track of a dy-
namic network over time. A dynamic network is often represented as a sequence of
static graph snapshots over time. Some attempts have been made to develop a dynamic
model for leaning temporal low-dimensional latent representations of graph snapshots
[8, 35, 7, 34, 18, 19, 29, 33]. A simple traditional method for obtaining the embedding

2 S. Mahdavi et al.

vectors of a graph snapshot is computing embedding vectors in each timestamp sepa-
rately. Then, the graph embedding vectors across all timestamps are aligned and placed
in a same vector space.

Alignment methods raise two main issues. First, some learned embedding vectors
are invariant to transformations and it is not possible to place embedding vectors of
all graph snapshots in the same latent space. Second, such methods need to solve a
separate optimization problem for finding transformation functions. In [35], the authors
proposed a joint matrix factorization-based optimization function which can jointly find
embedding vectors across time without the alignment step. The problem of this joint op-
timization function is a non-convex and non-linear optimization problem with a large
number of variables. Recently, different types of deep autoencoders have been proposed
to solve complex nonlinear functions [20, 11, 30]. Among the autoencoders, variational
graph auto-encoder (VGAE) [14] is an effective static embedding method which is a
deep generative model by variational inference. Similar to other static graph embed-
ding methods, it is not designed for the dynamic setting. Joint deep learning models
have recently achieved great success in many learning tasks such as multi-task learn-
ing and domain adaptation [4], multimodal network embedding [32], video description
generation [21], and clustering [5]. These joint deep leaning models aim to learn de-
pendencies and similarities among some target tasks by joining their goals together.
As a dynamic network includes temporal dependencies among all graph snapshots, the
intuition of join deep learning motivates us to develop a joint autoencoder based on
VGAE.

In this paper, we propose a joint dynamic Variational autoencoder (Dyn-VGAE)
which simultaneously learns latent representations of the graphs at all timestamps. To
the best of our knowledge, this is the first study on developing a deep joint learning for
dynamic network representations. We first assign a specific variational autoencoder with
a modified learning function for each graph snapshot. This learning framework jointly
learns latent variables of each graph and captures evolving patterns among graphs by
sharing learned latent variables during the training iterations. The main contributions of
this work are:

– We introduce a joint learning approach, which is the first study to extract the dy-
namic network representation with collaboration among graph autoencoders. Dur-
ing the training steps, each autoencoder can collaborate with other autoencoders of
previous graph snapshots.

– We define a novel probabilistic smoothness term in the loss function to align latent
spaces across time, which provides a transfer learning strategy to adjust learned
latent spaces.

– We conducted experiments on dynamic real-world datasets, which show that the
proposed joint method can significantly improve the state of the art.

The rest of the paper is organized as follows. The related works are discussed in Section
2. In Section 3, we describe our proposed architecture. The experiments are detailed in
Section 4. Conclusions and future work are presented in Section 5.

Dynamic Joint Variational Graph Autoencoders 3

2 Related Work

In this section, we describe related work on dynamic and joint deep learning methods.

2.1 Dynamic graph embeddings

Temporal network representation is a challenging problem as it needs to consider the
evolutionary structure of graphs over time. There have been some recent efforts to tackle
the problems in dynamic network embedding [8, 35, 7, 34, 18, 19, 29, 9, 15]. [34] uses
the triadic closure process to learns changes in the structure of graphs. This method is
specifically designed for undirected graphs. [8] is a deep learning model that initial-
ized a graph model with weights from models of previous graphs to create the desired
alignment among temporal embeddings. In [35] a joint matrix factorization method
was proposed that learns a temporal latent space model for dynamic networks by devel-
oping local and incremental block-coordinate gradient descent algorithms. In [7], the
authors proposed a deep learning method that captures the transition model of dynamic
networks using dense and recurrent layers. dyngraph2vecAE, dyngraph2vecRNN and
dyngraph2vecAERNN are three variations in [7]. dyngraph2vecAE models the changes
in graphs using multiple fully connected layers. Then, dyngraph2vecRNN is presented
as it has less parameters and takes into consideration the long term dependencies in
graphs using an LSTM structure. In dyngraph2vecAERNN, the dimension of input vec-
tors to LSTM is reduced by inputting node representation vectors into LSTM rather than
sparsed vectors.

2.2 Joint deep learning methods

Recently, many algorithms have been proposed to jointly learn embeddings for differ-
ent applications. In [4], a joint learning framework was developed for multiple tasks.
The authors designed a neural network model with shared branches for extracting infor-
mation of common features and local branches for learning features of each task. For
visual semantic embeddings, Pan et al. [21] introduced a long short-term memory with a
visual-semantic embedding architecture which simultaneously learns the semantic sen-
tence and video content. A joint convolutional autoencoder was proposed in [5] for the
clustering task by jointing clustering and embedding tasks. Ren et al. [23] introduced a
joint representation for image-text embedding task using the visual information in the
text model. A joint embedding was introduced in [32] for coupled networks. Each net-
work transfers some relevant information to other networks for learning intra-network
edges in these networks.

3 Method

A dynamic network is represented as a time-ordered sequence of static graphs, G1, G2,
. . . , GT , where T is the number of time steps. The graph at time t is denoted by Gt =
(Vt, Et) with a set Vt of |V | vertices and an edge set Et that may change in the time
interval [0, T]. The dynamic graph embedding can be formulated as a temporal mapping

4 S. Mahdavi et al.

function ft : At → Zt which finds a low-dimensional latent representation Zt for graph
Gt with an adjacency matrix At. In this section, we first review the static variational
graph autoencoder briefly and then propose a novel dynamic graph embedding method,
which we call Dynamic joint Variational Graph Autoencoders (Dyn-VGAE).

3.1 Static variational graph autoencoder (SVGAE)

The overall architecture of SVGAE consists of two components: a variational graph
convolutional network encoder and a probabilistic decoder [34]. The variational graph
encoder is defined by an inference model, which encodes the observed graph data into
stochastic low-dimensional latent variables (Z). The variational graph decoder is de-
signed by a generative model, which decodes latent variables into the distribution of the
observed graph data. Let G = (V,E) denote a graph with an adjacency matrix A and
the content features X , where V and E are nodes and edges of the graph. Variational
graph convolutional encoder is constructed as follows:

GCN(X,A) = (D−1/2AD−1/2)fR((D
−1/2AD−1/2)XW0)W1

fR(t) = Relu(t) = max(0, t)

where D is a degree matrix. Weight matrices are Wi and first-layer parameters W0 are
shared between GCNµ(X,A) and GCNσ(X,A). The generative process is character-
ized by an inner product between latent variables:

p(A|Z) =
N∏
i=1

N∏
j=1

p(Ai,j |zi, zj),

with p(Ai,j = 1|zi, zj) = sigmoid(zTi , zj)

The inference process is modeled by a two-layer graph convolutional network (GCN)
[13] (Variational Graph Encoder) :

q(Z|X,A) =
N∏
i

q(zi|X,A), with q(zi|X,A) = N (zi|µi, diag(σ2
i))

whereN = |V |, µ and σ are parameters of the Gaussian distribution q(.), µ = GCNµ(X,A)
is the matrix of mean vectors, and logσ = GCNσ(X,A). The variational autoencoder
is trained by maximizing the variational lower boundLV LBO = Eq(Z|X,A)[logp(A|Z)]−
[q(Z|X,A)||p(Z)], where KL[p(.)||q(.)] is the Kullback-Leibler (KL) divergence be-
tween p(.) and q(.). The LV LBO is usually optimized via stochastic gradient descent,
using the reparameterization trick to estimate the gradient.

3.2 Dynamic joint variational graph autoencoders (Dyn-VGAE)

Let G1, G2, . . . , GT denote a dynamic network with a series of adjacency matrices
A1, A2, . . . , AT . Dyn-VGAE aims to obtain a low dimensional latent representation of
each graph Gt. This representation preserves both the local topology and the structure

Dynamic Joint Variational Graph Autoencoders 5

of a static graph snapshot Gt and also captures its evolutionary pattern from the pre-
vious time steps. In the proposed joint framework, each graph Gt has its own model
(the variational autoencoder V GAEt) which is similar to SVGAE except that it has
a different learning loss function. The joint learning function encourages all autoen-
coders to collaborate together for obtaining similar parameters (latent representations).
We describe the algorithm in detail below.

Fig. 1: Joint framework for graphs G1, G2, . . . , GT with a series of adjacency matrices
A1, A2, . . . , AT

Autoencoder model for graph Gt The encoder of a graph snapshot Gt with an adja-
cency matrix At and the content features Xt is modeled by a two-layer GCN:

qt(Zt|Xt, At) =

Nt∏
i

qt(z
t
i |Xt, At),

with qt(z
t
i |Xt, At) = N (zti |µt,i, diag(σ2

t,i))

The probabilistic decoder of V GAEt is:

pt(At|Zt) =
Nt∏
i=1

Nt∏
j=1

pt(A
t
i,j |zti , ztj),

with pt(A
t
i,j = 1|zti , ztj) = sigmoid((zti)

T
, ztj).

Similar to the static variational autoencoder, V GAEt optimizes the variational lower
bound for learning the current latent representation by minimizing the loss function as
follows:

min LVt = Eqt(Zt|Xt,At)[logpt(At|Zt)]
−KL[qt(Zt|Xt, At)||pt(Zt)]

6 S. Mahdavi et al.

A general assumption of a dynamic network is [24, 8, 18, 34] that changes are smooth
and continuous in a short duration (length l) [34]. Thus, the key question here is how an
associated encoder for graph Gt can learn aligned embedding vectors with embedding
vectors of other graphs in a dynamic network. We change the learning process in which
the autoencoder V GAEt can be joint with other autoencoders of previous graphs during
the training process.

By collaborating with other prior autoencoders, each autoencoder is able to trans-
fer temporal dependencies from previous latent spaces to the current latent space. The
parameters of V GAEt are obtained by a modified loss function which has a tempo-
ral smoothness dependency term for aligning the latent space of graph Gt with l prior
snapshots. By assuming change smoothness, we force the current latent representations
to be similar to the previous latent vectors by minimizing the difference between two
distributions of the current latent space and a temporal Gaussian random walk [24]. The
temporal Gaussian random walk is defined based on latent representations of the pre-
vious graphs in l prior times. For simplicity, first we explain our method by assuming
the length l is equal to two. This means the current latent space (Zt) of the graph Gt
should be similar to only the previous latent space (Zt−1); then we will extend l to a
general length. This temporal Gaussian random walk (qtW) can be defined as a Gaussian
distribution with the mean Zt−1:

qtW = N (Zt−1, σ
2)

where σ2 is considered as Gaussian noise with a fixed standard deviation [24]. Temporal
smoothness dependency term Lts is defined as the Kullback-Leibler (KL) divergence
among qtW and q(Zt|Xt, At) :

Lts = KL[qt(Zt|Xt, At)||qtW]

Lts prevents the current latent vectors from being placed very far from latent vectors in
the previous timestamps. Then, the final learning loss function can be formulated by
combining the variational learning function Ltv and temporal smoothness dependency
term Lts:

min LtC = Ltv + γLts
where the hyperparameter γ controls the importance of the two losses. The term Ltv
learns latent representations of the graph Gt by minimizing the distance between the
model prediction p(.) and the target variable q(.). The additional smoothness term Lts
forces latent representations to be aligned with prior latent representations of the graph
Gt. For l > 2, Ltv can be formulated as follows:

Lts =
t−l∑
i=t

KL[qt(Zt|Xt, At)||qiW]

Joint dynamic graph autoencoders framework The joint learning framework is
shown in Figure 1. Consider G1, G2, . . . , GT as a dynamic network, we assign T au-
toencoders V GAE1, V GAE2, . . . , V GAET for all graphs. All loss learning functions

Dynamic Joint Variational Graph Autoencoders 7

of these autoencodres can be jointly collaborated while each autoencoder can focus
on its own task to learn its own graph latent representations. The joint loss learning
function can be formulated as the summation of the loss function of all autoencoders:

min

T∑
i=1

LiC =

T∑
i=1

Liv + γLis

=

T∑
i=1

[

Ni∏
j=1

Ni∏
k=1

pi(A
i
j,k|zij , zik)+

i−l∑
j=i

KL[qi(Zi|Xi, Ai)||qjW]]

Each autoencoder is trained to learn latent variables specific to a graph and extract
temporal dependencies among graphs by sharing learned latent variables during train-
ing iterations. Therefore, the embedding latent representations for each timstamp can
be aligned jointly with l autoencoders of previous graph snapshots by using shared
weights.

We use the reparameterization trick mentioned in [12, 14] to minimize the loss func-
tion. During training steps, weights for an autoencoder jointed with l other autoencoders
can be updated in two strategies. In the first method, gradients in the autoencoder t are
computed with respect to fixed weights from the previous update step of other autoen-
coders. The second strategy updates gradients of the autoencoder t after getting new
updates of other autoencoders. In this paper, we choose the second strategy which pro-
vides a flexible framework to train autoencoders. Before the training step, we find the
common nodes among each graph with its l previous graphs, so during training each
autoencoder just needs to share learned weights for common nodes. The proposed joint
framework is very practical because the gradient of the additional smoothing term can
be easily computed similar to the KL term in the variational autoencoder. Also, the
framework is trivially parallelizable and each autoencoder just needs to cooperate with
only l autoencoders where l is considered as a short period of time.

4 Experiments

We performed the evaluation of our method on multiple real-world datasets from var-
ious domains on node classification, link prediction and receommendation tasks. The
findings of our experiments are reported as follows.

4.1 Baselines

The models for comparison are listed below:

– DeepWalk [22]: DeepWalk is a static network embedding method based on uni-
form random walks.

8 S. Mahdavi et al.

– Node2vec [10]: This method is a static network representation algorithm utiliz-
ing breadth-first-search (BFS) or depth-first-search (DFS) based random walks and
skipgram.

– SVGAE [14]: This is a variational graph autoencoder model that works for static
graphs. SVGAE is an inference-based graph embedding model that encodes the
observed graphs into their respective distribution.

– dynAE [8]: dynAE stands for dyngraph2vecAE, a dynamic network embedding
method based on dyngraph2vec. It utilizes deep learning models with multiple
fully-connected layers to model interconnections of nodes.

– dynAERNN [8]: dynAERNN is the short form we used for dyngraph2vecAERNN.
This is another variant of the dyngraph2vec method, which is a dynamic represen-
tation learning method. It feeds previously learned representations to LSTMs to
generate embedding vectors.

For each static baseline method, we apply the static baseline method independently to
each graph snapshot Gt in a dynamic network.

4.2 Experiment Settings

We run our experiments on DeepWalk and Node2vec with (p, q) = (1, 1) and (p, q) =
(0.5, 1), respectively. The number of random walks per node is set to 10. For dynAE
and dynAERNN, we used the default parameters in the publicly available source code
[8, 9]. The parameters of SVGAE and Dyn-VGAE are similar to [14]. Their autoen-
coder model structure consists of 32 dimensional hidden layers and 16 dimensional
latent variables. For training, we used the Adam optimizer, the learning rate is 0.01, and
number of epochs are 200. Dyn-VGAE1 is Dyn-VGAE with l = 1 and in Dyn-VGAE2,
l = 2.

Table 1: Macro-F1 and Micro-F1 scores for node classification

Method Acm Dblp
mac-f1 mic-f1 mac-f1 mic-f1

node2vec 0.3775 0.5221 0.3768 0.5185
DeepWalk 0.3532 0.502 0.3815 0.5245
SVGAE 0.3896 0.5664 0.4224 0.5227
dynAE 0.3699 0.5237 0.3675 0.479
dynAERNN 0.402 0.5581 0.3876 0.4959
Dyn-VGAE1 0.4048 0.575 0.439 0.5283
Dyn-VGAE2 0.4402 0.5896 0.4716 0.5356

4.3 Node Classification

In node classification tasks, each node in a graph has a class label. We predict the class
label for the nodes in graphGt using previous graphs in the stream from 0 to t−1 based

Dynamic Joint Variational Graph Autoencoders 9

Table 2: AUC scores for link prediction
Method Hep-th AS St-Ov

node2vec 0.973137 0.91395 0.59249
DeepWalk 0.97238 0.91219 0.58776
SVGAE 0.97499 0.91974 0.65437
dynAE 0.87834 0.7969 0.52017
dynAERNN 0.93851 0.83913 0.56149
Dyn-VGAE1 0.98236 0.92981 0.74065
Dyn-VGAE2 0.97754 0.93187 0.69466

on the approach mentioned in [8]. Our classification method is logistic regression. We
used two measures, Micro-f1 and Macro-f1, for evaluating our method. The results are
presented in Table 1. The datasets are as follows:

– Dblp [28, 27]: Dblp is the main coauthorship network of researches in various
fields with 90k nodes and 749k edges over 18 years (2000-2017). There are two
class labels for nodes: 1) database and data mining (VLDB, SIGMOD, PODS,
ICDE, EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD, SDM
and DEXA) 2) computer vision and pattern recognition (CVPR, ICCV, ICIP, ICPR,
ECCV, ICME and ACM-MM).

– Acm [28, 27]: The Acm dataset has the same characteristics as the Dblp dataset.
The timespan of Acm is considered as 16 years (2000-2015).

Based on the results, it is evident that our approach outperforms the baselines in both
Acm and Dblp datasets. Specially, Macro-F1 scores are significantly better than the
closest benchmarks and our performance gain is above other methods in terms of Micro-
F1 scores. From the results, it can been seen that on both Acm and Dblp datasets,
increasing the effect of previous graphs by extending l in Dyn-VGAE2 improves the
overall results. The reason is that in coauthorship datasets the changes between consec-
utive snapshots are smooth and the research area of authors is fixed in a short period of
time.

4.4 Link Prediction

One of the main graph mining tasks is link prediction as it shows the effectiveness of
the edge embeddings in predicting unseen edges. We predict edges in graph Gt using
previous learned embeddings of graph Gt−1 mentioned in [8]. For this task, the recon-
struction scores are computed similar to [14] and we report the average AUC (area under
ROC curve) scores over time from 1 to T for all datasets in Table 2. The evaluation was
performed on the following three datasets.

– Hep-th [16]: This is the coauthorship network of researchers in high energy physics
theory conference with 34k nodes, 421k edges, 60 time points.

– AS [16]: Autonomous Systems are the communication network between users in
BGP. It contains 6k nodes, 13k edges and 100 time steps.

10 S. Mahdavi et al.

Table 3: Precision and Recall for recommendation on AS dataset
Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec
Recall 0.214669 0.334204 0.367184 0.394506 0.407605 0.416419 0.425321 0.429238 0.4371
Precision 0.388217 0.543356 0.640374 0.696155 0.739523 0.759523 0.769879 0.781488 0.785693

DeepWalk
Recall 0.220448 0.338428 0.368539 0.394732 0.407542 0.415795 0.423611 0.42708 0.434744
Precision 0.395229 0.547698 0.64106 0.695375 0.737814 0.756948 0.76571 0.776629 0.780256

SVGAE
Recall 0.273485 0.263785 0.273485 0.294505 0.306035 0.315532 0.321633 0.32235 0.318589
Precision 0.494758 0.432536 0.494758 0.540298 0.576909 0.596037 0.603462 0.610673 0.604129

dynAE
Recall 0.243241 0.260874 0.249538 0.340724 0.363635 0.430242 0.027614 0.425404 0.424393
Precision 0.484355 0.519891 0.58471 0.675628 0.669945 0.667173 0.064773 0.764048 0.763721

dynAERNN
Recall 0.294509 0.358547 0.375264 0.409208 0.445241 0.481598 0.436302 0.432607 0.43122
Precision 0.501646 0.555114 0.670827 0.712004 0.786749 0.794443 0.776476 0.773307 0.771579

Dyn-VGAE1 Recall 0.165353 0.253836 0.26011 0.280628 0.291986 0.301531 0.307532 0.31024 0.315377
Precision 0.30464 0.416175 0.47301 0.516912 0.551996 0.570365 0.57744 0.586087 0.588087

Dyn-VGAE2 Recall 0.16685 0.260054 0.269341 0.290558 0.302173 0.312019 0.317569 0.319883 0.325352
Precision 0.308355 0.426376 0.487754 0.53296 0.56928 0.588481 0.595397 0.604296 0.606698

– St-Ov [16]: This dataset shows the user interactions in the Math Overflow website.
This dataset consists of 14k nodes and 195k edges over 58 time points.

The results show that Dyn-VGAE achieves the highest AUC in all the three datasets.
In AS and St-Ov, our approach outperforms the benchmark methods by a significant
margin. This highlights that our method effectively learns the dynamic representations
in these datasets. Similarly, the results of our method on the Hep-th dataset are better
than those of other methods. The effects of increasing l for AS and Hep-th are not that
significant while this is not the case in St-Ov. In the St-Ov dataset, graph snopshots
have less common edges. Therefore, its results with smaller l’s are better.

Table 4: Analysis of parameter γ for node classification
Dataset γ mac-f1 mic-f1

Dblp
0.5 0.4386 0.5288
1.5 0.4377 0.5299
2 0.4362 0.529

Acm
0.2 0.3992 0.5714
1.2 0.4028 0.5754
1.5 0.4004 0.5776

4.5 Recommendation Task

Recommendation is a challenging task, especially in dynamic graphs. A recommenda-
tion task aims to suggest potential relations to users in many networks such as coauthor-
ship, communication, and interaction networks. For example, in the coauthorship net-
work Hep-th, we recommend co-authors to researchers by learning their embeddings

Dynamic Joint Variational Graph Autoencoders 11

Table 5: Analysis of parameter γ for link prediction
Dataset γ AUC

Hep-th
0.7 0.98186
1 0.98031
1.2 0.97773

AS
0.2 0.92283
0.5 0.92858
1.2 0.92766

St-Ov
0.5 0.75342
0.7 0.72256
1 0.72064

Table 6: Precision and Recall for recommendation on Hep-th dataset
Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec
Recall 0.32482 0.465231 0.55624 0.585563 0.609622 0.646217 0.569039 0.598079 0.547933
Precision 0.44415 0.585353 0.67445 0.726131 0.739472 0.766933 0.68246 0.687628 0.630987

DeepWalk
Recall 0.315802 0.468277 0.550393 0.572584 0.607141 0.627954 0.568508 0.594742 0.545312
Precision 0.433653 0.586132 0.668169 0.709337 0.736379 0.745321 0.681347 0.683836 0.628118

SVGAE
Recall 0.378678 0.511046 0.580978 0.600192 0.614316 0.643828 0.567718 0.551842 0.549033
Precision 0.510663 0.643486 0.703221 0.720982 0.751181 0.763746 0.682238 0.685163 0.632336

dynAE
Recall 0.337487 0.059347 0.530609 0.57412 0.575352 0.558555 0.5437 0.537371 0.528373
Precision 0.452566 0.073831 0.644052 0.688662 0.685259 0.666084 0.649728 0.640798 0.601132

dynAERNN
Recall 0.373237 0.508547 0.562752 0.599208 0.605728 0.581598 0.565275 0.557373 0.544694
Precision 0.501881 0.635114 0.665775 0.722004 0.722058 0.694443 0.675759 0.664076 0.620038

Dyn-VGAE1 Recall 0.389606 0.522072 0.591764 0.602518 0.627004 0.645771 0.581532 0.608694 0.55852
Precision 0.521951 0.646657 0.714264 0.743664 0.76054 0.766375 0.697046 0.699577 0.642631

Dyn-VGAE2 Recall 0.39046 0.522811 0.59121 0.602739 0.626602 0.64676 0.581511 0.610082 0.560516
Precision 0.522826 0.647528 0.713929 0.743913 0.760167 0.767543 0.697636 0.701501 0.645338

Table 7: Precision and Recall for recommendation on St-Ov dataset
Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec
Recall 0.199371 0.170521 0.151717 0.142989 0.128116 0.125163 0.120154 0.116243 0.113564
Precision 0.343357 0.271554 0.229346 0.207767 0.185266 0.17563 0.163032 0.154961 0.148131

DeepWalk
Recall 0.199072 0.170562 0.151378 0.142644 0.126195 0.122637 0.118336 0.119307 0.115129
Precision 0.342977 0.271374 0.228719 0.207191 0.182268 0.172017 0.161157 0.158638 0.150188

SVGAE
Recall 0.200822 0.170041 0.155608 0.144517 0.131738 0.128646 0.125685 0.122943 0.121674
Precision 0.34631 0.274437 0.236112 0.212186 0.191121 0.181621 0.171127 0.164683 0.15869

dynAE
Recall 0.088628 0.077637 0.067938 0.062643 0.05903 0.054914 0.054631 0.053159 0.049165
Precision 0.158084 0.125986 0.104936 0.093048 0.085407 0.077678 0.074203 0.071328 0.064948

dynAERNN
Recall 0.108056 0.094056 0.082202 0.077242 0.071827 0.067795 0.066443 0.065219 0.064853
Precision 0.191947 0.152271 0.127425 0.114656 0.104315 0.095892 0.09075 0.087338 0.084257

Dyn-VGAE1 Recall 0.204545 0.177749 0.160533 0.151073 0.13851 0.136031 0.134245 0.133499 0.135583
Precision 0.352988 0.284164 0.244354 0.222065 0.202489 0.193704 0.185364 0.181157 0.179375

Dyn-VGAE2 Recall 0.20165 0.173873 0.157185 0.147463 0.134296 0.128952 0.128332 0.126622 0.127372
Precision 0.347869 0.277905 0.238164 0.21595 0.194931 0.182753 0.174999 0.170079 0.166873

12 S. Mahdavi et al.

Table 8: Analysis of parameter γ for recommendation
Dataset a k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Hep-th

0.6
Recall 0.389327 0.523287 0.594644 0.604486 0.628978 0.647625 0.582096 0.609569 0.561969
Precision 0.521504 0.648319 0.717725 0.746177 0.762935 0.768519 0.698145 0.701224 0.64713

1
Recall 0.388978 0.522966 0.592967 0.603635 0.629609 0.649588 0.58224 0.609715 0.558395
Precision 0.52145 0.648012 0.715753 0.745351 0.763854 0.770862 0.698341 0.701171 0.643245

1.2
Recall 0.389843 0.522133 0.592613 0.603883 0.628463 0.64613 0.581418 0.606744 0.559629
Precision 0.522121 0.647054 0.715439 0.745214 0.761996 0.766968 0.697532 0.698231 0.644725

AS

0.2
Recall 0.17086 0.266335 0.276734 0.297303 0.309268 0.317995 0.323751 0.325599 0.332499
Precision 0.314745 0.436361 0.499391 0.544163 0.581436 0.599712 0.607367 0.616013 0.620238

0.5
Recall 0.170643 0.264457 0.273346 0.293521 0.305441 0.314985 0.320376 0.322351 0.32855
Precision 0.313586 0.432619 0.493706 0.53772 0.574147 0.593054 0.59961 0.607748 0.611074

1.2
Recall 0.160112 0.247704 0.251588 0.270774 0.281948 0.290562 0.29635 0.298402 0.3036
Precision 0.296535 0.405931 0.458814 0.500643 0.53471 0.551478 0.558458 0.565753 0.56792

St-Ov

0.5
Recall 0.20672 0.18231 0.167141 0.162219 0.14719 0.144816 0.142089 0.140077 0.14082
Precision 0.35675 0.291245 0.253335 0.236867 0.213672 0.20471 0.194035 0.188426 0.185214

0.7
Recall 0.203847 0.175776 0.158857 0.149699 0.135384 0.130333 0.129943 0.129038 0.129972
Precision 0.351087 0.281454 0.241279 0.219523 0.197625 0.186804 0.17955 0.174856 0.171854

1
Recall 0.204545 0.177749 0.160533 0.151073 0.13851 0.136031 0.134245 0.133499 0.135583
Precision 0.352988 0.284164 0.244354 0.222065 0.202489 0.193704 0.185364 0.181157 0.179375

over time. In [36], temporal recommendation is defined as recommending new con-
nections for a node at time t by using obtained embeddings from previous time points.
Here, we use the learned embedding at time t−1 to rank nodes for recommending top-k
possible relations for the graph Gt. Our ranking score is based on the cosine similarity
of embedding vectors of nodes. We use Precision@k and Recall@k as evaluation mea-
sures where the value k varies from 2 to 10. The number of nodes is different for each
k because we select common nodes of consecutive times with more than k neighbors.
Tables 3, 6, and 7 show the average Precision@k and Recall@k over time from 1 to
T for three datasets: the coauthorship network Hep-th, communication network AS,
and interaction user network St-ov. From the results, it can be seen that Dyn-VGAE
performs better than other compared methods on Hep-th and St-ov; it obtains higher
Precision@k and Recall@k for all different k values. However, the performance of
Dyn-VGAE decreases on AS and dynAERNN performs the best. Also, we can see that
Dyn-VGA1 performs better than Dyn-VGA2 on the dataset St-ov due to characteristics
of this dataset. As mentioned previously, the reason is that on this dataset considering
smaller length l is more suitable as we observed the same behaviour for the link pred-
ication task. It is worth mentioning that as the numbers of nodes for different k’s are
different, we cannot see a decreasing trend by increasing k for either Precision@k or
Recall@k.

4.6 The effect of temporal smoothness γ

We study the effect of γ on the performance of Dyn-VGAE. The parameter γ can be
fine-tuned to balance the weights of the local structure of the graph and the effect of
previous graphs based on the data and the requirement of the task. We examine how

Dynamic Joint Variational Graph Autoencoders 13

1

10

100

1000

10000

AS S t - o v Hep - t h

Ti
m
e

Dataset

SVGAE Dyn-VGAE1 node2vec DeepWalk dynAE dynAERNN

Fig. 2: Computation time of embedding methods for the four timestamps on each dataset.

the changes in γ can affect the results. We vary α from 0 to 3. If γ = 0, the dynamic
representations are only learning the local structure of the graph. By increasing the
value of γ, we force the learned latent space of the graph to be aligned with the space
of previous graphs. Our experiments show that Dyn-VGAE has the best performance
when γ ∈ [0.1, 2.5] and it starts decreasing for γ > 2.5. We report the results of our
analysis for three values of γ for each dataset in Tables 4,5, and 8 for Dyn-VGAE with
l = 1. We observe the same behavior for Dyn-VGAE with l = 2.

4.7 Time complexity analysis

We compare our method with all baseline models in terms of running time (in seconds)
on three datasets AS, Hep-th, and St-Ov at their first four time steps. All experiments
are performed on a windows X-64 machine with 7 cores, 64 GB RAM and a clock
speed of 3.6 GHz. From Figure 2, we observe that all static methods are faster than
dynamic methods. The reason is that they only compute embedding vectors for each
time step without adjusting these embedding vectors. Among compared dynamic em-
bedding methods, Dyn-VGAE1 is the fastest. It is worth noting that the computation
time of Dyn-VGAE1 is not significantly larger than SVGA while it outperforms SVGA
in terms of the accuracy with a large margin. To further decrease the running time of
Dyn-VGAE1, we are interested in developing a distributed version of our method by
using proposed strategies in [25, 17, 3] as future work.

5 Conclusions and Future Work

In this paper, a dynamic joint autoencoder is proposed to embed a dynamic network
into a low-dimensional latent space. For capturing evolving dependencies, we define a
probabilistic smoothness term which changes the learning process of a graph variational

14 S. Mahdavi et al.

autoencoder. The proposed joint framework provides a model where autoencoders can
share their learned latent vectors across time stamps. The basic idea of the approach is
the sharing of learned information of the current graph snapshot with previous graph
snapshots for common nodes while each autoencoder works on its own specific graph.
Dyn-VGAE simultaneously learns the latent representations of a dynamic network and
aligns them across time. The experimental results show that Dyn-VGAE can signifi-
cantly outperform the state-of-the-art methods on the node classification, link predica-
tion, and recommendation tasks. In the future, we are interested in applying different
variants of joint deep learning architectures to extract the dynamic latent space of a
dynamic network and developing a distributed model to increase the speed of training.
Also, we will investigate a joint approach for other deep graph embedding methods.

References

1. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global structural in-
formation. In: Proceedings of the 24th ACM international on conference on information and
knowledge management. pp. 891–900. ACM (2015)

2. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirti-
eth AAAI Conference on Artificial Intelligence (2016)

3. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P.,
Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In: Advances in neural
information processing systems. pp. 1223–1231 (2012)

4. Epstein, B., Meir, R., Michaeli, T.: Joint autoencoders: a flexible meta-learning frame-
work. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 494–509. Springer (2018)

5. Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint
convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of
the ICCV. pp. 5736–5745 (2017)

6. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A sur-
vey. Knowledge-Based Systems 151, 78–94 (2018)

7. Goyal, P., Hosseinmardi, H., Ferrara, E., Galstyan, A.: Capturing edge attributes via network
embedding. IEEE Transactions on Computational Social Systems 5(4), 907–917 (2018)

8. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method for dynamic graphs.
In: IJCAI International Workshop on Representation Learning for Graphs (2017)

9. Goyal, P., Rokka Chhetri, S., Mehrabi, N., Ferrara, E., Canedo, A.: Dynamicgem: A library
for dynamic graph embedding methods. arXiv preprint arXiv:1811.10734 (2018)

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD. pp. 855–864. ACM (2016)

11. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems. pp. 1024–1034 (2017)

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016)

14. Kipf, T.N., Welling, M.: Variational graph auto-encoders. stat 1050, 21 (2016)
15. Kumar, S., Zhang, X., Leskovec, J.: Learning dynamic embeddings from temporal interac-

tions. arXiv preprint arXiv:1812.02289 (2018)
16. Leskovec, J., Krevl, A.: {SNAP Datasets}:{Stanford} large network dataset collection

(2015)

Dynamic Joint Variational Graph Autoencoders 15

17. Liu, J., Dutta, J., Li, N., Kurup, U., Shah, M.: Usability study of distributed deep learning
frameworks for convolutional neural networks (2018)

18. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable dynamic network embedding.
In: 2018 IEEE Big Data. pp. 3762–3765. IEEE (2018)

19. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time
dynamic network embeddings. In: Companion of the The Web Conference 2018 on The
Web Conference 2018. pp. 969–976. International World Wide Web Conferences Steering
Committee (2018)

20. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph
autoencoder for graph embedding. In: Proceedings of the 27th IJCAI. pp. 2609–2615. AAAI
Press (2018)

21. Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and translation to
bridge video and language. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 4594–4602 (2016)

22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD. pp. 701–710. ACM (2014)

23. Ren, Z., Jin, H., Lin, Z., Fang, C., Yuille, A.: Joint image-text representation by gaussian
visual-semantic embedding. In: Proceedings of the 24th ACM international conference on
Multimedia. pp. 207–211. ACM (2016)

24. Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space models. In:
Advances in Neural Information Processing Systems. pp. 1145–1152 (2006)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014)

26. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information
network embedding. In: Proceedings of the 24th WWW. pp. 1067–1077. International World
Wide Web Conferences Steering Committee (2015)

27. Tang, J., Zhang, J., Yao, L., Li, J.: Extraction and mining of an academic social network. In:
Proceedings of the 17th WWW. pp. 1193–1194. ACM (2008)

28. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of
academic social networks. In: Proceedings of the 14th ACM SIGKDD. pp. 990–998. ACM
(2008)

29. Trivedi, R., Farajtbar, M., Biswal, P., Zha, H.: Representation learning over dynamic graphs.
arXiv preprint arXiv:1803.04051 (2018)

30. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd
ACM SIGKDD. pp. 1225–1234. ACM (2016)

31. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network
embedding. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

32. Xu, L., Wei, X., Cao, J., Yu, P.S.: Embedding of embedding (eoe): Joint embedding for cou-
pled heterogeneous networks. In: Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. pp. 741–749. ACM (2017)

33. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In: Proceedings of
the 24th ACM SIGKDD. pp. 2672–2681. ACM (2018)

34. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling
triadic closure process. In: Thirty-Second AAAI (2018)

35. Zhu, L., Ver Steeg, G., Galstyan, A.: Scalable link prediction in dynamic networks via non-
negative matrix factorization (2018)

36. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via neighbor-
hood formation. In: Proceedings of the 24th ACM SIGKDD. pp. 2857–2866. ACM (2018)

