
Discovering Top-k Teams of Experts
with/without a Leader in Social Networks

Mehdi Kargar and Aijun An
Department of Computer Science and Engineering

York University, Toronto, Canada
{kargar,aan}@cse.yorku.ca

ABSTRACT
We study the problem of discovering a team of experts from
a social network. Given a project whose completion re-
quires a set of skills, our goal is to find a set of experts
that together have all of the required skills and also have
the minimal communication cost among them. We propose
two communication cost functions designed for two types of
communication structures. We show that the problem of
finding the team of experts that minimizes one of the pro-
posed cost functions is NP-hard. Thus, an approximation
algorithm with an approximation ratio of two is designed.
We introduce the problem of finding a team of experts with
a leader. The leader is responsible for monitoring and co-
ordinating the project, and thus a different communication
cost function is used in this problem. To solve this problem,
an exact polynomial algorithm is proposed. We show that
the total number of teams may be exponential with respect
to the number of required skills. Thus, two procedures that
produce top-k teams of experts with or without a leader in
polynomial delay are proposed. Extensive experiments on
real datasets demonstrate the effectiveness and scalability
of the proposed methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Data Mining;
D.2.8 [Software Engineering]: Metrics

General Terms
Algorithms, Experimentation

Keywords
Team Formation, Approximation Algorithms, Social Net-
works

1. INTRODUCTION
A project cannot be successfully completed without ef-

fective communications and collaborations among its team

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

members. Given a project whose completion requires a set of
skills, we tackle the problem of finding from a social network
a team of individuals that not only cover all the required
skills but can also communicate and collaborate effectively.
The social network is modeled as a graph whose nodes rep-
resent experts, each with one or more skills, and whose edge
between two nodes is weighted by the communication cost
between the two corresponding experts.

This problem has been introduced in the data mining com-
munity by Lappas et al. [10]. They defined two functions
for estimating the communication cost of a team. The first
function uses the diameter of the subgraph formed by the
team to measure the team communication cost, which is
the largest shortest path between any two nodes in the sub-
graph. The second function uses the cost of the minimum
spanning tree (MST) on the subgraph. However, such func-
tions may not measure the communication cost well, espe-
cially when the project requires that the holders of each pair
of the required skills communicate with each other to per-
form the corresponding tasks in the project. The diameter
function only measures the communication cost between the
two experts that are furthest away from each other, and the
MST function does not measure the cost of all the required
communication either. Another disadvantage of these func-
tions is their instability: a slight change in the graph may
result in a radical change in the solution. At the same time,
the diameter and MST based functions may be insensitive
to adding or deleting a connection in the graph since they
only measure part of the communication cost.

In this paper, we introduce two new cost functions. We
consider two types of communication structures within a
team. Assume that each required skill corresponds to a task
in the project. In the first communication structure, the ex-
perts for each pair of required skills need to communicate
to each other to complete the corresponding tasks. For such
a structure, we define a cost function, called Sum of Dis-

tances, to measure the communication cost of a team using
the sum of the shortest distances between the experts for
each pair of skills. In the second type of communication
structure, a leader needs to communicate with each team
member to monitor and coordinate the project. For such a
structure we define a cost function, named Leader Distance,
that computes the sum of shortest distances between the
leader and each skill holder in the team.

Based on these two new cost functions, we define two prob-
lems of team formation from a social network. One is to
find a team of experts without a leader which covers the re-
quired skills and minimizes the Sum of Distances function.

The other is to find a team of experts with a leader which
covers the required skills but minimizes the Leader Distance

function. We propose algorithms for solving both problems.
In many situations, the user is not satisfied with only one
answer. Instead, he/she is interested in exploring top-k an-
swers. Previous work in this area only found one single best
answer [10]. We present two procedures that enumerate top-
k teams of experts with or without a leader in polynomial
delay. The contributions of this paper are summarized be-
low:

1. We propose two new functions for measuring the com-
munication cost of a team of experts in social networks.
The Sum of Distances function considers communi-
cation costs between each pair of skill holders. The
Leader Distance function considers the costs between
a leader and each of the skill holders in the team.

2. We prove that the problem of finding a team of experts
that minimizes the Sum of Distances function is NP-
hard, and propose an approximation algorithm with
approximation ratio of two to solve the problem.

3. We introduce the problem of finding a team of experts
with a leader that minimizes the Leader Distance func-
tion. An exact polynomial algorithm for finding the
best team with a leader is proposed.

4. To generate more answers, we design two procedures
that enumerate top-k teams of experts with or without
a leader in polynomial delay.

5. We conduct extensive experimental evaluations on real
data sets that show the effectiveness of our methods.

The paper is organized as follows. Problem statements
and definitions are given in section 2. The algorithms for
finding the best team of experts with/without a leader are
presented in sections 3 and 4. Procedures for enumerating
top-k teams of experts are presented in section 5. The ex-
perimental results are illustrated in section 6. Related work
is presented in section 7 and section 8 concludes the paper.

2. PROBLEM STATEMENTS
Let C = {c1, c2, . . . , cn} denote a set of n experts, and

S = {s1, s2, . . . , sm} denote a set of m skills. Each expert
ci has a set of skills, denoted as Q(ci), and Q(ci) ⊆ S. If
sj ∈ Q(ci), expert ci has skill sj . In addition, a subset of
experts C′ ⊆ C have skill sj if at least one of them has
sj . For each skill sj , the set of all experts having skill sj
is denoted as C(sj) = {ci|sj ∈ Q(ci)}. A project P ⊆ S is
defined as a set of skills required to complete the project.
A subset of experts C′ ⊆ C is said to cover a project P if
∀sj ∈ P ∃ ci ∈ C′, sj ∈ Q(ci).

The experts in C are connected together in a social net-
work, which is modeled as an undirected and weighted graph
G. Each node in G represents an expert in C. In the fol-
lowing, terms expert and node are used interchangeably.
Two nodes in G are connected by an edge if the experts
have collaborated or communicated before. The weight of
an edge represents the communication cost between two ex-
perts. The lower the weight of the edge between two nodes,
the more easily the two experts can collaborate or communi-
cate, and the lower the communication cost between them.

The distance between two nodes ci and cj , denoted as
d(ci, cj), is the sum of the weights on the shortest path be-
tween them in G. It should be noted that the shortest dis-
tance function is a metric and satisfies the triangle inequal-
ity. If ci and cj are not connected in G (directly or indi-
rectly), the distance between them is set to a large value,
bigger than the sum of all the pairwise shortest distances
between two connected nodes in G [10]. In addition, the
distance between a node ci and a subset of nodes C′ is de-
fined as d(ci, C

′) = min d(ci, cj) ∀ cj ∈ C′. The node that
has the closest distance to ci among the nodes in C′ is de-
fined as N(ci, C

′) = cx | ∀ cj ∈ C′ d(ci, cx) ≤ d(ci, cj). If
C′ = ∅, we define d(ci, C

′) = ∞, and N(ci, C
′) = ∅. Now,

we are ready to formally define a team of experts and the
problems we tackle.

2.1 Team Formation without a Leader

Definition 1. (Team of Experts) Given a set of ex-

perts C and a project P that requires a set of skills {s1, s2, . . . , sp},
a team of experts for P is a set of p skill-expert pairs:

{〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp 〉}, where csj is an expert in

C having skill sj for j = 1, . . . , p. A skill-expert pair 〈si, csi〉
means that expert csi is responsible for skill si in the project.

According to this definition, for each skill sj in project
P , there is one and only one skill-expert pair in the team
that contains sj . In other words, each skill is coupled with
exactly one expert, but an expert may be assigned to more
than one skill in the project. Clearly, the number of possible
teams is O(|Cmax|

p), where |Cmax| = max |C(si)| 1 ≤ i ≤ p

and |C(si)| denotes the cardinality of set C(si). This value
is exponential with respect to the number of required skills,
i.e. p. Thus, it is not feasible to produce all the teams and
rank them according to the cost function.

Definition 2. (Sum of Distances) Given a team T of

experts for a project: {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp 〉}, the

sum of distances of T is defined as

sumDistance =

p∑

i=1

p∑

j=i+1

d(csi , csj)

In other words, the sum of distances of a team of experts
is the sum of the shortest distances between the experts
responsible for each pair of skills. It measures the commu-
nication cost of the team, assuming that the experts with
each pair of required skills need to communicate in order to
coordinate on the two corresponding tasks in the project.

Problem 1. (Team Formation without a Leader) Given

a project P and a graph G representing the social network of

a set of experts C, the problem of team formation without a

leader is to find a team of experts T for P from G so that the

communication cost of T , defined as the sum of distances of

T , is minimized.

Below we compare the sum of distances with two other
functions defined in [10]. Suppose the two subgraphs G1

and G2 in Figure 1 represent two teams of experts for a
project that requires skills a, b, c and d. Experts P and T

are responsible for skills a and b in the two teams, respec-
tively. The other experts are each responsible for only one

7

G2

T{a,b}

8

11 V{d}
U{c}

10

G1

P{a,b}

9

5 R{d}
Q{c}

Figure 1: Two teams for project {a, b, c, d}.

skill (c or d). Suppose the weight on each edge is the shortest
distance between the two nodes. The diameter of G1 is 10,
while the diameter of G2 is 11. The MST cost of G1 and G2

is 5+9=14 and 7+8=15 respectively. Thus, the algorithm
that minimizes the diameter or MST considers G1 as the
better team. Let di−j denote the shortest distance between
the experts for skills i and j in a team. The sum of distances

of G1 is equal to da−b + da−c + da−d + db−c + db−d + dc−d =
0 + 9 + 10 + 9 + 10 + 5 = 43. Using the same method, the
sum of distances of G2 is 41. Thus, with the sum of dis-

tances function, G2 is chosen as the better team. As can
be seen, the diameter and MST cost functions take into ac-
count only part of the communication cost in a team, while
the sum of distances adds up the costs between experts for
each pair of required skills. Also, our cost function is differ-
ent from a function that would add up the shortest distances
between each pair of experts in the team. Such a function
would give G1 a value of 10 + 9 + 5 = 24 and G2 a value of
7 + 8 + 11 = 26, which results in the selection of G1. The
sum of distances function considers each pair of skills in its
computation. We argue that this is more reasonable because
for each pair of tasks (i.e., skills) the experts responsible for
them need to communicate to coordinate on the tasks. For
example, expert T in G2 needs to communicate with expert
V twice, one to coordinate between a and d and the other
between b and d. Thus, the contribution of an expert to the
total communication cost of the team is proportional to the
number of tasks he/she performs in the project.

Theorem 1. Solving Problem 1 with the sum of distances
communication cost function introduced in Definition 2 is an

NP-hard problem.

Proof. We prove that the decision version of the problem
is NP-hard. Thus, as a direct result, Problem 1 is NP-hard
too. The decision problem asks whether there exists a team
C′ which covers a project P with the communication cost at
most w (w > 0), for some constant w. The communication
cost of C′ is defined in Definition 2.

The problem is obviously in NP. We prove the theorem by
a reduction from 3-satisfiability (3-SAT)1. First, consider a
set of m clauses Dk = xk ∨ yk ∨ zk (k = 1, . . . ,m) and
{xk, yk, zk} ⊂ {u1, u1, . . . , un, un}. We define an instance
of the above problem as follows. For each pair of variables
ui and ui, two experts are created. Thus, we have 2 × n

experts. For each pair of variables ui and ui, we create
one skill si (i = 1, . . . , n). Thus, ui and ui have skill si
and the only holders of si are ui and ui. In addition, for
every clause Dk, we create one skill sn+k (k = 1, . . . ,m)

1Note that the same approach is used in [2] and [9] for prov-
ing the NP-hardness of the multiple choice cover problem
and a graph keyword search problem, respectively.

such that the holders of skill sn+k consists of the triplet of
experts associated with those of xk, yk and zk. Therefore,
the number of required skills is n+m. We set the distance
between each variable and its negation (i.e. ui and ui) to
2×w. The distance between other variables is set to w

(n+m
2)

.

The distance of each node to itself is set to zero.
A feasible solution to the above problem with sumDistance

at most w is any set of experts such that from each pair of
experts corresponding to ui and ui, exactly one is selected
and from each triplet of experts corresponding to xk, yk
and zk, one is selected. Thus, if there exists a subset of
sumDistance at most w, then there exists a satisfying as-
signment for D1 ∧ D2 ∧ · · · ∧ Dm. On the other hand, a
satisfying assignment apparently determines a feasible set
of experts with sumDistance at most w. Therefore, the
proof is complete.

2.2 Team Formation with a Leader
A project team often has a leader who is responsible for

monitoring and coordinating the project. In such a case,
each expert in the team needs to communicate with the
leader to report the progress and discuss issues related to the
project. Thus, the communication cost of the team heavily
depends on the distance between the leader and each of the
project members. We define the leader distance to measure
such a communication cost.

Definition 3. (Leader Distance) Given a project P =
{s1, s2, . . . , sp}, a team T of experts selected from graph G

for P is {〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sp, csp〉}. Assume that team

T has a leader L, where L is an expert in graph G, which

may or may not belong to {cs1 , cs2 , . . . , csp}. The leader
distance of T with leader L is defined as

leaderDistance =

p∑

i=1

d(csi , L)

In other words, the leader distance of a team of experts
is the sum of the shortest distances between its leader and
the expert for each required skill. We consider each skill
(instead of each expert) when computing the leader distance
because for each task an expert performs, communication
with the leader is often needed. Thus, the more skills an
expert is responsible for in the team, the more important
his/her cost of communication with the leader is to the total
communication cost of the team.

Problem 2. (Team Formation with a Leader) Given

a project P and a graph G representing the social network

of a set of experts C, the problem of team formation with a
leader is to find a team of experts T for P and an expert L

from C as the leader of the team so that the communication

cost, defined as the leader distance of T with leader L, is

minimized.

Note that leader L is chosen from C, meaning that it is not
necessary for L to have a skill required by project P . Our
priority here is to minimize the leadership communication
cost, i.e. the leader distance. A leader that can communicate
the most effectively with all the other members of the team

is most preferable, no matter whether the leader possesses
any of the required skills. The number of possible teams
of experts with a leader is O(|Cmax|

p × n), where p is the
number of required skills in the project, n is the number of
experts in G and |Cmax| = max |C(si)| 1 ≤ i ≤ p.

It can be proved that leaderDistance ≥ sumDistance

p−1
,

where sumDistance is the sum of distances defined in Defi-
nition 2 and p is the number of required skills in the project2.
Thus, minimizing the leader distance is equivalent to mini-
mizing an upper bound of sumDistance. A practical benefit
of finding a team with the least leader distance is that poly-
nomial algorithms can be designed to find teams that min-
imize the leader distance. We propose such an algorithm
in Section 4 and demonstrate in Section 6.4 that such an
exact algorithm outperforms the approximation algorithm
for minimizing the diameter, MST or the sum of distances
when using the diameter, MST and the sum of distances as
performance measures.

3. FINDING BEST TEAM OF EXPERTS
WITHOUT A LEADER

Since Problem 1 is an NP-hard problem, we hereby pro-
pose an approximation algorithm that finds the best team
with 2-approximation. The pseudo code of this algorithm
is presented in Algorithm 1. It takes as input a graph G

(i.e., the social network) and a project P = {s1, s2, . . . , sp}
representing the required skills. In addition, for each skill
si, the set of experts in G having si (i.e., C(si)) can be ob-
tained by the algorithm through a pre-built inverted index.
The algorithm returns a team, denoted as bestT eam, whose
communication cost is at most twice that of the optimal
team. It also returns the communication cost of bestT eam.

The algorithm works as follows. It first initializes bestT eam
to ∅ and its communication cost, leastSumDistance, to ∞.
Then, for each required skill si (i = 1, . . . , p), the follow-
ing steps are performed. For each expert, candidate, having
skill si, a team is initialized to have 〈si, candidate〉 and its
sumDistance is initialized to 0 (lines 5-6). Then, in lines
7-11, for each of the other required skills, sj , the algorithm
finds the expert with sj that is closest to candidate and adds
it (coupled with sj) to the team. The sumDistance of the
team is updated by adding the shortest distance between
candidate and the selected expert. After the team has all
the required skills (if none of the C(si)s is empty), if its
sumDistance is smaller than that of the current bestT eam,
it replaces the bestT eam (lines 12-14).

As defined in Section 2, d(candidate,C(sj)) is the short-
est distance between candidate and the set of experts C(sj),
which is the shortest distance between candidate and its
nearest neighbor in C(sj). N(candidate, C(sj)) denotes this
nearest neighbor. To efficiently find the shortest distance be-
tween an expert and a set of experts, the shortest distance
between each pair of experts in G, i.e., d(ci, cj), has been
pre-computed and a hash table is used to store the shortest
distances of all pairs for quick access by this algorithm3.

2This is due to the triangle inequality: d(ci, L) + d(cj , L) ≥
d(ci, cj), where ci and cj are two team members and L is
the leader. The proof is omitted due to the space limit.
3Note that the pre-computation of the shortest distances
was done in [10] as well. If the hash table cannot reside in
memory, other indexing techniques such as the one intro-
duced in [6] can be used.

Thus, the run time of functions d(candidate,N(sj)) and
N(candidate, C(sj)) isO(|Cmax|), where |Cmax| = max |C(si)|
1 ≤ i ≤ p. The time complexity of Algorithm 1 is
O(p2 × |Cmax|

2), where p is the number of required skills.
In the worst case, |Cmax| = O(n) and the run time of the
algorithm is O(p2 × n2), where n is the number of nodes in
G. However, in real data sets, |Cmax| is smaller than n by
orders of magnitude [10]. Below we prove that the algorithm
finds the best answer with the approximation ratio of two.

Algorithm 1 Finding Best Team without a Leader

Input: graph G, project P = {s1, s2, . . . , sp} and the set of
experts with skill si, C(si), for i = 1, . . . , p.
Output: the best team and its cost

1: leastSumDistance← +∞
2: bestT eam← ∅
3: for i← 1 to p do

4: for every candidate ∈ C(si) do
5: sumDistance← 0
6: team← {〈si, candidate〉}
7: for j ← 1 to p and j 6= i do

8: distance← d(candidate,C(sj))
9: selectedExpert← N(candidate, C(sj))
10: sumDistance← sumDistance+ distance

11: team.add(〈sj, selectedExpert〉)
12: if sumDistance < leastSumDistance then

13: leastSumDistance← sumDistance

14: bestT eam← team

15: return bestT eam, leastSumDistance

Theorem 2. Algorithm 1 finds the team of experts that

minimizes the sum of distances defined in Definition 2 with

2-approximation.

Proof. Consider two teams, one optimal team and the
team produced by Algorithm 1, denoted here as best team4.
Assume that the number of required skills is p. We denote
a node in the best team that has the smallest sum of the
shortest distances to the other nodes in the team as can-

didate node. Without loss of generality, assume that the
candidate node is the node related to the first required skill,
i.e. s1. Let’s call the shortest distance from the candidate

node to each of the other nodes in the team d12, d13, . . . , d1p.
Thus, the sum of shortest distances from this candidate to
all the other nodes in the team is

∑p

i=2 d1i. Let’s call this
distance the sum of the nearest neighbor distances of the
candidate. Based on Algorithm 1, the candidate node has
the smallest sum of the nearest neighbor distances among
all the nodes in the team and also among all the nodes of
all the possible teams including the optimal team because
Algorithm 1 minimizes such a sum of distances. Let’s con-
sider the node with skill sj in the optimal team. Its shortest
distance to the node with each of other skills in the opti-

mal team is denoted as o1j , o2j , . . . , o(j−1)j , oj(j+1), . . . , ojp,
respectively. Based on Algorithm 1, the following holds for
each j (where j = 1, . . . , p):

j−1∑

i=1

oij +

p∑

i=j+1

oji ≥

p∑

i=2

d1i (1)

4A similar proof is given for the third theorem in our paper
[9] for a graph keyword search algorithm.

If we write the above equation for all the p nodes of the
optimal team and sum up both sides of the inequalities, we
have the following equation:

2×

p∑

i=1

p∑

j=i+1

oij ≥ p×

p∑

i=2

d1i (2)

The left side of the above equation is twice the communi-
cation cost of the optimal team. Thus, we have:

2× (optimal cost) ≥ p×

p∑

i=2

d1i (3)

The communication cost of the best team is:

best cost =

p∑

i=1

p∑

j=i+1

dij =

p∑

i=2

d1i +

p∑

i=2

p∑

j=i+1

dij (4)

Since the shortest distances satisfy triangle inequality (i.e.,
dij ≤ d1i + d1j , i 6= j 6= 1), the following holds:

p∑

i=2

d1i +

p∑

i=2

p∑

j=i+1

dij ≤

p∑

i=2

d1i +

p∑

i=2

p∑

j=i+1

(d1i + d1j) (5)

In the right side of the above equation, each distance d1i
appears exactly p− 1 times. Thus, we have:

p∑

i=2

d1i +

p∑

i=2

p∑

j=i+1

(d1i + d1j) = (p− 1) ×

p∑

i=2

d1i (6)

As a result, we have:

best cost ≤ (p− 1)×

p∑

i=2

d1i (7)

Based on equations 3 and 7, we have:

2× (p− 1)

p
× (optimal cost) ≥ best cost (8)

It proves that the sum of the distances of the best team is
at most twice that of the optimal team.

4. FINDING BEST TEAM OF EXPERTS
WITH A LEADER

To solve Problem 2, we propose the following exact poly-
nomial algorithm. The pseudo code of the algorithm is
shown in Algorithm 2. The input of the algorithm is the
same as the one for Algorithm 1. The output is the best team
of experts with the lowest leader distance (bestT eam), its
cost (leastLeaderDistance) and leader (bestLeader). The
algorithm works as follows. Each expert in G is a candi-
date for the leadership. For each node (expert) in graph
G, denoted as leader, a team and its leaderDistance are
initialized in lines 5 and 6. Then, for each of the skills
si, 1 ≤ i ≤ p, the closest expert to leader with skill si
and its distance to the leader are identified in lines 8 and
9. The identified expert is added to the team coupled with

skill si and the leaderDistance is updated accordingly in
lines 10-11. After the team has all the required skills, if its
leaderDistance is smaller than leastLeaderDistance, the
value of leastLeaderDistance, bestT eam and bestLeader

are updated in lines 13-15. The bestT eam, leastLeaderDistance

and bestLeader are returned in line 16. In summary, the al-
gorithm selects a leader from all the nodes in G that has the
smallest sum of the distances to all sets C(si) (1 ≤ i ≤ p),
and forms the team using the expert in each C(si) that is
closest to the leader.

Since the run time of functions d(leader,C(sj)) andN(leader,
C(sj)) is O(|Cmax|), the time complexity of Algorithm 2
is O(p×|Cmax|×n), where p is the number of required skills,
|Cmax| = max |C(si)| 1 ≤ i ≤ p and n is the total number
of nodes (experts) in G. One way to reduce the time com-
plexity is to choose the leader from

⋃p

i=1 C(si). That is, the
algorithm does not check all of the nodes in G but only the
ones with the required skills. This can be done by adopting
Algorithm 1 that finds the team of experts without a leader
and returning the candidate node in the best team as the
leader of the team. However, the team of experts generated
in this way may not be an optimal team with respect to
the leader distance because it does not check all the possible
leaders in G. Similar to the proof of Theorem 2, it can be
proved that the approximation ratio of the revised algorithm
is two. Due to the space limit, we omit the proof. In the
experiments, we use the exact algorithm, i.e., Algorithm 2,
for finding the best team of experts with a leader.

Algorithm 2 Finding Best Team with a Leader

Input: graph G, project P = {s1, s2, . . . , sp} and the set of
experts with skill si, C(si), for i = 1, . . . , p.
Output: the best team, its cost and leader

1: leastLeaderDistance← +∞
2: bestT eam← ∅
3: bestLeader← ∅
4: for every leader ∈ G do

5: leaderDistance← 0
6: team← ∅
7: for i← 1 to p do

8: distance← d(leader,C(si))
9: selectedExpert← N(leader,C(si))
10: team.add(〈si, selectedExpert〉)
11: leaderDistance← leaderDistance+ distance

12: if leaderDistance < leastLeaderDistance then

13: leastLeaderDistance← leaderDistance

14: bestT eam← team

15: bestLeader← leader

16: return bestT eam, leastLeaderDistance, bestLeader

5. ENUMERATING TOP-K TEAMS OF
EXPERTS IN POLYNOMIAL DELAY

Sometimes people are interested in finding more than one
team with lowest communication costs to form up alterna-
tive teams. Since it is infeasible to produce all the teams
because the number of possible teams is exponential in the
number of required skills, we propose a procedure for pro-
ducing top-k teams of experts in polynomial delay. Our algo-
rithm for producing a ranked list of results is an adaption of
Lawler’s procedure [11] for calculating the top-k answers to
discrete optimization problems. In Lawler’s procedure, the

Table 1: Dividing the search space into disjoint sub-

spaces for finding the teams of experts without a

leader.
Subspace Representative set

SB0 {cs1} × {cs2} × {cs3} × {cs4}
SB1 [C(s1)− {cs1}]× C(s2)× C(s3)× C(s4)
SB2 {cs1} × [C(s2)− {cs2}]× C(s3)× C(s4)
SB3 {cs1} × {cs2} × [C(s3)− {cs3}]× C(s4)
SB4 {cs1} × {cs2} × {cs3} × [C(s4) − {cs4}]

search space is first divided into disjoint sub-spaces; then
the best answer in each subspace is found and used to pro-
duce the current global best answer. The sub-space that
produces the best global answer is further divided into sub-
subspaces and the best answer among its sub-subspaces is
used to compete with the best answers in other sub-spaces in
the previous level to find the next best global answer. Two
main issues in this procedure are how to divide a space into
disjoint subspaces and how to find the best answer within a
(sub)space. Lawler proved that if these two issues are solved
in polynomial time, the procedure generates ranked list of
answers in polynomial delay [11].

5.1 Finding Top-k Teams without a Leader
We first informally describe the idea for dividing the search

space into disjoint subsets using an example5. Suppose that
the project consists of four skills, i.e., {s1, s2, s3, s4}, and we
want to find the top-k teams of experts without a leader.
Let C(si) be the set of experts in graph G that have skill
si. Thus, the search space that contains the best answer
can be represented as C(s1)×C(s2)×C(s3)×C(s4). From
this space, we can use Algorithm 1 for finding the best (ap-
proximate) team in polynomial time. Assume that the best
answer is (cs1 , cs2 , cs3 , cs4), where csi is a node (expert) in
graph G which has skill si. Based on this best answer, the
search space is divided into 5 subspaces SB0, SB1, SB2,
SB3 and SB4 as shown in Table 1, where SB0 contains only
the best answer. It should be noted that the subspaces are
disjoint and their union covers the whole search space.

After finding the best answer and dividing the search
space into disjoint subsets, the best answer in each subspace
except SB0 is found using Algorithm 1. These best answers
are inserted into a priority queue, where the answers are
ranked in ascending order according to their communica-
tion cost. Obviously, the second best answer is the one at
the top of the priority queue. Then, the top answer is re-
turned and removed from the queue, its corresponding space
is divided into subspaces and the best answer (if any) in each
new subspace is added to the priority queue. This procedure
continues until the priority queue becomes empty or the re-
quired number of teams, i.e. k, is returned by the algorithm.

The pseudo code of algorithm that generates top-k teams
without a leader is presented in Algorithm 3. The main body
of the algorithm is similar to other polynomial delay algo-
rithms discussed in [7, 13]. It is modified to perform in the
setting of producing ranked teams of experts from a graph.
In line 2, procedure FindBestT eam is called to find the best
answer in space W in polynomial time. This procedure can
be Algorithm 1 or one of the two algorithms introduced in
[10], all having polynomial time complexity. It should be

5Our approach for dividing a search space is similar to the
idea used in [13].

Algorithm 3 Algorithm for Generating Top-k Teams with
a Leader in Polynomial Delay

Input: graph G; project P = {s1, s2, . . . , sp}; number of
required teams k and the sets of experts each with a required
skill W = {C(s1), C(s2), . . . , C(sp)}
Output: the set of top-k ordered teams of experts printed
with polynomial delay

1: Queue ← an empty priority queue
2: 〈A, cost〉 ← FindBestTeam(G, T , W)
3: if A 6= ∅ then
4: Queue.insert(〈A, cost,W 〉)
5: while Queue 6= ∅ do
6: 〈A, V 〉 ← Queue.removeTop()
7: print(A)
8: k ← k − 1
9: if k = 0 then

10: return

11: 〈SV1, SV2, . . . , SVp〉 ← ProduceSubSpaces(A, V)
12: for i← 1 to p do

13: 〈Ai, costi〉 ← FindBestTeam(G, T , SVi)
14: if Ai 6= ∅ then
15: Queue.insert(〈Ai, costi, SVi〉)

noted that W is the whole search space that contains all
of the experts with their skills. Thus, the first best answer
should be found in this space. If the best answer exists (i.e.,
A is not empty), A, together with its cost and related space
W , is inserted into Queue in line 4. The Queue is main-
tained in the way that its elements are ordered in ascending
order according to their communication costs. The while
loop starting at line 5 is executed until the Queue becomes
empty or k answers have been outputted. In line 6, the top
of the Queue is removed, which contains the best answer in
the Queue and the space that this answer is produced from.
We assign this space to V and the best answer to A. The
answer in A is outputted in line 7. If the number of answers
has reached k, the algorithm terminates in line 10. In line
11, procedure ProduceSubSpaces produces p new subspaces
based on the current answer A and current search space V .
These subspaces are shown by SVi. In lines 12-15, for each
of these new subspaces, the best answer is found and in-
serted into the Queue with its cost and related subspace.
As stated before, procedure FindBestT eam terminates in
polynomial time. Thus, if procedure ProduceSubSpaces

terminates in polynomial time, then Algorithm 3 produces
answers in polynomial delay. The pseudo code of procedure
ProduceSubSpaces is presented in Algorithm 4. It takes the
best answer of the previous step, i.e. A, and the search space
of previous step, i.e. V , as input. It produces p disjoint sub-
spaces, 〈SV1, . . . , SVp〉, as output. In this procedure, SV j

i

specifies the j-th element of SVi. It is a polynomial proce-
dure and runs in O(p2).

5.2 Finding Top-k Teams with a Leader
The procedure for finding the top-k teams with a leader

is similar to Algorithm 3. But since the search space for
the best team is C(s1)× C(s2) · · · × C(sp)× C, where C is
the set of experts in G from which the leader is chosen, the
search space is divided into p + 2 subspaces after the best
answer is found (instead of p+ 1 subspaces as in Algorithm
3). Table 2 illustrates the subspaces divided from the search

Table 2: Dividing the search space into disjoint sub-

spaces for finding the teams of experts with a leader.

C is the set of experts in G. The leader of the best

answer (cs1 , cs2 , cs3 , cs4) is L1.
Subspace Representative set

SB0 {cs1} × {cs2} × {cs3} × {cs4} × {L1}
SB1 [C(s1)− {cs1}]× C(s2)× C(s3)× C(s4)× C

SB2 {cs1} × [C(s2)− {cs2}]× C(s3)× C(s4)× C

SB3 {cs1} × {cs2} × [C(s3)− {cs3}]× C(s4)× C

SB4 {cs1} × {cs2} × {cs3} × [C(s4)− {cs4}]× C

SB5 C(s1)× C(s2)× C(s3)× C(s4)× [C − {L1}]

space after the first best team with a leader is found for
the same example in Table 1. Both Algorithms 3 and 4
are changed to reflect the extension of the search space and
difference in partitioning the search space. For example.
ProduceSubSpaces takes also the leader of the best team
and the previous search space for the leader as input. It
produces p + 1 (instead of p as in Algorithm 4) subspaces.
The FindBestT eam procedure should be Algorithm 2 and
returns a leader in addition to the best team and its cost.
Due to the space limit, we omit further details.

Algorithm 4 Algorithm for Producing Sub Spaces

Input: the best answer of previous step A = 〈c1, c2, . . . cp〉
and set of experts which have the required skills V =
{C(s1), C(s2), . . . , C(sp)}
Output: p new subspaces 〈SV1, . . . , SVp〉

1: for i← 1 to p do

2: for j ← 1 to i− 1 do

3: SV
j
i ← {cj}

4: SV i
i ← Vi − {ci}

5: for j ← i+ 1 to p do

6: SV
j

i ← Vj

7: return 〈SV1, . . . , SVp〉, where SVi = SV 1
i × · · · × SV

p

i

6. EMPIRICAL EVALUATION
In this section, we refer to the approximation Algorithm 1

as Best-SumDistance and Algorithm 2 as Best-Leader.
For the purpose of comparison, we implemented two algo-
rithms introduced in [10]. The first algorithm that mini-
mizes the diameter of the team is referred to as Rarest-

First and the second one that minimizes the weight of the
MST of the team is referred to as Enhanced-Steiner [10].
All the algorithms are implemented in Java. The experi-
ments are conducted on an Intel(R) Core(TM) i7 2.80GHz
computer with 4GB of RAM.

6.1 The Datasets
The DBLP and IMDb data sets are used in our experi-

ments. The DBLP graph is produced from the DBLP XML
data6 taken on June 24, 2010. The dataset contains infor-
mation about a collection of papers and their authors. The
set of experts and skills are generated in the same way as in
[10] as follows. We only keep the papers of some major con-
ferences in computer science: Data Base = {sigmod, vldb,
icde, icdt, edbt, pods}, Data Mining = {kdd, www ,
sdm, pkdd, icdm}, Artificial Intelligence = {icml, ecml,

6http://dblp.uni-trier.de/xml/

colt, uai} and Theory = {soda, focs, stoc, stacs}. The
set of experts consists of authors that have at least three
papers in the DBLP. The skills of each expert is the set of
terms that appear in the titles of at least two publications
of the expert. Two experts are connected together if they
have at least two papers together. The weight of the edge

between two nodes ni and nj is equal to 1−|
pni

∩ pnj

pni
∪ pnj

| where

pni
is the set of papers of author (node) ni. The final graph

has 5,658 nodes (experts) and 8,588 edges.
The part of the IMDb dataset used in our experiments

contains information about the actors and the list of movies
that each actor played in7. The titles of the movies and the
names of the actors are specified in the dataset. We consider
as experts the actors who have played at least eight movies
from 2000 to 2002. The skills of each actor is the set of
terms that appear in the title of a movie of the actor. Two
actors are connected together if they played in at least four
movies together. The weight of an edge is determined in
the same way as for DBLP. The final graph has 6,784 nodes
and 35,875 edges. Clearly, the graph of IMDb is denser
than that of DBLP. We do not use movie genres as skills
because the number of genres in IMDb is only 20 and many
actors have played in a great portion of genres, which leads
to generation of top-100 teams each with only one member
since many actors have played in all the required genres.
Although using terms in movie titles as skills may not be
meaningful, the data set is still good to use for the purpose
of comparing the algorithms in some performance measures.

6.2 Experimental Setup
The projects used in the experiments are generated as fol-

lows. Each project is specified by a set of skills. We allow
the number of skills in a project, i.e., p, to vary from 4 to
10. For each value of p, we randomly generate 100 projects
and compute the average result obtained by each algorithm.
Skills have different frequencies. The frequency of a skill
is the percentage of experts in the social network that pos-
sess the skill. The frequency of the skills in our experiments
varies from 0.5 to 5.0 percent. Other values of skill fre-
quency lead to similar conclusions. We run the top-k pro-
cedures proposed in Section 5 using 4 different algorithms
as the FindBestT eam procedure (i.e., Best-SumDistance,
Best-Leader,Rarest-First, or Enhanced-Steiner). We
experimented with different values of k from 1 to 100. When
it is not varied, the value of k is set to 50 by default. Also,
the same as in [10], if, for a project, the team produced by
at least one of the algorithms does not lead to a connected
graph, the result of this project is ignored.

6.3 Performance Measures
We use two sets of performance measures to evaluate the

quality of the teams produced by different algorithms. The
first set contains three communication cost measures: (1)
the diameter of the team, which is the largest shortest dis-
tance between any two nodes in the team, (2) the cost of
the minimum spanning tree (MST) on the subgraph of the
team and (3) the sum of distances measure defined in this
paper. Recall that Rarest-First is a greedy algorithm that
aims at minimizing the diameter of the team, Enhanced-
Steiner is an approximation algorithm that tries to min-
imize MST, and Best-SumDistance is an approximation

7http://www.imdb.com/interfaces

0

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-Diameter

D
ia

m
e
te

r

number of required skills(A)

0

1

2

3

4

5

6

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-MST

M
S

T

number of required skills(B)

0

10

20

30

40

50

60

70

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-SumDistance

S
u

m
D

is
ta

n
c
e

number of required skills(C)

Figure 2: Results on the DBLP graph Using the First Set of Performance Measures.

0

1

2

3

4

5

6

7

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-Diameter

D
ia

m
et

er

number of required skills(A)

0

2

4

6

8

10

12

14

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-MST

M
S

T

number of required skills(B)

0

20

40

60

80

100

120

140

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

Exact-SumDistance

S
u

m
D

is
ta

n
ce

number of required skills(C)

Figure 3: Results on the IMDb graph Using the First Set of Performance Measures.

algorithm for minimizing the sum of distances. The purpose
of using these performance measures is to see how well each
algorithm minimizes each of these cost measures in compar-
ison to other algorithms.

The second set of performance measures is for evaluating
the team quality on the DBLP data set. It contains three
metrics. The first one is the cardinality of the team. To
reduce the communication cost of a project, we usually pre-
fer teams with smaller cardinality [10]. The second metric
is the number of common publications shared by at least
two experts in the team, which is the number of the papers
in DBLP co-authored by at least two experts in the team.
The more common publications the experts have, the higher
chance that they can communicate well with each other. The
third metric is the skill count, defined as the average num-
ber of times that a skill appears in the list of papers of an
expert in the team, averaged over all the skills required in
the project and over all the experts in the team. The higher
the skill count, the more expertise the team has with respect
to the set of skills in the project. The purpose of using these
performance measures is to look at the quality of resulting
teams from aspects different than communication costs.

6.4 Results on the First Set of Performance
Measures

Figures 2 and 3 show the results of the four algorithms
in terms of the diameter, MST, and sum of distances costs
of the top ranking teams on the DBLP and IMDb datasets
respectively. Each bar represents the average cost of the top-
50 answers from an algorithm over 100 randomly generated
projects for a specific number of required skills. In each sub-
graph, we also include the results of an exact algorithm that
minimizes the cost metric used as the performance measure.
For example, the results of the exact algorithm that min-
imizes the diameter of the team on the DBLP data set is
shown in Figure 2 (A) and is named as Exact-Diameter.
Note that finding a team of experts that minimizes the di-
ameter or MST is an NP-hard problem [10]. We proved that
finding teams of experts which minimizes the sum of the dis-

tances is also NP-hard. Thus, it is not possible to find the
best team of experts that minimizes any of these measures
in polynomial time. The exact algorithms use exhaustive
search to find all the possible teams for each project, rank
the teams based on their respective cost measure, and out-
put the top ranking teams. The purpose of showing the
exact algorithm results is to provide the ground truth for
each measure and see how close each approximation algo-
rithm performs to the ground truth.

As shown in the results, in almost all of the experiments,
algorithms Best-SumDistance and Best-Leader outper-
forms Rarest-First and Enhanced-Steiner on all of the
three cost measures. Their results are very close to the op-
timal answers produced by the exact algorithms whose per-
formance is the best in each subgraph as expected. Note
that although Best-SumDistance and Best-Leader do
not minimize the diameter or the MST cost of the teams,
they produce better teams with lower diameter and MST
costs than Rarest-First and Enhanced-Steiner. This is
due to the search strategy used in the Rarest-First and
Enhanced-Steiner approximation algorithms: Rarest-

First only checks the nodes having the skill with the low-
est cardinality support [10], and Enhanced-Steiner starts
with a random node from the set of skill holders [10]. Both
algorithms might miss some good teams.

Between Best-Leader and Best-SumDistance, the re-
sults of Best-Leader are a bit better. This is because
Best-Leader evaluates all nodes in the graph for finding
the best leader. Comparing the results of Best-SumDistance

to those of Exact-SumDistance in subgraph (C) of Figure
2 or 3, we observe that although in theory the sum of dis-
tances of an answer from Best-SumDistance can be twice
that of the corresponding optimal answer, the difference is
small in practice (less than 10% in the worst case). This
indicates that the quality of the proposed approximation al-
gorithm is high.

6.5 Results on the Second Set of Performance
Measures

0

1

2

3

4

5

6

7

4 6 8 10

Rarest-First

Enhanced-Steiner

Best-SumDistance

Best-Leader

number of required skills

C
a

rd
in

a
li

ty

(A)

0

1

2

3

4

5

6

7

4 6 8 10

number of required skills

S
k

il
l

C
o

u
n

ts

(C)

0

5

10

15

20

25

30

35

4 6 8 10

number of required skills

C
o

m
m

o
n

P
u

b
 N

o
.

(B) number of required skills

C
o

m
m

o
n

P
u

b
 N

o
.

(B)

()

Figure 4: Results of Four Algorithms on DBLP Using the Second Set of Performance Metrics

0

1

2

3

4

5

6

4 6 8 10

Exact-Diameter

Exact-MST

Exact-SumDistance

Best-Leader

number of required skills

C
a

rd
in

a
li

ty

(A)

0

10

20

30

40

4 6 8 10

number of required skills

C
o

m
m

o
n

P
u

b
 N

o
.

(B) number of required skills

C
o

m
m

o
n

P
u

b
 N

o
.

(B)

0

1

2

3

4

5

6

7

4 6 8 10

number of required skills

S
k

il
l

C
o

u
n

ts

(C)

Figure 5: Comparison of Exact Algorithms on DBLP Using the Second Set of Performance Metrics.

Figure 4 compares the four algorithms in terms of the car-
dinality, the number of common publications and the skill
count of the team. The results show thatBest-SumDistance

and Best-Leader outperformsRarest-First andEnhanced-

Steiner on all these metrics, that is, they produce smaller
teams with higher number of shared publications and more
expertise in the required skills. The results of Best-SumDistance

and Best-Leader are very close to each other. Although
our proposed algorithms do not explicitly optimize these
metrics, they generate teams with higher quality than two
other algorithms with respect to these metrics.

In order to see which cost function (diameter, MST, sum
of distances and leader distance) is the best to optimize
regardless of the search strategies (i.e., the approximation
algorithms designed for them), we present in Figure 5 the
results of the four exact algorithms in terms of the team car-
dinality, common publication number and skill count. Note
that the Best-Leader algorithm is an exact algorithm for
minimizing the leader distance of a team. The results show
that the MST and sum of distances functions have very sim-
ilar performance in all the three metrics. Both of them are
better than the diameter and leader distance functions in
terms of team cardinality and common publication num-
bers. The four functions perform almost the same on the
skill count. The reason why the leader distance leads to
a bit larger team and fewer common publications than the
sum of distances and MST is that the selected leader may
be an “extra” member without a required skill.

Since it is not possible to have polynomial exact algo-
rithms that minimize diameter, MST or sum of distances,
how to design the approximation algorithm is important.
The results in Figures 2, 3 and 4 indicate that our pro-
posed polynomial algorithms (i.e., Best-SumDistance and
Best-Leader) for finding teams of experts with or with-
out a leader outperform the existing approximation algo-
rithms that minimize the diameter or MST function.

6.6 Scalability
To test the scalability of the proposed algorithms, we

generate DBLP graphs of different sizes by using different
thresholds for the number of papers an expert has authored
to determine whether a node (i.e., expert) should be in-

0

5

10

15

20

2.2k 2.9k 3.9k 5.6k

4 Skills

6 Skills

8 Skills

10 Skills

R
u

n
 T

im
e

(m
s)

Number of Nodes in Graph (A)

0

5

10

15

20

 1-25 25-50 50-75 75-100

4 Skills 6 Skills

8 Skills 10 Skills

R
u

n
 T

im
e

(m
s)

top-k answers (B)

Figure 6: Scalability of Best-SumDistance on DBLP.

cluded in the graph. The threshold is set to 6, 5, 4 and 3 to
generate graphs of 4 different sizes ranging from 2.2k to 5.6k
nodes. Figure 6 (A) illustrates how the average run time
of algorithm Best-SumDistance for producing one team
changes with the number of nodes in the DBLP graph for
different numbers of required skills. Although in the worst
case (when all the experts in the graph possess a required
skill), the run time is quadratic with respect to the number
of nodes (as discussed in Section 3), in practice this rarely
happens and we observe that the run time increases (almost)
linearly when the number of nodes increases. Figure 6 (B)
shows how the average time for producing one team (which
is the total run time divided by k) changes with k, i.e., the
number of top teams produced. Obviously, the time does
not change with the value of k, which indicates that the to-
tal run time of our top-k algorithm grows linearly when k

increases. This indicates that Best-SumDistance and our
top-k procedure scale well with the number of nodes and k

values. Due to the space limit, the results of Best-Leader

are not presented. But they showed similar trends.

6.7 A Sample Result
We compare the algorithms through an example. We form

a project by randomly selecting 4 keywords as the required
skills from the paper titles listed on the ”Awards”page of the
CIKM 2010 web site8. The keywords are multilingual, inter-
face, ranking and constraints. The best team formed by each
algorithm is shown in Table 3. The common publication
number (denoted as Pub. No) of both Best-SumDistance

8http://www.yorku.ca/cikm10/awards.php

Table 3: Best teams for project requiring “skills”: multilingual, interface, ranking and constraints
Algorithm Multilingual Interface Ranking Constraints Leader Pub. No. Diameter MST SumDist

Rarest-First A. Kumaran H. Jagadish M. Ramanath W. Fan – 0 3.6 5.4 14.6

Enhanced-Steiner A. Kumaran H. Jagadish M. Ramanath W. Fan – 0 3.6 5.4 14.6

Best-SumDistance A. Kumaran R. Agrawal R. Agrawal K. Shim – 3 3.6 4.5 12.9

Best-Leader A. Kumaran R. Agrawal R. Agrawal K. Shim R. Agrawal 3 3.6 4.5 12.9

and Best-Leader is 3 while it is 0 for Rarest-First and
Enhanced-Steiner. Also, Best-SumDistance and Best-

Leader produce teams with less MST and sum of distances
costs than Rarest-First and Enhanced-Steiner. All the
teams have the same diameter in this example.

7. RELATED WORK
Discovering a team of experts from a social network has

been introduced in [10]. Authors of [12] generalize this prob-
lem by associating each required skill with a specific number
of experts. However, they do not provide an approximation
ratio for their heuristic algorithms. Authors of [1] proposed
methods for finding teams of experts in which the load of
the experts are balanced in the presence of several tasks.
They do not consider finding teams with low communica-
tion cost. In this work, we extend the work of [10] in several
directions as follows. Two new communication cost func-
tions are proposed. An approximation algorithm which find
the best team of experts is proposed. The problem of find-
ing a team of experts with a leader is defined. A procedure
for producing top-k teams of experts is also designed.

The team formation problem has been studied in the op-
eration research community. The authors use branch and
bound, genetic algorithms and simulated annealing to solve
the problem [4, 14, 5]. The authors of [3] study the dynamics
of group formation procedures and how they affect on the
formation of groups in the network. In a later work, authors
discuss this problem from a game-theoretic point of view [8].
The basic difference between our work and the works in op-
eration research is that they do not assume the existing of
a social network behind the experts.

The problem of keyword search in graphs takes a consid-
erable amount of attention in the database community in re-
cent years [7, 13, 9]. Each node in the graph consists of some
keywords. The purpose is to find a subgraph that covers the
input keywords and whose nodes are close to each other,
which is similar to the objective of team formation in social
networks that minimizes the team communication cost. The
leader distance function defined in this paper has not been
used in either team formation or keyword search. Also, in
algorithms for keyword search over graphs, a threshold is
usually set for the maximum distance between two nodes in
a final answer [13], but it is not used here.

8. CONCLUSION
We studied the problem of discovering a team of experts

from a social network that minimizes the communication
cost among team members. We defined two communication
cost functions and proposed an approximation algorithm for
finding the best team of experts without a leader that min-
imizes the sum of distance function. We proved that the
approximation ratio of the algorithm is 2. We also defined
the problem of finding a team of experts with a leader and
proposed an exact polynomial algorithm to solve this prob-

lem. In addition, we proposed procedures for producing top-
k teams of experts with or without an expert in polynomial
delay. Our experiments on two real data sets showed that
the proposed algorithms produce teams with lower commu-
nication costs than two existing approximation algorithms.
We also showed that our algorithms produce smaller teams
with more common publications and more expertise in the
required skills than the two existing approximation algo-
rithms on the DBLP dataset. In the future, we will explore
how to incorporate constraints in team formation in social
networks.

9. REFERENCES
[1] A. Anagnostopoulos, L. Becchetti, C. Castillo,

A. Gionis, and S. Leonardi. Power in unity: Forming
teams in large-scale community systems. In Proc. of

CIKM’10, 2010.

[2] E. M. Arkin and R. Hassin. Minimum-diameter
covering problems. Networks, 36, 2000.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In Proc. of

KDD’06, 2006.

[4] A. Baykasoglu, T. Dereli, and S. Das. Project team
selection using fuzzy optimization approach. Cybern.
Syst., 38(2):155–185, 2007.

[5] E. Fitzpatrick and R. Askin. Forming effective worker
teams with multi functional skill requirements.
Comput. Ind. Eng., 48(3):593–608, 2005.

[6] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity search in databases.
In Proc. of VLDB’98, 1998.

[7] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. In Proc. of

SIGMOD’08, 2008.

[8] M. Jackson. Network formation. The New Palgrave
Dictionary of Economics and the Law, 2008.

[9] M. Kargar and A. An. Keyword search in graphs:
Finding r-cliques. In Proc. of VLDB’11, 2011.

[10] T. Lappas, L. Liu, and E. Terzi. Finding a team of
experts in social networks. In Proc. of KDD’09, 2009.

[11] E. Lawler. A procedure for computing the k best
solutions to discrete optimization problems and its
application to the shortest path problem. Management

Science, 18, 1972.

[12] C. Li and M. Shan. Team formation for generalized
tasks in expertise social networks. In Proc. of IEEE

International Conference on Social Computing, 2010.

[13] L. Qin, J. Yu, L. Chang, and Y. Tao. Querying
communities in relational databases. In Proc. of

ICDE’09, 2009.

[14] H. Wi, S. Oh, J. Mun, and M. Jung. A team formation
model based on knowledge and collaboration. Expert
Syst. Appl., 36(5):9121–9134, 2009.

