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ABSTRACT
We present a topology aware Deep Reinforcement Learning (DRL)

scheduler that simultaneously chooses jobs to run and elastically

allocates resources to them for Distributed Deep Learning data

parallel jobs in a multi-GPU, multi-machine cluster. This work ad-

dresses multiple limitations in the state-of-the-art methods: 1) Not

sufficiently accounting for the bandwidth sharing between multiple

jobs running simultaneously in a cluster, 2) Using overly simply

heuristics to solve the resource allocation problem, 3) Pretending

that job speed is not affected by the topology of allocated resources

in simulation environments. This DRL method calculates unique

job speeds by taking advantage of a graph representation of the

cluster topology. This enables modeling realistic sharing of inter

and intra machine bandwidths such as QPI speed, CPU-GPU speed,

GPU-GPU speed, Infiniband card to Top-of-Rack Switch, etc. Our

neural network model is trained using the REINFORCE algorithm

which is a policy gradient method. The model outputs a multiple

softmax designed to represent an assignment table that specifies

the resource allocation of GPU’s to Jobs. Using this design we can

dynamically choose/change which GPUs to assign to which jobs

at discrete time steps. Our simulation experiments show that our

method can outperform baseline schedulers that use heuristics for

job picking and resource allocation.
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1 INTRODUCTION
Job scheduling is an important part of running a computing cluster,

which could be a massively parallel supercomputing centre, a cloud

data centre, or an on-site group of servers at a university research

lab, or even possibly a small cluster of edge devices. Jobs must be

scheduled both in terms of when they should run, as well as what

resources to assign them. Colloquially, job scheduling refers to both

tasks. In this paper, scheduling a job in time will also be referred

to as job picking, and resource to job assignment will be referred

to as resource assignment or resource allocation. In this paper, we

focus on the problem of both job picking and assigning resources

to data parallel Deep Neural Network (DNN) jobs that are meant to

run on GPU-capable cloud-based data centres. In short, we present

a Deep Reinforcement Learning (DRL) method that leverages the

modeling of intra and inter machine network topology and decides

which jobs to run by elastically assigning GPU resources to them.

Most schedulers use heuristics (such as the shortest job first) for

GPU resource scheduling. Heuristic-based methods can produce

good solutions in some situations, but they often lead to a solution

far from an optimal one in many other situations. Recently, deep

reinforcement learning has been used for GPU resource scheduling

[8], which uses a DNN as the policy function for reinforcement

learning to learn a scheduler by interacting with the environment.

However, these DRL-based methods fail to consider the topology

of the resources within the cluster. Further, these schedulers usu-

ally solve the job picking problem and do not deal with resource

allocation which is crucial in order to design an effective sched-

uler. Preemption is also another issue not dealt with in schedulers

currently in use. We discuss some of these in detail below.

Currently, there exists no "intra" and "inter" machine topology

aware DRL-based scheduler that can schedule and assign resources

to multiple jobs on a multiple machine, multiple GPU cluster. This

includes most of the intra and inter machine bandwiths such as

QPI speed, CPU-GPU speed, GPU-GPU speed, Infiniband card to

Top-of-Rack Switch speeds, etc. Both the topology of resources

allocated to a job and the resulting bandwidth sharing between

multiple jobs affect the unique speeds of jobs. In other words, job

speeds and resource assignments (aka allocations) have a non-linear

relationship. Schedulers that fail to sufficiently taking into account
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topology in their decision making, will fail to make optimal job

picking and resource to job assignment decisions, resulting in sub-

optimal scheduling performance. This study addresses this issue

through detailed modelling of intra and inter network topology,

bandwidth sharing, and unique job speeds. Unlike heuristic meth-

ods, DRL schedulers can in theory avoid modeling the topology

by training their policy function (modeled by a neural network

function approximator) directly on bare metal of one’s cluster, but

one loses the ability to use simulations to initialize the training of

the neural network (NN) function approximator. In fact, the model

parallelization work by [9] used DRL to train a NN scheduler on

bare metal on a single machine for single jobs at a time, but would

need time consuming re-training on bare metal if the topology or

cluster machines changes.

Another issue not thoroughly explored in literature are preemp-

tion strategies for DDL. Preemption means that resource allocation

of a running job can be changed after the job has started but not yet

completed. For example, in the no-preemption case, the resources

(i.e. GPUs) allocated to a job does not change, and a job cannot be

paused/resumed once started. In what we call partial preemption,
the number of GPUs assigned to a job can be changed during run-

time but the job is not allowed to be totally paused. In what we call

full preemption, jobs can also be paused/resumed but the number

of GPUs assigned upon resuming can be different than before the

job was paused. Full preemption allows the most elasticity of job

scheduling, and better/fuller use of resources, potentially leading

to a shorter makespan for a set/sequence of jobs.

In this study, we address both intra and inter network topology

considerations, job scheduling, and resource assignment/allocation.

We make some initial investigations into using a DNN as a full

preemption scheduler that is trained with RL, and compare this to

no-preemption heuristic baselines. To hasten the development and

investigation of DRL to solve DNN job scheduling/resource alloca-

tion problem, this work remains in a simulation environment. Still,

our initial findings compel us to believe full preemptive schedulers

could can make better/fuller use of resources than schedulers that

can only perform no preemption at all.

Our contributions are summarized as follows. We propose a rein-

forcement learning based GPU resource scheduler, calledRL-TAPS
(Reinforcement Learning based Topology-Aware Preemptive Sched-

uler), that considers the topology of the underlying infrastructure.

RL-TAPS solves both the job selection and resource allocation

problems at the same time. Furthermore, our method allows for pre-

emption. Our use case in this paper is data parallel distributing deep

learning jobs across multiple GPUs in multiple machines, although

RL-TAPS can be applied to other job types with different resources.

The results from both streaming and non-streaming scenarios show

the superiority of our method compared to three baseline methods.

The paper is organized as follows: In section 2 we discuss related

work and section 3 gives a brief background in reinforcement learn-

ing and the policy gradient algorithm. In section 4 we describe our

proposed method and we report the evaluation results in section 5.

Finally we share related insights and discuss future work.

2 RELATEDWORK
2.1 Mathematical Programming vs Heuristics
It is quite useful to note for context that many combinatorial opti-

mization problems have traditionally been solved by formulating

a mathematical program and using algorithmic methods such as

simplex, or branch and bound, to solve them. If mathematical pro-

gramming approaches are too slow, then a custom heuristic would

be designed. The general problem of which fraction of which re-

source to assign to which job can be formulated as a Mixed Integer

Non-Linear Programming (MINLP) problem. By constraining deci-

sion variables to be discrete (i.e we assign whole GPUs to jobs), we

can formulate an Integer Non-Linear Programming (INLP) prob-

lem. We can further relax the problem to be an Integer Linear

Programming (ILP) problem by making some big assumptions such

as pretending to know the job completion times ahead of time or

setting the number of GPUs assigned per job to be equal and fair.

Two notable recent works in literature for scheduling and as-

signing resources for data parallel, parameter server (PS) based,

Distributed Deep Learning (DDL) jobs on clusters, are Tiresias [7]

and Optimus [11]. With respect to the resource assignment prob-

lem (aka job/device placement), the authors of Tiresias first tried

to formulate an ILP program that minimized network bandwidth

usage. Even despite assuming equal resource assignment to lin-

earize the problem, their ILP solution was too slow. The authors

of Optimus merely described their resource assignment problem

as an INLP problem that minimized Job Completion Times. They

state that the problem is NP-hard, and decided instead to use a

heuristic for assigning resources to jobs. Both Tiresius and Optmius

ultimately used heuristics for both time based job scheduling and

the resource assignment. For added context, even prior to learning

of these works, we attempted to solve the general MINLP problem

with mathematical programming, but failed to find a formulation

that produced fast nor close to optimal results.

Popular cloud-based cluster computing schedulers such as Yarn

and Slurm use very simple heuristics for time based job schedul-

ing, such as DRF [5], First in First Out (FIFO), Shortest Job First

(SJF), etc., or some combination of these. They also use very simple

heuristics for resource allocation. These heuristics do not properly

consider network topology nor do they adjust resource assignment

to existing jobs to better utilize resources. We believe that heuris-

tic methods for job scheduling and resource allocation, will be

ultimately inferior to the potential benefits that DRL can provide,

namely due to the ability of DRL to solve highly non-linear and

complex problems.

2.2 DRL-based schedulers
There have been a resurgence in the study of using Neural Net-

works to solve optimization problems with the creation of pointer

networks by [14]. Vinyals et al. [14] used existing algorithmic math-

ematical programming approaches to supervise the training of their

pointer networks. More recently though, Bello et al. [1] built upon

the work of [14] by using Deep Reinforcement Learning (DRL) to

train pointer networks. Deep Reinforcement Learning (DRL) can

train a Deep Neural Network (DNN) function approximator to solve

complex non-linear decision problems without explicitly labeled

data, by instead using scalar reward signals to guide the iterative
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training of NNs. The first known cases of using DRL for job-shop

scheduling problems, however, were by Zhang and Dietterich in

1995 and 1996 [16–18].

Some recent works have begun to use DRL for GPU resource

management [4, 8, 9]. Mao et al. [8] used a DRL policy gradient

method to choose jobs in a queue in a simple simulation environ-

ment with no network topology considerations. Their input layer

for their simple Multi Linear Percepteron (MLP) policy network

was a rectangular grid that represented the resources as contigu-

ous columns, with each row representing a discrete time snapshot.

Thanks to the simplicity of their design and availability of their

code on github, this work has become very influential to subsequent

investigations into using DRL for resource management for not just

the field of cluster scheduling but also networking. [4] was inspired

by [8] for example to pipe the input into a convolutional neural

network (CNN) to choose a job, and then subsequently use a small

NN to choose one of two heuristic placement algorithms. Both of

these works ([4, 8]) are applicable only to data parallel jobs, as is

our current work, which is also based on the work of Mao et al. [8].

Device placement/allocation for model parallelism of DL jobs is

a much more complicated problem, which has been investigated

on a single job and single machine basis by [9, 10]. Those authors

brilliantly used sequence to sequence pointer networks to take a

computation graph as input, and output a sequence of devices to

assign to the nodes of the computation graph. Perhaps in the future,

a DRL based method of automatically performing model and data

parallelism simultaneously will be developed. For the time being,

however, our current work attempts to address some of the many

unsolved issues in DRL for data parallel DDL.

3 BACKGROUND
We give a short background on reinforcement learning and the

policy gradient algorithm that will be used in the proposed method.

3.1 Reinforcement Learning
In reinforcement learning, an agent interacts with an environment

and learns to take actions such that it maximizes some performance

measure. The environment is represented via a state space and the

agent sees a state 𝑠𝑡 at each time step 𝑡 . It then takes an action 𝑎𝑡
based on the current state and is rewarded 𝑟𝑡 by the environment

while transitioning to the next state 𝑠𝑡+1. An episode is defined as

a sequence of triples of state, action, reward, ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ))𝑡=1..𝑇𝑚𝑎𝑥
,

where 𝑇𝑚𝑎𝑥 is the maximum length of the episode, and is finite.

Reinforcement learning is different from other forms of learning

in that the agent has no explicit labelled data about the environment

and other variables (i.e. states, reward, action). The agent collects

data via interacting with the environment and learns optimal action

sequences through experience.

3.2 Policy Gradients
In the theoretical development of the policy gradient algorithm for

the episodic case, one first starts with the objective,

𝐽 (𝜃 ) � 𝑣𝜋𝜃 (𝑠0), (1)

where 𝑠0 is the start state of an episode, 𝜃 are the parameters of

a function 𝜋𝜃 , the policy determined by the parameters. A policy

function 𝜋 is a mapping from states 𝑆 to actions 𝐴 and can be de-

fined as a probability distribution over actions 𝑎 given a state 𝑠 .

Since the number of state and actions pairs can be very prohibi-

tively large, function approximators such as neural networks are

used to represent a policy. Thus a policy defined through a neural

network with parameters 𝜃 is written as 𝜋𝜃 . 𝑣𝜋𝜃 is the performance

measure called "true value function" and is the only function that

can inform us of what actions to take (in transitioning between

states) to get the highest possible performance. Theoretically, it is

difficult if not impossible to determine 𝑣𝜋 . In practice, it is com-

mon to approximate the objective as the expected return, E𝜋𝜃 [𝐺𝑡 ],
where 𝐺𝑡 = [

∑𝑇𝑚𝑎𝑥

𝑡 𝛾𝑡𝑟𝑡 ] [13, 15]. The discount factor 𝛾 is set be-

tween 0 and 1 and is used to put more weight on immediate rewards

and discount later rewards. For the episodic case it is commonly

set to 1 for simplicity. The REINFORCE algorithm [15] then uses

the following update to the parameters:

𝜃 ← 𝜃 + 𝛼E𝜋𝜃 [𝐺𝑡∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )] , (2)

where we are taking the expectation over many trials and time

steps, sampled using 𝜋𝜃 . While we use the original formulation of

𝐺𝑡 , it can be tailored to the problem being solved.

4 PROPOSED METHOD
In this section, we describe the problem we are solving, our pro-

posed approach to solving the problem, and the simulation envi-

ronment we train and test our proposed model.

4.1 Problem statement
Given a cluster of computers, each with one or more GPUs, and

a set of deep learning jobs including the ones that are currently

running on the cluster and the ones that were submitted and are

waiting for GPU allocation, the goal is to determine:

(1) which jobs should be chosen to run.

(2) which GPUs should be assigned to jobs chosen to run.

so that the average job slowdown among all the jobs is minimized.

A job’s slowdown is defined as the difference between its finish and

enter time, divided by its estimated time to run alone.

Note that we do not separate job selection and job allocation in

this problem definition, and consider them simultaneously so that

jobs are selected only if they can lead to an allocation that achieve

a better outcome. Also, we allow preempting the already running

jobs and elastically changing their resource allocations to improve

overall performance.

4.2 Topology Awareness
Our scheduler is topology-aware in two ways: 1) intra and inter

machine bandwidths in the cluster’s topology are modelled in detail

as part of the environment, and affect the observed reward signal;

2) the current GPU to job assignments (partially representing the

cluster topology) are presented as input to an NN policy function.

An NN input design that incorporates topology bandwidth informa-

tion is left for future work. Even without bandwidth information

directly incorporated into the input, the NN can in theory find GPU

to job assignment combinations that make better use of the cluster

topology and thus increase the reward signal.
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4.3 State representation
The state 𝑆 describes the status of the cluster in terms of GPU

usage and the jobs in the job queue. Assume that the cluster has a

set of 𝑋 machines, {𝑛𝑖 |𝑖 = 1..𝑋 }, with a total number of𝑀 GPUs,

G = {𝑔𝑖 |𝑖 = 1 . . . 𝑀}. Also assume that the job queue can take up to

𝑁 jobs and each element of the queue is called a job slot. Each job

slot can hold one job, and the slots are sequentially filled up as jobs

arrive. We represent the set of 𝑁 job slots as J = { 𝑗𝑖 |𝑖 = 1 . . . 𝑁 }.
Similar to [8], we use a set of matrices to represent the state,

shown in the top part of Figure 1. Firstly, 𝑋 two-dimensional matri-

ces are dedicated for the cluster representation, one matrix per

machine. Next, 𝑁 two-dimensional matrices represent the 𝑁 job

slots in the job queue, one matrix per job slot. Finally, there is a

matrix to represent a backlog.

The state representation in Figure 1 shows of a small cluster of

𝑋 = 4 machines (labeled 𝑛1 to 𝑛4) and a job queue with 𝑁 = 3 job

slots (labelled 𝑗1 to 𝑗3). The first two job slots are occupied by a

running job. The job in the third slot is waiting. In Figure 1, the

number of columns of the matrix for machine 𝑛𝑖 is the number

of GPUs it has (e.g., 𝑛1 has 4 GPUs). The number of columns of

the matrix for a job slot 𝑗𝑖 is the maximum number GPUs a job

can request (e.g., 6 GPUs in the figure). In general, the rows of the

matrices represent the time dimension, and the columns represent

the resource dimension. Each row of thematrices is a representation

of the entire environment along the columns (cluster usage, job

resource request, etc.) during a specific discrete span of time. The

multiple rows then allows for the presence of sequential information

to be represented in the state.

The highlighted cells in the matrices representing machines

indicate that the corresponding GPUs are occupied by the current

running jobs. The highlighted columns in a matrix representing

a job slot in the queue indicate the number of GPUs requested

by the job, 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗). The time span of each row of the image is

calibrated to have a constant value in seconds (see Appendix A).

Thus if we know the amount of computation a job has left, and

its estimated speed, we can determine the number of times steps

required for this job. In a job slot, the number of highlighted rows

of a job is the number of time steps it is expected to run for if the

job is 1) running alone, 2) is allocated exactly the number of GPUs

it requests, and 3) there is zero communication time between GPUs.

In the cluster representation, the number of highlighted rows of

a job is the number of time steps left for it to complete, given its

current unique topology-dependent speed, and the calibrated time

span of the row. Job modelling is further explained in section 4.6.2.

When a job arrives at the cluster, but there are no empty job

slots, the job gets appended to the small backlog matrix (illustrated

at the right most end of the top part of Figure 1), for which a single

job is represented by a single unit.

When a job is assigned GPUs by RL-TAPS, we paint the corre-
sponding GPU columns in the cluster representation with the same

color. In our full preemptive method, RL-TAPS, jobs that arrive to
the job slots remain there as long as they are not finished. They

can be not-started, paused, or currently running. Only when the

jobs are finished are they removed. This way, currently running,

paused, and not-started jobs in the queue are all candidates for

being chosen by RL-TAPS. In contrast, in the RL simulation for

n2 n3 n4n1 j1

backlog

ti
m

e
 s

te
p
s

machines with GPUs

j2

jobs in queue

GPU1 … GPU8 GPU9 … GPU16

j1 j2 j3 Ø … j1 j2 j3 Ø j1 j2 j3 Ø … j1 j2 j3 Ø

1 0 0 0 … 1 0 0 0 0 1 0 0 … 0 1 0 0

Fully Connected Hidden Layer(s)

Multiple Softmaxes

j3

Figure 1: The architecture of the NN function approximator.
Above there are three jobs in the queue. The first two are
running, and the third is waiting. This assignment is not op-
timal but possible, depending on the level of training.

no-preemption schedulers, jobs that are chosen (and thus assigned

a static number of GPUs), are removed from their jobslot, so they

only occupy the cluster representation and are no longer candidates

for being chosen.

To simplify the "painting" of the cluster representation, we do not

stack jobs vertically in the cluster representation. In other words,

each column of the cluster representation is assigned to at most

one job. This state representation will be used as the input to the

neural network policy function.

4.4 Actions and Rewards
4.4.1 Actions, 𝐴. The NN takes multiple simultaneous actions us-

ing a multiple softmax approach. If there are𝑀 GPUs in the cluster,

there are 𝑀 output softmaxes, and all softmaxes share the previ-

ous hidden layer. Each softmax, as shown in Figure 1, consists of

𝑁 + 1 units, where 𝑁 is the number of job slots. The corresponding

GPU-to-job assignment table is shown on the right hand side of

Figure 2. In this study, each GPU can be assigned to at most one

job slot, or not assigned to any job slot, i.e., the null job slot ∅. The

decision of which job to assign a single GPU to, is done using a

single softmax. With multiple GPUs in a cluster, we have multiple

softmaxes, one per GPU. Note that if the job slot corresponding to

a currently-running job is not assigned to any GPUs, it is paused.

In this manner, we can solve the problem of choosing a job

and assigning resources to it, simultaneously. Furthermore, this

approach is naturally pre-emptive. A job that has not finished,

remains in its slot, and can be paused or resumed simply by not

assigning or assigning GPUs to it. If a job is not assigned any GPUs,

then it is not chosen. Thus, job picking and resource assignment

are performed at the same time.

4.4.2 Topology-Aware Reward, 𝑅. In RL, a scalar signal for reward

is needed to guide the training of the policy function (a neural

network in our case). It can also be helpful to subtract penalties

from the reward to discourage bad decisions. We describe exactly

how we formulate rewards and penalties. The main measure of

reward we use is computational throughput in units of FLOPS

(Floating Point Operations Per Second), which we interchangeably

refer to as speed. In general, we calculate the aggregate sum of

speeds of all jobs.
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Figure 2: (Left) A rack is shown with its Top of Rack Switch
(TRS), and two of its machines. The vertical ellipsis mean
that there exists additional machines. Horizontal ellipsis on
either side mean there may exist additional racks. The dark
red arrows pointing to the DS indicate connections from two
additional TRS’s on either side. (Right) Example assignment
of GPUs 1 to 8 for job 1 and GPUs 9 to 16 for job 2.

Rather than considering the instantaneous speed of a job, we

prefer for simplicity to think about the average speed that a job

experiences while interacting with other running jobs. Since time

steps are not instantaneous but rather span two time points, it is

suitable to consider the average speed of a job. The job’s average

speed at a discrete time step contributes to the total reward for the

time step. This contribution is expressed as,

𝑅𝑡 ( 𝑗) = 𝑣𝑡 ( 𝑗) =
𝑑𝑚 ( 𝑗) |G( 𝑗) |
tt𝑚 ( 𝑗) + rt ( 𝑗)

, (3)

where 𝑑𝑚 ( 𝑗) is the computational "distance" of job 𝑗 per minibatch.

I.e. 𝑑𝑚 ( 𝑗) = 𝑑𝑒𝑥 ( 𝑗)𝑚 ( 𝑗) , where 𝑑𝑒𝑥 ( 𝑗) is the computational "dis-

tance" of job 𝑗 on a single example, and𝑚 ( 𝑗) is the minibatch size.

The computational distance is defined as the number of FLOPs

(Floating Point Operations)
1
. G( 𝑗) is the subset of GPUs assigned

to job 𝑗 . |G( 𝑗) | is thus the number of GPUs assigned to job 𝑗 . In

the denominator, tt𝑚 ( 𝑗) is the training time of a minibatch for job

𝑗 . rt ( 𝑗) is the time it takes for a reduction operation at the end of

a minibatch such as gradient averaging across the GPUs of a job.

Since reduction time is independent of the minibatch size, but is

still characteristic of a job running in job slot 𝑗 , rt ( 𝑗) lacks a 𝑚
subscript.

For each time step 𝑡 of an episode 𝑖 , we calculate a reward value

for the time step as a sum of the throughputs (equation 3) across

currently running jobs, in addition to any penalties associated with

that time step.

𝑅𝑖𝑡 =
∑
𝑗

𝑅𝑡 ( 𝑗) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠 (4)

The superscript episode index, 𝑖 , is omitted on the RHS of equations

3 and 4 for simplicity.

There were two main penalties designed to help aid the neural

network to train.

1
We use the term distance as proxy for computation (FLOPs not FLOPS) to intuitively

use kinematic equations such as Δ𝑑 = 𝑣𝑡

(1) The cost of a job sitting idle in a jobslot or backlog, whose

magnitude is calculated as

𝐶𝑡 ( 𝑗) =
𝑑𝑚 ( 𝑗)gpusreq(j)
tt𝑚 ( 𝑗) + srrt ( 𝑗)

, (5)

where srrt ( 𝑗) is called the single rack reduction time and is

an estimate of the job’s reduction time if the job running

alone on a single rack using 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗) GPUs.
(2) The cost of fewer than requested GPUs being assigned to

the job in a jobslot, whose magnitude is calculated as

𝐶𝑡 ( 𝑗) =
𝑑𝑚 ( 𝑗) [gpusreq(j) − |G( 𝑗) |]

tt𝑚 ( 𝑗) + rt ( 𝑗)
, (6)

The first penalty applies to both RL-TAPS and no-preemption

methods. Without this penalty, RL-TAPS would fail to learn to

decrease slowdown by running multiple jobs simultaneously. This

is because running one job at a time with high resource usage could

also increase throughput but comes at the expense of longer idle

time for waiting jobs. The second penalty only applies to RL-TAPS
and it is necessary for training the NN to learn to assign GPUs close

to the number that is requested. Assigning more GPUs to a job than

requested can be beneficial and is counted in equation 3.

4.5 Policy Function Design and Training
We use a neural network to represent the policy function.

4.5.1 Neural Network Structure. The overall NN architecture is

shown in Figure 1. Its input, described in section 4.3, represents

the state of the environment. The input is connected to the output

using a single fully connected hidden layer. The output layer of the

NN consists of multiple softmaxes (one for each GPU), all sharing

the previous hidden layer. Each softmax represents a probability

distribution over job slots given a GPU. The bottom part of Figure 1

illustrates the output layer of the NN. Each softmax corresponds to

a decision to assign a GPU to a job slot, with the highest probability

element of the softmax corresponding to the most favoured job slot.

In addition, a GPU may not be assigned to any job slot. Thus, a null

job slot ∅ is used to represent such a situation.

At a given time step 𝑡 , let𝐴𝑔 be the event that a GPU𝑔 is assigned

to one of 𝑁 + 1 job slots, which corresponds to the action with the

highest probability outputted by GPU 𝑔’s softmax, 𝑝 (𝐴𝑔 |𝑠). We

use 𝐴𝑡 to represent the event that events 𝐴𝑔 for all GPUs occur

simultaneously, that is, 𝐴𝑡 =
⋂𝑀

𝑔=1𝐴𝑔 . Assuming independence

among 𝐴𝑔 ’s, we can use the product rule of probability to express

a single policy function as:

𝜋𝜃 (𝐴𝑡 , 𝑆𝑡 ) = 𝑝 (𝐴𝑡 |𝑆𝑡 ) =
𝑀∏
𝑔=1

𝑝 (𝐴𝑔 |𝑆𝑡 ) (7)

where 𝑆𝑡 is the given input at 𝑡 to the NN. Note the capitalized states,

actions, and rewards (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 ) signify that they are sampled using

the policy. Such a single function is needed in the policy gradient

training algorithm described below.

4.5.2 Training Algorithm. As described in the background section,

the REINFORCE algorithm is a result of direct policy differentiation

where the goal is to maximize the expected return. However, the

policy gradients suffers from high variance. This is in part alleviated
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by using the "REINFORCE with baseline" algorithm, which calls for

subtracting an appropriate baseline, 𝑏𝑡 from the return:

𝜃 ← 𝜃 + 𝛼E𝜋𝜃 [(𝐺𝑡 − 𝑏𝑡 )∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 )] (8)

where the choice of 𝑏𝑡 should leave the expectation of the gradient

on the RHS unchanged. The expected reward 𝐺𝑡 and baseline 𝑏𝑡
are computed over a set of episodes generated based on a set of

training job sequences. In our training algorithm, 𝑏𝑡 is the average

of the return over multiple episodic simulations,

𝑏𝑡 =
1

𝐸

𝐸∑
𝑖=1

𝐺𝑖
𝑡 , (9)

where 𝑖 = 1..𝐸 is an index for episode. The expectation on the

RHS of equation (8) is taken simply by averaging across all job

sequences and episodes involved in calculating the gradient prior

to a parameter update.

In order to generate multiple episodes per job sequence during

training, a softmax for a GPU is treated as a probability distribution,

from which a sample is taken to determine which job to assign the

GPU to. During inference, a GPU is assigned to the job slot with

highest probability outputted by the corresponding softmax.

At each time step 𝑡 of an episodes, the NN would be required to

make a decision of which GPUs to assign to which job slot, with

the option of GPUs not be assigned to any slot (i.e. the null job slot).

Then the actions are implemented by the scheduler, followed by

a calculation of the reward for the current step 𝑡 . Then finally the

time step 𝑡 is advanced by 1, and a new job can arrive for this new

time step.

We trained the policy gradient method with two kinds of training

loops. First we trained using a method akin to the usual mini-batch

gradient based training method in a static dataset scenario. This

training loop is shown in Algorithm 1. Second, we trained the NN

in a streaming data scenario.

In both scenarios, multiple sequence of jobs, representing job

arrivals, are made before running finite length episodic simulations.

Each job sequence represents an arrival of one job per time step 𝑡 .

Each epoch involves multiple job sequences.

A single job sequence is used to generate multiple episodes. At

each step of an episode 𝑖 , as usual, we calculate a cumulative dis-

counted reward, the return𝐺𝑖
𝑡 . An aggregate baseline for each time

step, 𝑏𝑡 , is calculated by averaging 𝑣
𝑖
𝑡 across all episodes. A gradient,

Δ𝜃 , is accumulated across multiple job sequences, episodes, and

time steps,

There are three main differences between [8] and our study with

respect to the training algorithm. Firstly, in contrast, we test the

performance of our model on separate test scenarios. Secondly, [8]

employed epoch based learning, in which NN updates occur once

per epoch. In our work, we update the NN multiple times per epoch.

Thirdly, we additionally test the performance of our method in the

face of changing simulation data.

The training loop for minibatch style training is shown in algo-

rithm 1. Training and test job sequences are pre-made and remain

static, and thus we refer to this as the Non-Streaming training
method.

Algorithm 1 was modified in two small ways to simulate Stream-
ing Data training. Firstly, before shuffling the job sequences, one

would simply re-initialize a new set of 𝐽 training job sequences

Algorithm 1: Minibatch Training with Static Job Se-

quences

1 Initialize network parameters 𝜃

2 Initialize 𝐽 training job sequences

3 Initialize batchsize 𝐵

4 for each epoch:
5 Shuffle training job sequences

6 for job sequence 𝑙 = 1..𝐽 :
7 for episode 𝑖 = 1..𝐸:
8 Generate episode sequence ((𝑆𝑖𝑡 , 𝐴𝑖

𝑡 , 𝑅
𝑖
𝑡 ))𝑡=1..𝑇𝑖

9 for 𝑡 = 1..𝑇𝑚𝑎𝑥 :
10 𝐺𝑖

𝑡 ←
∑𝑇𝑚𝑎𝑥

𝑘=𝑡
𝛾𝑘−𝑡𝑅𝑖

𝑘

11 for 𝑡 = 1..𝑇𝑚𝑎𝑥 :
12 𝑏𝑡 ← 1

𝐸

∑𝐸
𝑖=1𝐺

𝑖
𝑡

13 for episode 𝑖 = 1..𝐸:
14 Δ𝜃 ← Δ𝜃 + (𝐺𝑖

𝑡 − 𝑏𝑡 )∇𝜃 log𝜋𝑖𝜃 (𝐴𝑡 , 𝑆
𝑖
𝑡 )

15 if 𝑙 mod 𝐵 is 0:
16 𝜃 ← 𝜃 + 𝛼 1

𝐵𝐸
Δ𝜃

every few epochs. Secondly, a new testing job sequence was gen-

erated for every epoch. This approach was used to investigate the

potential for the NN to train with new incoming job sequences.

4.6 Simulation Environment
4.6.1 Modeling Cluster Topology. The RL scheduler is trained on

a simulated environment. A neural network designed in Theano

is used as a function approximator. All code is written in Python.

The graph representation of the cluster was modelled using the

NetworkX python package.

The main benefit of building a simulation environment is it

enables quick testing of different ideas, without having to wait for

real DL jobs to run on a cluster.

Intra and inter machine network topology is simulated by mod-

eling the cluster as a graph. We assume that each machine in the

cluster is an IBM Power8 Minsky box (model S822LC [2]), and

that the cluster can consist up to 4 racks. The main idea was to

model elements such as CPUs, GPUs, network cards and switches

as nodes in the cluster and the communication links between them

as edges. The full list of nodes modelled is shown in Table 1. Each

machine consists of 4 GPUs, 2 CPUs, and 2 Infiniband cards. Two

GPUs are connected to each CPU. This type of configuration was

described in [3], which benchmarked the use of IBM’s PowerAI

library for performing DDL on a 256 GPU cluster of IBM Power8

Minsky boxes.

The following edge weights between the nodes were modelled:

default bandwidth, run-time bandwidth, number of jobs per edge.

The node and edge types modelled are described in table 1, and

a visual representation of the nodes and edges are shown in a

graphical representation of a portion of the cluster on the left hand

side of Figure 2.

The main idea behind topology modeling is to count the number

of jobs using each edge in the graph, that is, the number of jobs per

edge. To do so, we need to keep track of the links used by GPU to

GPU pair paths. With a large number of resources, it is infeasible
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Table 1: Nodes and Edges modelled

Nodes

CPU, GPU,

Infiniband card (IBC),

Top-of-Rack Switch (TRS),

Director Switch (DS)
1

Edges (Default BW in GB/s)
2

CPU-CPU (38.5),

CPU-GPU(40),

CPU-IBC(1000),

IBC-TOR(12.5),

TRS-DS(6.25)

Edges Weights
3

Default BW,

Run-Time BW
4
,

Number of Jobs per Edge

1
Only one Director Switch was simulated.

2
BW = Bandwidth

3
Each edge has three weights

4
Run-Time BW = Default BW / Number of Jobs per Edge

to list all possible combinations of GPU-GPU assignments ahead of

time. Thus we pre-compute the shortest paths between each unique

GPU-GPU pair. During run time, for each job, we build up a set of

edges, which is the set summation of all edges in the paths of all

unique GPU-GPU pairs being used by a job. Obviously, if a job was

only assigned a single GPU, that job would not contribute to the

job count of any edge. The "Number of Jobs per Edge" edge weight

value is used in determining the effective speed of simulated jobs.

The speed of jobs become important in the reward formulation

which is described in section 4.4.2.

4.6.2 Job Modelling. As already mentioned, our job picking and

resource allocation method is meant for DNN type jobs. Here we

discuss the attributes of the simulated DNN jobs that our scheduler

tries to schedule as they arrive in our simulation, not the attributes

of the NN function approximate used in our DRL method. Symbols

representing modelled job attributes are suffixed with "( 𝑗)".
Let us assume for simplicity that the time it takes for a minibatch

of data to feed into a GPU to be negligible compared to the time it

takes for a job to complete one minibatch of computation. Further-

more, consider a job that runs on a single GPU, which has a Floating

Points Operations Per Second (FLOPS) rating of 𝑣𝑃100. 𝑃100 is an

NVIDIA GPU model. Let us think about the complexity of a DNN

model, i.e. the Floating Point Operations (FLOPs not FLOPS) of

a single forward pass on a single data example, as a distance per

example, 𝑑𝑒𝑥 ( 𝑗) .
The speed of a single GPU job, 𝑣𝑡 ( 𝑗) , at a given time step 𝑡

during the simulation, can be expressed as follows and is roughly

equivalent to speed of the GPU.

𝑣𝑡 ( 𝑗) ≈
𝑑𝑚 ( 𝑗)
tt𝑚 ( 𝑗)

≈ 0.9𝑣𝑃100, (10)

where the 0.9 on right hand side is to simulate the fact that the

actual FLOPS observed is less than the advertised FLOPS.

To use realistic values of attributes of DNN jobs, a table of 35

Convolutional Neural Network (CNN) architectures and their prop-

erties such as model complexity (𝑑𝑒𝑥 ( 𝑗) ), gradient size (same as

the memory footprint of all model parameters), etc. were conve-

niently obtained from [12]. During job initialization, it is randomly

assigned a CNN architecture’s model complexity, and gradient size.

Also during job initialization, the training time of a job’s mini-

batch, 𝑡𝑡𝑚 ( 𝑗) , is obtained from equation 10, where 𝑣𝑃100 is a con-

stant, 𝑑𝑚 ( 𝑗) = 𝑑𝑒𝑥 ( 𝑗)𝑚 ( 𝑗) is known because 𝑑𝑒𝑥 ( 𝑗) is simply the

complexity a of model as reported by [12].𝑚 ( 𝑗) is a job’s assigned
mini-batch size randomly chosen as one of {32, 64, 128, 256, 512}.
Finally, borrowing from [8], we sample from uniform distributions

(see section 5.1) to assign a job a length 𝑙𝑒𝑛( 𝑗) and number of

resources (only GPUs in our case) requested by the job, 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗).
During the simulation, a job finishes once it has undergone a total

amount of computation, which we refer to as "total computational

distance":

𝑑𝑡𝑜𝑡 ( 𝑗) = 𝑙𝑒𝑛( 𝑗) × 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗) × 𝑑𝑐𝑒𝑙𝑙 , (11)

where 𝑙𝑒𝑛( 𝑗) and𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗) multiply to give the number of colored

cells of a job slot (see figure 1), and 𝑑𝑐𝑒𝑙𝑙 is a calibrated computa-

tional distance associated with a single cell, in units of FLOPs. The

details of this calibration is included in the Appendix A. The purpose

of the calibration process is two fold. One, it ensures that the input

image can represent the entirety of the computational distance of

the job, whether that be in the queue, or in the cluster portion of the

input. Secondly, the calibration associates a time value in seconds,

𝑡𝑠𝑡𝑒𝑝 , with a row of the input image. Every time the simulation

advances one step, the computational distance in FLOPs each job

has "travelled" can be computed uniquely as 𝑣𝑡 ( 𝑗) × 𝑡𝑠𝑡𝑒𝑝 .

4.6.3 Reduction Time Measurement and Formulation. The reduc-
tion time of a job, rt ( 𝑗) is modelled using a combination of measured

data and a heuristic. In our modeling, it is expressed as follows:

rt ( 𝑗) = srrt ( 𝑗) (1 + (𝑟 − 1)/5)𝑠 ( 𝑗) (12)

The right hand side of equation 12 consists of three terms. The

first, srrt ( 𝑗) , is the single rack ring reduction time, derived from

ring reduction measurements on a single rack for up to 16 GPUs.

The second factor in parentheses is a simple heuristic to model

the increase in reduction time due to using increasing number of

racks, 𝑟 . The third, 𝑠 ( 𝑗) is a scale factor that accounts for bandwidth
sharing. These three terms are explained in more detail below.

Single Rack Ring Reduction Time, srrt ( 𝑗) : Ring reduction mea-

surements were taken for up to 4 machines on a single rack, for a

total of 16 GPU’s. It was measured for 100 MB and 500 MB gradient

sizes, and the measurements are shown in Figure 3. The measure-

ments were fitted with square root functions. In order to estimate

the reduction time for different gradient sizes and GPU counts, we

interpolate linearly between the two curves by drawing a vertical

line at the desired GPU count. At 0 MB, we set the reduction time

to be 0, and for all gradient sizes greater than 100 MB, we simply

use the equation of the line between the 100 MB and 500 MB curves.

We use the two fitted curves in Figure 3 to account for different

number of GPUs allocated to a job, and interpolated between them

as explained above, to account for different gradient sizes.
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Figure 3: Single Rack Reduction Time measurements

Extrapolating Reduction time for Multiple Racks: Since at the time

of measurement and data collection, reduction time measurements

between racks were not available, wemodel between rack reduction

times with the second term on the right hand side of 12. For example,

if we require the reduction time of using 8 GPUs on 2 racks instead

of 1 rack, we multiply the right hand side by (1 + (2 − 1)/5) = 1.2.

Thus, for 2, 3, and 4 racks, this factor would be 1.2, 1.4 and 1.6

respectively.

Scale factor, 𝑠 ( 𝑗) : Finally, the scale factor, 𝑠 ( 𝑗) is expressed as

𝑠 ( 𝑗) =
limbwsingle ( 𝑗)
limbwmulti ( 𝑗)

, (13)

where the numerator, limbwsingle ( 𝑗) , represents the limiting band-

width of a job 𝑗 if that job was running alone in the cluster. The

denominator, limbwmulti ( 𝑗) , represents the limiting bandwidth of a

job 𝑗 while there are multiple jobs running in the cluster. Given that

a job 𝑗 is assigned a set of GPUs, let 𝑝𝑎𝑡ℎ𝑠 ( 𝑗) be the collection of

shortest paths between unique GPU-GPU pairs among the assigned

GPUs. Further, let E( 𝑗) be the set of all undirected edges in 𝑝𝑎𝑡ℎ𝑠 ( 𝑗) .
limbwsingle ( 𝑗) and limbwmulti ( 𝑗) are defined as,

limbwsingle ( 𝑗) = min
𝑒∈E(j)

Default BW(𝑒) (14)

limbwmulti ( 𝑗) = min
𝑒∈E(j)

Run-time BW(𝑒). (15)

To help remember the meaning of limbwsingle ( 𝑗) and limbwmulti ( 𝑗) ,
one can call them "single job limiting bandwidth" and "multiple job

limiting bandwidth", respectively.

The main reason for using the scale factor is that it is impossible

to pre-measure reduction times for the huge number of combina-

tions of GPU to job assignments. The scale factor helps account

for the difference between a job’s reduction time due to sharing

of bandwidth with other jobs during the RL simulation, versus the

reduction time the job would have if it was running alone. This is

needed since the reduction time measurements were carried out for

one reduction process at a time on a cluster of four Minksy Boxes.

5 EVALUATION
We describe specifics of the cluster topology, dimensions of the NN,

and the performance measures used for evaluation. Also, we briefly

describe the non-topology aware baseline methods of comparison.

Finally we present the results of our method.

5.1 Experimental Setup
We tested our method on a simulated cluster with a total of 8

machines on 4 racks, with 2 machines on each rack (which can be

written down as [2,2,2,2]). Each machine has 4 GPUs, thus there is

a total of 4 GPUs x 8 machines = 32 GPUs. Thus𝑀 = 32. Normally,

one would keep as many machines on the same cluster as possible.

However, as a proof of concept, we wished to investigate the effects

of topology on the performance of our method compared to the

non-topology aware baselines, while allowing a NN to train within

a reasonable amount of time.

The number of job slots we used in the input image is 𝑁 = 10,

and the backlog could hold 60 jobs. The maximum 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗) was
limited to 12 per job, to limit the number of columns needed to

represent a jobslot in the input image.

The number of hidden units used for the hidden layer was set

to 1.5 times the total number of output units, rounded up. The

total number of output units is 32 × 11 = 352. Updates to the

NN parameters were done with an Adam optimizer and an initial

learning rate of 0.001.

During each episode, one job per time-step would arrive for

the first 400 consecutive time-steps. The maximum episode length,

𝑇𝑚𝑎𝑥 was set to 1000. The number of episodes, 𝐸, per job sequence

was set to 20. The number of job sequences, 𝐽 , was different for the

minibatch and streaming training experiments.

The length of the job, 𝑙𝑒𝑛( 𝑗), and its resource request,𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗),
were sampled from uniform distributions. Roughly half the jobs

had 𝑙𝑒𝑛( 𝑗) between 1 and 3, and the other half between 6 and 10.

Similarly, roughly half of the jobs had 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗) between 1 and 7,

and the other half between 8 and 12.

5.1.1 Non-Streaming vs Streaming Training. For non-streaming

data training, a static set 200 training and 200 testing job sequences

were created before the start of an epoch.

For streaming data training, a fresh set of 60 training job se-

quences were used every 10 epochs. At the end of every epoch, a

fresh set of 60 testing job sequences were used for testing.

For both training scenarios, the training and testing perfor-

mances were plotted for 50 epochs, every epoch.

5.2 Performance Measures
5.2.1 Mean Reward. To display the reward across all 𝐸 episodes

and 𝐽 job sequences of a single epoch, the first return, 𝐺𝑖
1
of each

episode 𝑖 is collected for every job sequence. Notice that the usual

formula for the first return,𝐺𝑖
1
, is already an aggregate (a discounted

sum) of all rewards of a single episode. In this paper, we refer to

Mean Reward as the mean of all 𝐺𝑖
𝑖
across all job sequences and

episodes of an epoch:

𝑀𝑒𝑎𝑛 𝑅𝑒𝑤𝑎𝑟𝑑 =
1

𝐽

1

𝐸

∑
𝑗

∑
𝑖

𝐺𝑖
1
. (16)

where job sequence index j is omitted in the return for simplicity.

5.2.2 Slowdown. In scheduling studies, it is also instructive to plot

the slowdown. Slowdown for a single job is defined as,

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛( 𝑗) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡𝑖𝑚𝑒 ( 𝑗) − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒 ( 𝑗)
𝑙𝑒𝑛( 𝑗) , (17)
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where 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡𝑖𝑚𝑒 ( 𝑗) is the time step at which a job finished. If by

time step 𝑇𝑚𝑎𝑥 there exists unfinished jobs, then those jobs are

assigned 𝑇𝑚𝑎𝑥 as the finish time. 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒 ( 𝑗) is the time-step at

which a job arrives.

To associate an aggregate slowdown for an entire epoch, we

calculate the Mean Slowdown by simply taking the average job

slowdowns across all jobs that arrived during an epoch. This mean

is taken across all job sequences and all episodes of an epoch.

5.3 Evaluation baselines
To compare with baseline job picking and resource allocation meth-

ods, we used the following static schedulers from [8]: Random,

Shortest-Job-First (SJF), and Tetris. These schedulers only performed

job picking, by selecting one job at a time among the jobs in the slots.

The Random and SJF job pickers are self-explanatory. Tetris is based

on [6]. Its implementation in our environment works by picking

the job whose resource request 𝑔𝑝𝑢𝑠𝑟𝑒𝑞( 𝑗), when multiplied by the

number of available GPUs, leads to the largest value. For resource

allocation for these schedulers, the behaviour of heuristic resource

allocator from [8] was preserved. This baseline resource allocator

simply numbered the resources of a certain type consecutively,

then picked the first x resources to assign, where x is the number

resources of a certain type requested by a job. The allocator would

search for free resources in the cluster representation of the input

image from left to right starting at the top of the image. For a given

job, its resource allocations across the GPUs were required to begin

at the same time step. Although this baseline resource allocator is

not topology aware, we made sure to use the capabilities of our

simulator to calculate the unique speed of jobs scheduled by these

schedulers.

The Total Rewards and Average Slowdowns were also computed

for these baseline schedulers. The extra penalties explained in sec-

tion (4.4.2) were of course not used because they are not applicable

to static resource allocators.

5.4 Performance Results
The results of measuring Mean Reward and Mean Slowdown for the

non-streaming data and streaming data training experiments are

shown in figure 4 and 5, respectively. The figures show that mean

reward and slowdown performance of RL-TAPS is clearly better

than the baseline schedulers. The baseline schedulers performed

poorer because they do not learn to, nor even heuristically, take into

account topology. In order for an NN to take into account topology,

there must be some signal to guide it to understand that certain

values of units in the input correspond to desirable choices made by

the output. In the case of our prototype, this signal only came in the

form of a topology-sensitive reward signal and current GPU to job

assignments. To our surprise, the NN was able to learn even though

the bandwidth usages of the topology were not explicit features in

the input.

The non-streaming training method showed slightly better per-

formance than the streaming training method with respect to the

mean reward, but the performance with respect to mean slowdown

were similar. This is good news as the end goal is to first train

RL-TAPS in a simulation environment, but deploy and continue to

train in a real cluster. The big benefit of detailed topology modelling
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Figure 4: Mean Reward (top) and Slowdown (bottom) for the
non-streaming data training scenario (see 5.1.1).
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Figure 5: Total Reward (left) and Slowdown (right) for the
streaming data training described (see5.1.1).

is that training can start in simulation and thus the scheduler could

potentially be useful when it is deployed, without having to wait

months to be trained.

6 DISCUSSION
Training NNs with the Policy Gradient method is often fraught with

difficulties such as unstable policy parameters. Interesting and also

concerning is that most of the learning in our experiment happens

very early on and quickly plateaus. Further investigation is needed

with regard to whether learning is stopping prematurely, or actually

progressing well very quickly. With respect to the environment

modelling, one limitation is that we have not yet modelled the

cost of pausing and restarting DDL type jobs. Given the strong

performance of RL-TAPS thus far, however, we are hopeful that
RL-TAPS will still be capable of outperforming the no-preemption

methods. Making this improvement may require some change to the

input or the RL simulation. Another limitation currently is that the

NN input design makes simulating large cluster sizes prohibitive.

The jobslot representations are quite wasteful as many units of the

input may end up with zeros. A fully connected hidden layer to

a large input layer is not scalable. The large output search space

also contributes to the high parameter count of our NN (roughly

1 million). Nonetheless, once trained, our NN completes a single

inference step in less than 0.1 seconds on CPU. If incorporated into

a production scheduler, RL-TAPS will not require many resources.
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7 CONCLUSION AND FUTUREWORK
We proposed a deep reinforcement learning based scheduler that

simultaneously selects jobs and assigns resources to them. Job se-

lection and resource allocation are non-linearly related and this

scheduler addresses the challenge associated with attempting to

simultaneously solve these two dependent combinatorial optimiza-

tion problems. Our scheduler RL-TAPS considers the topology of

the environment and allows for full preemption. We evaluated the

performance of RL-TAPS in different scenarios and compared it

against various baselines demonstrating the efficiency and effec-

tiveness of our method.

Going forward, we wish to address the scalability issue of the NN.

In the short term, we will try reformulating the input into some-

thing that is more compact, with room to incorporate topology

bandwidth information. There is also the need to solve additional

assignment problems such as which reduction algorithm to assign

to a job for both intra-machine and inter-machine communication.

For example, Nvidia’s NCCL library as well as IBM’s DDL library

consists of various different gradient reduction (i.e. averaging) al-

gorithms for both within and between machine communication.

The question of how to solve multiple simultaneous assignment

problems without exploding the search space must be investigated.

In addition to the full preemption scheduling of RL-TAPS, we
wish to explore other preemption methods mentioned in section

1. Designing a full-preemption NN was less complicated then de-

signing an NN that can handle partial-preemption decisions due to

the requirement of enforcing constraints in the latter. Currently, to

our knowledge, there exists no NN architecture method that would

allow one to enforce inequality constraints. The combinatorial op-

timization techniques with NNs to date have all avoided tackling

such problems. We approached this issue in our work through

penalties, but RL-TAPS fails to enforce them strictly. Likely this

problem may require novel NN ideas to solve, and would be a very

interesting endeavour.
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A INPUT CALIBRATION
To integrate the simulation with the reduction time measurements,

we associate a time span in seconds, 𝑡𝑟𝑜𝑤𝑠 (𝑐) , with each row of the

input image, and a computational distance for per cell, 𝑑𝑐𝑒𝑙𝑙 . The

table below shows how 𝑡𝑟𝑜𝑤𝑠 (𝑐) is calibrated as the time in sec-

onds it would take a vgg-vd-19 model to complete 1000 minibatch

iterations using a single GPU, over the horizon of the input image.

Table 2: Formulas to derive 𝑡𝑟𝑜𝑤 (𝑐) and 𝑑𝑐𝑒𝑙𝑙

subscript 𝑐 calibration variable

subscript 𝑓 means final or total

vgg-vd-19 calibration DNN model

𝑑𝑒𝑥 (𝑐) 20 × 109 FLOPs, complexity of model

𝑚 (𝑐) 256, minibatch size of model

𝑑𝑚 (𝑐) = 𝑑𝑒𝑥 (𝑐)𝑚 (𝑐) computational distance per minibatch

it 𝑓 (𝑐) 1000, total number of job iterations

𝑔(𝑐) 1, number of columns to represent the job

𝑑𝑓 (𝑐) = it 𝑓 (𝑐)𝑑𝑚 (𝑐)𝑔(𝑐) total computational distance of the job

𝑣 (𝑐) = 𝑣𝑃100 GPU speed

𝑡𝑓 (𝑐) =
𝑑𝑓 (𝑐 )
𝑣(𝑐 )

total job run time in seconds

rows (𝑐) 10, number of rows (horizon)

𝑛 (𝑐) = 𝑟𝑜𝑤𝑠 (𝑐)𝑔(𝑐) number of highlighted cells for job in

jobslot

𝑑𝑐𝑒𝑙𝑙 =
𝑑𝑓 (𝑐 )
𝑛 (𝑐 )

calibrated computational distance per cell

𝑡𝑟𝑜𝑤 (𝑐) =
𝑡𝑓 (𝑐 )

𝑟𝑜𝑤𝑠 (𝑐 )
calibration time of each row in seconds

http://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1708.02188
https://arxiv.org/abs/1708.02188
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/3005745.3005750
https://openreview.net/forum?id=Hkc-TeZ0W
https://openreview.net/forum?id=Hkc-TeZ0W
http://arxiv.org/abs/1706.04972
https://doi.org/10.1145/3190508.3190517
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
http://arxiv.org/abs/1506.03134
https://doi.org/10.1007/BF00992696

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mathematical Programming vs Heuristics
	2.2 DRL-based schedulers

	3 Background
	3.1 Reinforcement Learning
	3.2 Policy Gradients

	4 Proposed Method
	4.1 Problem statement
	4.2 Topology Awareness
	4.3 State representation
	4.4 Actions and Rewards
	4.5 Policy Function Design and Training
	4.6 Simulation Environment

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Measures
	5.3 Evaluation baselines
	5.4 Performance Results

	6 Discussion
	7 Conclusion and Future Work
	References
	A Input Calibration

