
Distributed and Parallel High Utility Sequential Pattern Mining

Morteza Zihayat, Zane Zhenhua Hu, Aijun An and Yonggang Hu

Technical Report EECS-2016-03

April 12 2016

Department of Electrical Engineering and Computer Science
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Distributed and Parallel High Utility Sequential Pattern Mining

Morteza Zihayat†, Zane Zhenhua Hu‡, Aijun An† and Yonggang Hu‡
†Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

‡Platform Computing, IBM, Toronto, Canada
zihayatm@cse.yorku.ca, zane@ca.ibm.com, aan@cse.yorku.ca, yhu@ca.ibm.com

Abstract—The problem of mining high utility sequential pat-
terns (HUSP) has been studied recently. Existing solutions are
mostly memory-based, which assume that data can fit into
the main memory of a computer. However, with advent of big
data, such an assumption does not hold any longer. In this
paper, we propose a new framework for mining HUSPs in big
data. A distributed and parallel algorithm called BigHUSP is
proposed to discover HUSPs efficiently. At its heart, BigHUSP
uses multiple MapReduce-like steps to process data in par-
allel. We also propose a number of pruning strategies to
minimize search space in a distributed environment, and thus
decrease computational and communication costs, while still
maintaining correctness. Our experiments with real life and
large synthetic datasets validate the effectiveness of BigHUSP
for mining HUSPs from large sequence datasets.

1. Introduction

In recent years, mining of big data for extracting novel
insights has become a fundamental task in different domains
such as market analysis, web mining, mobile computing
and network analysis. However, traditional approaches are
not designed to handle massive amounts of data, so in
recent years many such methods are re-designed and re-
implemented under a computing framework such as Apache
Spark [1] that is better equipped to handle big data. One
of the important problems in such domains is identifying
informative sequential patterns with respect to a business
objective, such as patterns that represent profitable purchase
sequence in market analysis, or sequences of web pages
related to users’ interest in web mining. These patterns
can be discovered using high utility sequential pattern min-
ing methods [2], [3], [4]. Although much work has been
conducted on big data analytics [5], mining high utility
sequential patterns (HUSPs) from big data has received little
attention.

The main objective of HUSP mining is to extract valu-
able and useful sequential patterns from data by consid-
ering a business objective such as profit, user’s interest,
cost, etc. A sequence is a high utility sequential pattern
(HUSP) if its utility, defined based on the business objective
(e.g., profit), in a dataset is no less than a minimum utility
threshold. HUSP mining is desirable in many applications
such as market analysis, web mining, mobile computing

and bioinformatics. However, most existing solutions [2],
[3] are memory-based, which assume that data can fit in
main memory of a single machine. When dealing with a
considerably large number of sequences whose information
may not be entirely loaded into main memory, most existing
algorithms cannot efficiently complete the mining process.
Thus, existing algorithms are not suitable for handling big
data.

Mining HUSPs from big data is not an easy task due
to the following challenges. First, with the exponential
growth of data in different domains, it is impossible or
prohibitively costly to execute HUSP mining algorithms
on a single machine. Developing a parallel and distributed
algorithm is the key to solving the problem. Second, an
HUSP mining method needs to compute the utility of a
candidate pattern over the entire set of input sequences in
a sequence database. In a distributed platform, if the input
sequences are distributed over various worker nodes, the
local utility of a sequence in the partition at a worker node
is not much useful for deciding whether the given pattern
is a HUSP or not. Hence, we need to design a mechanism
to aggregate local utility of a pattern in various nodes into
a global data structure so that we can calculate utility of
a pattern efficiently. Third, high utility sequential pattern
analysis in big data faces the critical combinatorial explosion
of search space caused by sequencing among sequence
elements. Thus, pruning search space without losing HUSPs
is critical for efficient mining of HUSPs. However, pruning
search space in HUSP mining is more difficult than that in
frequent sequential pattern mining because the downward
closure property does not hold for the utility of sequences.
That is, the utility of a sequence may be higher than, equal
to, or lower than its super-sequences and sub-sequences [2],
[3]. Thus, many search space pruning techniques that rely
on the downward closure property cannot be directly used
for mining HUSPs.

Motivated by the above challenges, we propose a par-
allel and distributed high utility sequential pattern mining
algorithm called BigHUSP to mine HUSPs from big data. To
the best of our knowledge, this topic has not been addressed
so far. At a high-level, BigHUSP is designed and developed
based on the Apache Spark [1] platform and takes advantage
of several merit properties of Spark such as distributed in-
memory processing, fault recovery and high scalability. We
also propose a number of novel strategies to effectively

prune the search space and unnecessary intermediate pat-
terns in a distributed manner, which reduce computational
and communication costs drastically. We conduct extensive
experiments to evaluate the performance of the proposed
algorithm. Experimental results verify that BigHUSP signif-
icantly outperforms baseline methods and efficiently mines
HUSPs from big data.

2. Preliminaries and Problem Statement

2.1. Distributed Platform

Apache Spark was proposed as a framework to support
iterative algorithms efficiently [1]. The Spark engine runs
in a variety of environments like Hadoop1, Mesos clusters2

and IBM Platform Conductor for Spark3 and it has been
used in a wide range of data processing applications. The
main key concept in Spark is the resilient distributed dataset
(RDD). RDD enables us to save great efforts for fitting into
the MapReduce framework and also improve the processing
performance. In this paper, we use Spark on top of IBM
Platform Conductor that is an enterprise-grade, multi-tenant
resource manager. It allows organizations to run multiple
instances of Spark frameworks simultaneously on a shared
infrastructure for the best time to results and resource uti-
lization through its efficient resource scheduling.

2.2. Problem Statement

Let I∗ = {I1, I2, · · · , IN} be a set of items. A sequence
S is an ordered list of itemsets 〈X1, X2, · · · , XZ〉, where Z
is the size of S. The length of S is defined as

∑Z
i=1 |Xi|. An

L-sequence is a sequence of length L. A sequence database
D consists of a set of sequences {S1, S2, ..., SK}, in which
each sequence Sr has a unique sequence identifier r and
consists of an ordered list of itemsets 〈ISd1 , ISd2 , ..., ISdn〉,
where each itemset ISdi has a unique global identifier di.
An itemset ISd in the sequence Sr is also denoted as Sdr .
Definition 1. (Super-sequence and sub-sequence) Se-

quence α = 〈X1, X2, ..., Xi〉 is a sub-sequence of
sequence β = 〈X ′

1, X
′

2, ..., X
′

j〉 (i ≤ j) or equiva-
lently β is a super-sequence of α if there exist integers
1 ≤ e1 < e2 < ...ei ≤ j such that X1 ⊆ X

′

e1 , X2 ⊆
X

′

e2 , ..., Xi ⊆ X
′

ei (denoted as α � β).

Definition 2. (External utility and internal utility) Each
item I ∈ I∗ is associated with a positive number p(I),
called the external utility (e.g., price/unit profit). In
addition, each item I in itemset Xd of sequence Sr (i.e.,
Sdr) has a positive number q(I, Sdr), called its internal
utility (e.g., quantity) of I in Xd or Sdr .

Definition 3. (Utility of an item in an itemset of a se-
quence Sr) The utility of an item I in an itemset Xd of a

1. http://wiki.apache.org/hadoop
2. http://mesos.apache.org
3. https://www.ibm.com/developerworks/servicemanagement

/tc/pcs/index.html

sequence Sr is defined as u(I, Sdr) = fu(p(I), q(I, S
d
r)),

where fu is the function for calculating utility of item
I based on internal and external utility. For simplicity,
without loss of generality, we define the utility function
as fu(p(I), q(I, Sdr)) = p(I) · q(I, Sdr).

Definition 4. (Utility of an itemset in an itemset of a
sequence Sr) Given itemset X , the utility of X in the
itemset Xd of the sequence Sr where X ⊆ Xd, is
defined as u(X,Sdr) =

∑
I∈X

u(I, Sdr).

Definition 5. (Occurrence of a sequence α in a se-
quence Sr) Given a sequence Sr = 〈S1

r , S
2
r , ..., S

n
r 〉

and a sequence α = 〈X1, X2, ..., XZ〉 where Sir and
Xi are itemsets, α occurs in Sr iff there exist inte-
gers 1 ≤ e1 < e2 < ... < eZ ≤ n such that
X1 ⊆ Se1r , X2 ⊆ Se2r , ..., XZ ⊆ SeZr . The ordered list of
itemsets 〈Se1r , Se2r , ..., SeZr 〉 is called an occurrence of α
in Sr. The set of all occurrences of α in Sr is denoted
as OccSet(α, Sr).

Definition 6. (Utility of a sequence α in a sequence
Sr) Let õ = 〈Se1r , Se2r , ..., SeZr 〉 be an occurrence of
α = 〈X1, X2, ..., XZ〉 in the sequence Sr. The utility

of α w.r.t. õ is defined as su(α, õ) =
Z∑
i=1

u(Xi, S
ei
r).

The utility of α in Sr is defined as su(α, Sr) =
max{su(α, õ) | õ ∈ OccSet(α, Sr)}.
Figure 1(a) shows a sequence database with five se-

quences. The utility of itemset {ac} in S2
2 is u({ac}, S2

2) =
u(a, S2

2) + u(c, S2
2) = 4 × 2 + 1 × 1 = 9. Given

α = {a}{c}, the set of all occurrences of the sequence
α in S1 is OccSet(α, S1) = {õ1 : 〈S1

1 , S
2
1〉, õ2 :

〈S1
1 , S

3
1〉}, hence the utility of α in S1 is su(α, S1) =

max{su(α, õ1), su(α, õ2)} = {5, 7} = 7.
Let D be a sequence database and D1, D2, ..., Dm are

partitions of D such that D = {D1 ∪ D2 ∪ ... ∪ Dm} and
∀{Di, Dj} ∈ D,Di ∩ Dj = ∅. We have the following
definitions:
Definition 7. (Local utility of a sequence α in a partition

Di) The local utility of a sequence α in the partition Di

is defined as suL(α,Di) =
∑

Sr∈Di

su(α, Sr).

Definition 8. (Global utility of a sequence α in a sequence
database D) The global utility of a sequence α in D is
defined and denoted as suG(α,D) =

∑
Di⊆D

suL(α,Di).

Accordingly, the total utility of a partition Di is
defined as UDi

=
∑

Sr∈Di

su(Sr, Sr). The total utility of

a sequence database D is defined as UD =
∑

Di⊆D
UDi

.

Definition 9. (Local High Utility Sequential Pattern (L-
HUSP)) Given a utility threshold δ in percentage, a
sequence α is a local high utility sequential pattern in
the partition Di, iff suL(α,Di) ≥ δ · UDi

.

Definition 10. (Global High Utility Sequential Pattern
(G-HUSP)) Given a utility threshold δ in percentage, a

PID SID Sequence Data
D1

S1 ଵܵଵ:{(a,2)(b,3)(c,2)}; ଵܵଶ:{(b,1)(c,1)(d,1)}; ଵܵଷ:{(c,3)(d,1)}
S2 ܵଶଵ:{(b,4)}; ܵଶଶ:{(a,4)(b,5)(c,1)}

D2 S3 ܵଷଵ:{(b,3)(d,1)}; ܵଷଶ:{(a,4)(b,5)(c,1)}; ܵଷଷ:{(a,2)(c,3)}
D3

S4 ܵସଵ:{(a,2)(b,5)(e,2)}
S5 ܵହଵ:{(c,4)}

Items ࡿ ࡿ ࡿ
a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉
c 〈0,35〉 〈1,7〉 〈3,0〉
d 〈4,34〉 〈0,7〉 〈0,0〉

(a) (b)

Item a b c d e
Profit 2 3 1 4 3

Figure 1. (a) An example of sequence database, (b) Utility Matrix (UM) of S3

sequence α is a global high utility sequential pattern in
sequence database D, iff suG(α,D) ≥ δ · UD.

Problem Statement. Given a minimum utility threshold
δ (in percentage) and a sequence database D, our problem of
distributed and parallel high utility sequential pattern mining
from big data D is to discover the complete set of sub-
sequences of itemsets whose global utility in D is no less
than δ · UD by parallel mining of partitions of D over a
cluster of computers.

2.3. Sequence-Weighted Utility

It has been proved that the utility of a sequence does
not have the downward closure property [2], [3]. Thus, the
search space for HUSP mining cannot be pruned as it is
done in the frequent sequential pattern mining framework.
Ahmed et al [6] proposed the concept of Sequence-Weighted
Utility (SWU) to provide an over-estimate of the true utility
of a sequence, which has the downward closure property.
In our proposed framework, we use SWU to identify and
filter out items that cannot be part of a HUSP, which is the
first pruning strategy used in our method.
Definition 11. Given a partition of sequences Di, the Local

Sequence-Weighted Utility (LSWU) of a sequence α in
Di, denoted as LSWU(α,Di), is defined as the sum
of the utilities of all the sequences containing α in Di:
LSWU(α,Di) =

∑
Sr∈Di∧α�Sr

su(Sr, Sr) where α � S

means α is a subsequence of S.

Accordingly, the Global Sequence-Weighted Utility
(GSWU) of a sequence α in database D is defined as:
GSWU(α,D) =

∑
Di⊆D

LSWU(α,Di).

Definition 12. (High GSWU Sequence). Given a minimum
utility threshold δ and sequence database D, a sequence
α is called high GSWU sequence iff GSWU(α,D) ≥
δ · UD.

Below we prove that the maximum utility of any se-
quence containing α will be no more than GSWU(α,D).
Theorem 1. Given a sequence database D and two se-

quences α and β such that α � β, GSWU(α,D) ≥
GSWU(β,D).

Proof 1. Given D as set of partitions D1, D2, ..., Dm,
we prove that LSWU(α,Di) ≥ LSWU(β,Di) where
Di ⊆ D. The proof can be easily extended to sequence
database D. Let Dα

i be the set of sequences containing
α in Di and Dβ

i be the set of sequences containing β in
Di. Since α � β, β cannot be present in any sequence
where α does not exist. Consequently, Dβ

i ⊆ Dα
i . Based

on Definition 11, LSWU(α,Di) ≥ LSWU(β,Di).

According to Theorem 1 if α is not a high GSWU, there
will be no HUSP containing α.

3. Mining High Utility Sequential Patterns
from Big Data

In this section, we propose an efficient algorithm called
BigHUSP for discovering HUSPs in big data. BigHUSP
takes a sequence database D and a minimum utility thresh-
old δ as inputs and outputs the complete set of G-HUSPs in
D. Figure 2 shows an overview of BigHUSP. In the initial-
ization phase, BigHUSP uses a MapReduce step to compute
the GSWU value for each item and identify unpromising
items, that is, items whose GSWU is less than the minimum
utility threshold (which cannot form a HUSP). By pruning
the unpromising items from the matrices, the search space
becomes significantly smaller. In the L-HUSP mining phase,
BigHUSP employs an existing HUSP mining algorithm on
each partition of data to mine local HUSPs. Later, G-HUSPs
can be found by calculating the utility of each L-HUSP
over all the partitions. Since the number of L-HUSPs can
be large, before calculating the utility of each L-HUSP, in
the PG-HUSP (potential G-HUSP) generation phase, L-
HUSPs which cannot become a G-HUSP are pruned using
an overestimate utility model and the rest of them are
considered as potential G-HUSPs. Finally, the global utility
of each PG-HUSP is calculated and all the G-HUSPs are
returned in the G-HUSP mining phase.

3.1. Initialization

In this phase, the input sequence database is split into
several partitions and each mapper is fed with a partition. A
mapper converts a sequence into an efficient data structure

Figure 2. Overview of BigHUSP

called utility matrix to maintain some utility information
so that BigHUSP can fast retrieve the utility values in
later phases and does not need to process the original data
anymore. In this phase, we also find items which cannot
form a HUSP (i.e., unpromising items). Later, BigHUSP
prunes these items to reduce the search space efficiently.
This phase contains two main stages:

(1) Map stage: given a partition, each mapper constructs
a utility matrix (UM) for each input sequence in the
partition. UM [3] is an efficient data structure to keep the
required information to mine L-HUSP from the partition.
This representation makes the mining process faster since
the utility values can be calculated more efficiently. Each
element in the matrix consists of an item and a few tuples,
one per itemset in the sequence where a tuple contains
two values: (1) the utility of item in the itemset, and (2)
the remaining utility of the rest of items in the sequence
w.r.t the item. The remaining utility values are used in L-
HUSP mining phase to prune the search space. Figure 1(b)
shows the utility matrix of sequence S3 in the partition
D2 presented in Figure 1(a). For example, given item b in
the second itemset of S3, u(b, S2

3) = 5 × 3 = 15 and its
remaining utility is {u(c, S2

3) + u(a, S3
3) + u(c, S3

3)} = 8.
Once the UMs are constructed, they are maintained in RDD
for later use.

Not every item in the database can form a HUSP. Hence,
we use LSWU and GSWU to find items which cannot
form a HUSP (i.e., unpromising items). Each mapper calcu-
lates LSWU value of each item in a partition and outputs
a key-value pair 〈 item, LSWU (item,Di)〉, where the value
is the LSWU of item in partition Di.

(2) Reduce stage: the output with the same key (i.e.,
item) is sent to the same reducer. A reducer calculates
GSWU of each item by summing up the LSWU values
of the same item. After GSWU values are calculated, each
reducer returns the items whose GSWU value is less than the

minimum utility threshold as unpromising items. The results
of reducers are collected and maintained in RDD to update
UMs in the next phase.

3.2. L-HUSP Mining

In this phase, all the unpromising items are pruned from
the matrices in each partition to reduce the search space.
Then, since it is not possible to build the search space over
the entire data to find G-HUSPs, this phase builds the local
search spaces and finds local HUSPs. Later G-HUSPs are
discovered from the L-HUSPs found in this phase. It consists
of two consecutive map transformations as follows.

Map transformation 1: given the original UMs and
the set of unpromising items obtained from the initialization
phase, each mapper prunes the unpromising items from each
UM. The updated UMs are output by the mappers and stored
in RDD.

Given set of updated UMs, there are two general ap-
proaches to mine local HUSPs. The first approach is to dis-
cover L-HUSPs by iteratively executing MapReduce rounds
as follows. Initially, a variable k is set to zero. In the k-th
iteration, all the L-HUSPs of length k are discovered by
performing a MapReduce pass. In the map task, the candi-
dates with length (k + 1) are generated using the k-sequence
obtained from the previous MapReduce iteration, and in
the reducer, the true utility of generated candidates are cal-
culated and (k+1)-sequences are discovered. However, this
approach suffers from excessive communications overheads
during the mining phase between MapReduce tasks. The
most challenging problem to mine G-HUSPs in a distributed
environment is how to avoid the excessive communication
overheads among nodes and yet discover the complete set of
G-HUSPs. The second approach is to find all patterns in a
partition that has a non-zero utility value in the map phase of
the mining, and then in the reduce phase, it decides whether
a pattern is a G-HUSP by aggregating its utility computed

in all partitions from different computing nodes. However,
due to the combinatorial number of possible sequences, this
is an infeasible approach especially for big data. Instead, we
design the second map transformation to find only L-HUSPs
in each partition.

Map transformation 2: given a minimum utility thresh-
old δ, a partition Di as a set of updated UMs and total utility
UDi

, BigHUSP applies USpan [3] to find a set of L-HUSPs
whose utility is no less than δ × UDi

.
Each mapper outputs the local HUSPs as a pair of

〈Pat, 〈Di, utility〉〉 where Di is the partition id and utility
is the utility of pattern Pat in Di. The pairs are stored in
RDD for later use.

Below we first prove that, given a non-zero minimum
utility threshold, if a pattern is not an L-HUSP in any of
the partitions, it will not be a G-HUSP.

Theorem 2. Given a sequence database D and m non-
overlapped partitions {D1, D2, ..., Dm} and the mini-
mum utility threshold δ, a sequence pattern α is not a
G-HUSP, if ∀Di ⊆ D, suL(α,Di) < δ · UDi .

Proof 2. We prove the theorem by contradiction. Assume
that α is not an L-HUSP, but it is a G-HUSP.
According to Definition 9, we have, ∀Di, suL(α,Di) ≤
δ × UDi

. Consequently,∑
Di⊆D

suL(α,Di) ≤ δ ×
∑

Di⊆D
UDi

(1)

On the other hand, based on Definition 10, α is G-HUSP
iff su(α,D) ≥ δ ·UD. Since we divide D into m parti-
tions D1, D2, ..., Dm so that ∀Di, Dj ∈ D,Di∩Dj = ∅,
we have:

∑
Di⊆D

suL(α,D) ≥ δ ×
∑

Di⊆D
UDi

.

Hence it is a contradiction with equation 1.

According to this theorem, by mining L-HUSPs, we do
not miss any G-HUSPs.

3.3. PG-HUSP Generation

In order to find G-HUSPs, we need to calculate the
global utility of each L-HUSP found in the previous phase.
Since the number of L-HUSP can be large, we first define
potential G-HUSP (i.e., PG-HUSP) and prune all L-HUSPs
which are not PG-HUSPs.

Definition 13. (Maximum utility of a sequence α in a
partition Di) Given a minimum utility threshold δ and
the partition Di, the maximum utility of α in Di is
defined as follows:

MAS(α,Di) =

{
suL(α,Di), if suL(α,Di) ≥ δ · UDi

δ · UDi , otherwise

Definition 14. Maximum utility of a sequence α
in a sequence database D is defined as follows:
MAS(α,D) =

∑
Di⊆D

MAS(α,Di)

Algorithm 1 Utility Calculation
Input: curNode, UMSetDi , α, idx, CType
Output: 〈α, su(α,Di)〉

1: if α is the pattern presented by curNode then
2: return 〈α, curNode.utility〉
3: end if
4: Create node N as a child of curNode
5: if CType[idx] = ’I’ then
6: N.Pattern← curNode.Pattern⊕ α[idx]
7: N.Utility ← Call I-Step using curNode.Pattern, α[idx]

and UMSetDi

8: else if CType[idx] = ’S’ then
9: N.Pattern← curNode.Pattern⊗ α[idx]

10: N.Utility ← Call I-Step using curNode.Pattern, α[idx]
and UMSetDi

11: end if
12: return Algorithm 1 (N, UMSetDi , α, idx + 1, CType)

Below, we prove that the maximum utility of a sequence
α in a sequence database D is an upper bound of the true
utility of α in D.

Theorem 3. The maximum utility of sequence α in a
sequence database D is an upper bound of the true utility
of α in D.

Proof 3. According to Definition 9, if α is not a L-HUSP
in a partition Di, suL(α,Di) < δ · UDi .
Let D1 be the set of partitions in D where α is an
L-HUSP and D2 be the set of partitions in D where
α is not an L-HUSP. Considering Definition 13 and
Definition 14:
suG(α,D) =

∑
D

suL(α,Di) =
∑

Di∈D1

suL(α,Di) +∑
Di∈D2

suL(α,Di) ≤
∑

Di⊆D1

suL(α,Di)+
∑

Di⊆D2

δ ·UDi

=MAS(α,D)
Hence MAS(α,D) is an upper bound of the true utility
of α in D. Omitted due to space limit.

Definition 15. (Potential Global High Utility Sequential
Pattern (PG-HUSP)) Given a minimum utility thresh-
old δ and a sequence database D, α is called PG-HUSP
iff: MAS(α,D) ≥ α · UD.

Given set of L-HUSPs, the PG-HUSP generation phase finds
all PG-HUSPs in one reduce stage.

Reduce stage: the L-HUSPs having the same key (i.e.,
pattern) are collected into the same reducer. Let α be an
L-HUSP in reducer R. If the pair 〈α, 〈Di, utility〉〉 exists,
then MAS(α,D) is increased by utility value. Otherwise,
it adds δ · UDi as the maximum utility of α in Di. All the
patterns whose MAS value is no less than the threshold are
returned as PG-HUSPs.

3.4. G-HUSP Mining

Given the set of PG-HUSPs (i.e., PG-Set), the G-HUSP
mining phase calculates the global utility of each pattern in
PG-Set and discovers G-HUSPs.

Map stage: each mapper calculates the local utility of
all patterns in PG-Set as follows. If a pattern α ∈ PG-Set
is an L-HUSP in partition Di, then its utility has already
been calculated in the L-HUSP mining phase and the mapper
returns the pair 〈α, 〈Di, utility〉〉. Otherwise, the mapper
calculates α’s utility. We design a pattern-growth algorithm
that traverses the minimum search space to calculate the
utility of α in a partition. Below we first provide some
definitions and then describe the proposed algorithm to
calculate the utility of α.

Similar to the other pattern-growth approaches [3], the
search space is a lexical sequence tree, where each non-root
node represents a sequence of itemsets. Each node at the first
level under the root is a sequence of length 1, a node on
the second level represents a 2-sequence and so on. Each
non-root node of the tree has two fields: (1) Pattern: the
pattern presented by the node, and (2) Utility: the utility of
the pattern for all the sequences in the database. There are
two types of patterns presented by nodes in the tree:
Definition 16. (I-concatenate Sequence) Given a sequence

pattern α, an I-concatenate pattern β represents a se-
quence generated by adding an item I into the last
itemset of α (denoted as α⊕ I).

Definition 17. (S-concatenate Sequence) Given a sequence
α, an S-concatenate pattern β represents a sequence
generated by adding a 1-Itemset {I} after the last itemset
of α (denoted as α⊗ I).

I-concatenate and S-concatenate sequences are gener-
ated using sequence-extension step (S-step) and itemset-
extension step (I-step) respectively. We demonstrate I-step
and S-step procedures of pattern α = {a} with sequence S3

in Figure 1 (b). We start from the I-Step. Given the pattern α
and item I = b, in order to form β = {ab} and calculate its
utility, USpan applies I-step as follows. According to Figure
1 (b), only itemset S2

3 has b which is 〈15, 8〉 can be used to
form sequence β. The utility of β is the utility of su(α, S3)
plus the newly added item’s utilities su(b, S2

3). Therefore,
su(β, S3) = {23}. Given pattern α = {ab} and I = c, to
construct pattern β = {ab}{c} and calculate its utility, S-
step works as follows. Since itemset {c} must occur in any
itemset after α occurs, the only case for itemset {c} is in
S3
3 . Hence, su(β, S3) = {23 + 3} = 26.

A mapper calculates α’s utility by calling Algorithm
1. Given partition Di, Algorithm 1 is designed such that
a minimum required search space is traversed to calculate
utility of a pattern in Di. Algorithm 1 takes the following
parameters as inputs: (1) curNode: the current node in the
search space. The initial value is root node which is an
empty node. (2) UMSetDi

is the set of UMs in Di. (3) α
is a PG-HUSP and presented as a list of items. (4) idx:
is an index pointing at the current item in α and its initial
value is zero. (5) CType is an array representing the types
of concatenation in the sequence α. Each element value is
either I for I-concatenate pattern or S for S-concatenate
pattern.

Figure 3 shows how BigHUSP calculates the local utility
of pattern α = {b}{ac} in D2 in Figure 1. It starts by an

empty sequence (e.g., β) and the utility value equals zero.
Since the first item in α is b, β is extended by the itemset
{b} to form S-concatenate pattern β = {b}. Iteratively, β is
extended by items in α until all the items in α are added
to β. In each iteration, the utility of the extended sequence
is calculated using UMs in the partition. For example, the
utility of β = {b} ⊗ {a} in D2 is calculated as follows.
According to Figure 1(b), OccSet({b}, S3) = {S1

3 , S
2
3}

and OccSet({a}, S3) = {S2
3 , S

3
3}. Since itemset {a} must

occur in any itemset after {b} occurs, the utility of β is:
su(β, S3) = max({u({b}, S1

3)+u({a}, S2
3)}, {u({b}, S1

3)+
u({a}, S3

3)}, {u({b}, S2
3) + u({a}, S3

3)}) = max({9 +
8}, {9 + 4}, {15 + 4}) = 19.

Reduce stage: Given a set of PG-HUSPs and their
utility values, the pairs with same pattern (which is the key)
will be sent to the same reducer. The input is in the form
of 〈pattern, utility〉 where the utility is the local utility
generated by mappers. After all PG-HUSPs are read, the
reducer sums up the utility of each pattern. All the patterns
whose total utility is no less than the threshold are returned
as G-HUSPs.

4. Experimental Results

The experimental environment contains one master node
and six working machines. Each machine is equipped
with Intel Xeon 2.6 Ghz (each 12 core) and 128 GB
main memory and the Spark 1.6.0 is used with IBM
Platform Conductor for Spark. Two synthetic datasets
synthDS1:D2000K-C10-T3-S4-I3-N10K and synthDS2:DB-
D4000KC15T2.5S4I2.25N10K are generated by the IBM
data generator [7]. The number of sequences in synthDS1
and synthDS2 is 2000K and 4000K respectively. We also
evaluate our algorithms on two real datasets: the Globe
dataset, obtained from a Canadian news web portal (The
Globe and Mail 4, which is a web clickstream dataset and
contains 600K sequences and 24770 distinct items, and the
ChainStore dataset which contains 3000K sequences and
46086 distinct items5.

Our preliminary experiment showed that the existing
methods (e.g., USpan) which were inherently designed for
running on a single machine were not able to handle
the above 4 datasets due to the out-of-memory problem.
Therefore, we implemented two versions of BigHUSP in
as comparison methods: (1) a basic version of BigHUSP,
called BigHUSPBasic, which does not apply the proposed
pruning strategy to prune unpromising items and also L-
HUSPs in the PG-HUSP generation phase, and (2) a stand
alone version, called BigHUSPSA, which runs BigHUSP on
a single node of the cluster and does not have the inter-node
communication cost.

4. http://www.theglobeandmail.com/
5. The original dataset contains 1000K transactions. We grouped trans-

actions in different sizes so that each group represents a sequence of
transactions. We duplicated each sequence in the dataset five times.

{},0

{b},15 {b}{a},19 {b}{ac},22 {ܾ} ⊗ {ܽ} {ܾ} {ܽ} ⊕ {ܿ}

Items ࡿ ࡿ ࡿ

b 〈9,38〉 〈15,8〉 〈0,3〉
Items ࡿ ࡿ ࡿ

a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉

Items ࡿ ࡿ ࡿ

a 〈0,44〉 〈8,23〉 〈4,3〉
b 〈9,38〉 〈15,8〉 〈0,3〉
c 〈0,35〉 〈1,7〉 〈3,0〉

max{ 9 + 8 , 9 + 4 , (15 + 4)} max{ 9 + 8 + 1 , 9 + 4 + 3 , (15 + 4 + 3)}max{ 9 , 15 }

࢚ࢇ࢘ࢋ࢚ࡵ ࢚࢙࢘ࡲ ࢚ࢇ࢘ࢋ࢚ࡵ ࢊࢉࢋࡿ ࢚ࢇ࢘ࢋ࢚ࡵ ࢊ࢘ࢎࢀ

′࢈′ ݉݁ݐ݅ ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݐ݈݊݁݉݁݁ ݄݁ݐ

′ࢇ′ ݀݊ܽ ′࢈′ ݏ݉݁ݐ݅ ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݏݐ݈݊݁݉݁݁ ݄݁ݐ
ݏ݉݁ݐ݅ ݐ ݀݁ݐ݈ܽ݁ݎ ܯܷ ݄݁ݐ ݊݅ ݏݐ݈݊݁݉݁݁ ݄݁ݐ ᇱ࢈ ᇱܽ݊݀ ᇱࢇ ᇱܽ݊݀ ′ࢉ′

Figure 3. The utility of α = {b}{ac} in D2 in Figure 1

0

1000000

2000000

3000000

4000000

5000000

0.
09

0.
08

0.
07

0.
06

0.
05

0.
04

0
1000000
2000000
3000000
4000000
5000000
6000000

0.
09

0.
08

0.
07

0.
06

0.
05

Minimum utility threshold (%)
(c) ChainStore

BigHUSP BigHUSP_Basic
BigHUSP_SA HUSPs

Minimum utility threshold (%)
(a) Globe

C

an
di

da
te

s

C
an

di
da

te
s

0

5000000

10000000

15000000

20000000

0.
05

0

0.
04

0

0.
03

0

0.
02

0

0.
01

0

0.
00

9

0

20000000

40000000

60000000

80000000

0.
09

0.
08

0.
07

0.
06

0.
05

Minimum utility threshold (%)
(d) synthDS2

Minimum utility threshold (%)
(b) synthDS1

C

an
di

da
te

s

C
an

di
da

te
s

Figure 4. Number of candidates produced by the algorithms

4.1. Performance Evaluation

Figure 4 shows the results in terms of the number
of generate intermediate candidates under different utility
thresholds. In this figure, HUSPs presents the number of
HUSPs found in the datasets for different minimum utility
threshold values. As shown in Figure 4, BigHUSP pro-
duces much fewer candidates than BigHUSPBasic. On the
larger datasets, i.e., synthDS1, ChainStore and synthDS2,
the number of candidates grows quickly when the threshold
decreases. The main reason why BigHUSP produces much
fewer candidates is that it applies the proposed pruning
strategies which avoid generating a large number of inter-
mediate candidates during the mining process.

TABLE 1. EXECUTION TIME ON THE DIFFERENT DATASETS

 = ,࢙ࢋ࢚࢛ࡹ ࢎ = ࡼࡿࢁࡴࢍ (%)	ࢾ ࢚ࢋ࢙ࢇ࢚ࢇࡰ࢙࢛࢘ࡴ ࢉ࢙ࢇࡼࡿࢁࡴࢍ ࡿࡼࡿࢁࡴࢍ

 ࢋ࢈ࡳ

0.09 1.6	݉ 3.6 ݉ 0.99 ℎ0.08 2.3	݉ 4.4 ݉ 1.4 ℎ0.07 3.1݉ 6.6 ݉ 2.2 ℎ0.06 5.0	݉ 11.0 ݉ 3.3 ℎ0.05 9.2	݉ 20.7 ݉ 4.5 ℎ

 ࡿࡰࢎ࢚࢙࢟

0.05 3.0	݉ 10.0 ݉ 1.1 ℎ0.04 4.26	݉ 14.4 ݉ 1.2 ℎ0.03 6.23	݉ 17.9 ݉ 1.6 ℎ0.02 9.9	݉ 27.2 ݉ 1.9 ℎ0.01 14.3	݉ 29.4 ݉ 3.2 ℎ0.009 37.6	݉ 76.5 ݉ 7.8 ℎ

 ࢋ࢚࢘ࡿࢇࢎ

0.09 15.0	݉ 33.4 ݉ 6.4 ℎ0.08 19.9	݉ 56.2 ݉ 12.0 ℎ0.07 25.0	݉ 77.0 ݉ 13.4 ℎ0.06 34.8	݉ 107.7 ݉ 14.6 ℎ0.05 38.7	݉ 159.8 ݉ 17.4 ℎ

 ࡿࡰࢎ࢚࢙࢟

0.09 13.1	݉ 26.3 ݉ 7.7 ℎ0.08 16.3	݉ 34.5 ݉ 9.3 ℎ0.07 20.6	݉ 47.2 ݉ 15.7 ℎ0.06 23.8	݉ 51.8 ݉ 17.8 ℎ0.05 32.2	݉ 85.3 ݉ 21.4 ℎ

Table 1 shows the execution time of the algorithms on
each of the four datasets with different minimum utility
thresholds. As it is shown in the Table 1, BigHUSP is
much faster than BigHUSPSA. For example, BigHUSP runs
25 times faster on ChainStore dataset and more than 40
times faster than BigHUSPSA on synthDS2. The average
execution time of BigHUSP on Globe is 4 minutes, while
that of BigHUSPSA on the same dataset is close to 2 hours.
Besides, it can be observed that BigHUSP runs faster than
BigHUSPBasic as well. This performance asserts that the
proposed pruning strategies to reduce the search space and
communication costs are efficient.

5. Conclusions

We have introduced a novel algorithm called BigHUSP
for parallel and distributed mining of high utility sequential

patterns from big data. Two novel and distributed strate-
gies are proposed to effectively prune the search space
and greatly improve the performance of BigHUSP. Our
experiments suggest that BigHUSP is orders of magnitudes
more efficient and scalable than baseline algorithms for
high utility sequential pattern mining. For example, in our
experiments, BigHUSP mined 4 million input sequences
in less than half an hour on seven machines, while the
baseline approaches took around 20 hours to return the
results. Empirical evaluations also assert that the proposed
strategies improve the scalability of BigHUSP significantly.

References

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[2] C. F. Ahmed, S. K. Tanbeer, and B. Jeong, “A novel approach for
mining high-utility sequential patterns in sequence databases,” In ETRI
Journal, vol. 32, pp. 676–686, 2010.

[3] J. Yin, Z. Zheng, and L. Cao, “Uspan: An efficient algorithm for mining
high utility sequential patterns,” in In Proc. of ACM SIGKDD, 2012,
pp. 660–668.

[4] M. Zihayat, C.-W. Wu, A. An, and V. S. Tseng, “Mining high utility
sequential patterns from evolving data streams,” in ASE BD&SI ’15,
2015, pp. 52:1–52:6.

[5] W. Fan and A. Bifet, “Mining big data: Current status, and forecast to
the future,” SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 1–5, 2013.

[6] C. F. Ahmed, S. K. Tanbeer, and B. Jeong, “A framework for mining
high utility web access sequences,” In IETE Journal, vol. 28, pp. 3–16,
2011.

[7] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE,
1995, pp. 3–14.

