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Abstract

Change detection relative to a background image model is a potentially enabling

capability for a variety of image analysis tasks, including automated video surveillance

and monitoring. In this report, various combinations of chromatic, spatial and dynamic

features are proposed and evaluated with reference to background modelling for image

change detection. The features are embedded in a popular background modelling

framework and empirically evaluated relative to each other as well as the state-of-the-

art on a standard, publicly available change detection dataset.
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1 Introduction

1.1 Motivation

The majority of current real-world surveillance and monitoring systems are based primarily

on the performance of human operators that are expected to watch, often simultaneously, a

large number of screens that show video streams captured by different cameras. The task

assigned to the human is to detect events of interest (e.g., nefarious or otherwise unusual

activities) and decide on appropriate actions to take (e.g., alert further security personnel).

A disadvantage of this paradigm is the likelihood that the operators will miss a significant

event owing to the monotonous, yet difficult nature of their task. Monotony results from

extended periods of time when nothing interesting is happening; difficulty arises as subtle

changes should be monitored simultaneously across multiple displays.

Automated video surveillance and monitoring systems have potential to alleviate the

human workload by assuming some of the processing demands. Along these lines, change

detection relative to a background model is of potentially enabling importance. The back-

ground model itself is an image that captures the range of pixelwise brightness measurements

expected under typical conditions as a camera views a particular scene, e.g., as exemplified

during a training period [78]. Subsequent analyses are performed relative to this reference

background image. For example, new objects entering the scene can be detected and motion

of moving targets can be tracked relative to the background. The information that is gleaned

from such processing can serve to alert human operators or serve as a component of a larger

automated system.

The accuracy and precision of such automated analyses is directly related to the ability

of the background model to adequately capture typical background scene variations (e.g.,

variable lighting and camera parameters, cluttered and dynamic backgrounds); however, no

extant approach to background modelling is robust to the wide range of conditions present
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in real world scenes [33, 78]. Ability to automatically model such background scene variation

from input video will vastly extend the operational scenarios in which video analytics and

surveillance can be deployed with success.

1.2 Related work

1.2.1 Overview

Much research has considered the challenge of background modelling and foreground detec-

tion, with particular growth in this area during the last decade. Several surveys can be found

in the literature; in chronological order, the following are notable. Mc Ivor [69] surveyed a

representative sample of the published techniques for background subtraction and analyzed

them with respect to foreground detection, background maintenance and post-processing.

Piccardi [78] provided a review of the main methods and an original categorization based on

speed, memory requirements and accuracy. Radke et al. [80] presented a systematic survey

of the common processing steps and core decision rules in modern change detection algo-

rithms, including significance and hypothesis testing, predictive models, techniques based

on the shading model [77] and background modelling. Elhabian et al. [26] surveyed many

existing schemes in the literature of background removal, including common pre-processing

algorithms used in different situations, different background models, commonly used model

updating techniques and model initialization methods. Cristani et al. [13] proposed a com-

prehensive review of the background subtraction methods that consider frequency bands

other than just the visible portion of the optical spectum (e.g., also including audio and

infrared). Bouwmans et al. [7] provided a comprehensive survey of statistical background

modelling methods that they subsequently extended and revised [5, 6, 8]. Brutzer et al.

[9] identified the main challenges of background subtraction in the field of video surveil-

lance and then compared the performance of nine background subtraction methods with

post-processing according to their ability to meet those challenges.
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In the following discussion, an overview of this vast literature will be given that is orga-

nized according to five underlying mathematical modelling approaches: Probability Density

Function (PDF) models, subspace models, sample-based models, neural network models and

clustering models.

1.2.2 PDF models

Many approaches have been developed based on the assumption that the history of a pixel’s

intensity value can be modeled by one or more PDFs. Such approaches can be categorized

by the particular density function that they employ as well as their method of estimation.

1.2.2.1 Gaussian and Gaussian Mixtures

The most commonly employed density model is the Gaussian. What appears to be the

earliest application of a PDF to background modelling made use of a single Gaussian [101].

This work subsequently was extended via an updating procedure that relied on pixel change

classification [32] as well as through use of a “generalized” Gaussian function [45].

Use of a single Gaussian limits background modelling to be applicable to only unimodal

phenomena. Thus, even a simple two state process (e.g., a light that could be either of two

colours) are beyond the scope of such models. A straightforward extension that does capture

such phenomena comes via the Gaussian Mixture Model (GMM), which correspondingly has

been applied to background modelling [90]. Various extensions also have been developed,

including improved update procedures [43, 52], ability to automatically select the number

of components [28, 111, 112] and the ability to estimate not only the mean and variance of

each model, but also the probability distribution of these parameters [79].

Various other efforts have considered ways to enhance further the descriptive richness

of GMMs so as to meet more challenging problems in image modelling. To robustly detect

foreground in the presence of sudden illumination changes and shadows, a mixture model of

generalized Gaussians was used [1]. To deal with the dual challenges of fast adaptation to
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scene changes and achieving a representation of an empty scene, research has considered dual

GMMs: one with fast update and the other with slow update [27]. Other research has con-

centrated on responding to the challenges of dynamic backgrounds, via use of Fuzzy GMMs

[24], coarse, block-based detection [81] and larger regional support [94] for GMM parameter

estimation. Yet other research has attempted to handle multiple difficult challenges in a

single system (shadows, illumination variation, dynamic background, stopped and removed

objects), e.g., an approach was proposed based on split Gaussian models for foreground and

background that is further augmented with motion-based change detection [98].

1.2.2.2 Student’s t or Dirichlet mixture models

Other parametric distributions than Gaussians have been used for mixture modelling of

backgrounds. Student’s t-mixture model (STMM) has been shown to be very robust against

noise encountered in practice due to its more heavy-tailed nature [71]. Other reseach used

Dirichlet mixture models to provide more robust estimation in the presence of a dynamic

background; e.g., a Dirichlet process Gaussian mixture model followed by probabilistic reg-

ularization [35, 36] and a Dirichlet mixture model updated by an online variational Bayes

approach [30].

1.2.2.3 Non-parametric estimation models

A background having fast variations cannot be accurately modeled with a small number

of PDFs. Non-parametric techniques have been used to address this challenge. One such

approach estimated the probability of observing pixel intensity values based on a sample of

recent values over time using Kernel Density Estimation (KDE) for each pixel [25]. This KDE

framework subsequently was extended to be used over a joint domain-range representation

of image pixels, in order to directly model the multi-modal spatial uncertainties and complex

dependencies between the domain and range [86]. Yet another approach employed projection

pursuit density estimation (PPDE) [76], which had faster run-time and was able to deal with
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a higher dimensional feature spaces compared to KDE.

1.2.2.4 KDE-GMM hybrid models

Some research has considered combining non-parametric and parametric estimation tech-

niques to overcome some shortcomings of both. In order to deal with highly dynamic scenes,

a KDE-GMM hybrid model was constructed to model the spatial dependencies of neighbor-

ing pixel colors [58]. To approximate the background color distribution precisely and also be

robust to various spatial noise sources, a mixture of a non-parametric regional model (KDE)

and a parametric pixel-wise model (GMM) was proposed [23].

1.2.3 Subspace models

Assuming foreground objects appeared rarely compared to dominant background scenes,

backgrounds can be modelled as the primary subspace of the input video space, and fore-

grounds can be detected as the outliers or sparse parts.

1.2.3.1 Reconstructive subspace models

Early application of subspace learning to background/foreground estimation computed the

difference between the PCA reconstruction of an image and the original input [73]. Several

limitations of this model and corresponding improvements can be found in the survey made

by Bouwmans [4]. As examples, to deal with PCA’s limitation that foreground objects

must be small and can’t be static for an extended time in training sequences, an error

compensation process is introduced to reduce the foreground objects’ influence [103] and an

iterative optimal projection method is used to exclude foreground regions while establishing

the background model [44]. Another limitation is that PCA is a batch model so that it’s

computationally intensive to update. To solve this problem, several methods have been

proposed to keep the background model updated incrementally [54, 82, 87, 97]. Besides, it

is not straightforward to integrate multi-channel data in such approaches, which has been
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addressed via weighted 2-dimensional PCA [37].

Beyond PCA, other reconstructive subspace models also have been used, e.g., Indepen-

dent Component Analysis (ICA) [104], Incremental Rank − (R1, R2, R3) Tensor-based Sub-

space learning Algorithm (IRTSA) [53], Locality Preserving Projections (LPP) [49] and Ten-

sor Locality Preserving Projections (Ten-LoPP) [50]. Compared to PCA, these approaches

are very efficient in the case of illumination changes.

1.2.3.2 Robust subspace models

In robust subspace models, the background and the foreground are separated based on a low-

rank and sparse decomposition. With respect to foreground/background image estimation,

this decomposition has been done in a Robust Principal Components Analysis (RPCA) [10]

as well as Robust Non-negative Matrix Factorization (RNMF) [34, 51]. Robust subspace

models avoid using free parameters, e.g. a distance threshold, and directly extract foreground

objects as the sparse outliers by simple optimization algorithms. A limitation of these models

is that they make strong assumptions regarding strict enforcement of low-rank structure and

sparsity and therefore have trouble dealing with the highly noise corrupted nature of real-

world video surveillance data.

1.2.3.3 Subspace tracking models

In order to estimate and track non-stationary subspaces when streaming data vectors are

corrupted with outliers and have missing data values, GRASTA (Grassmannian Robust

Adaptive Subspace Tracking Algorithm) was presented, which also was able to separate

background and foreground on-line [38]. To be able to detect foreground robustly in camera

jitter, low-rank subspaces were maintained by Transformed GRASTA (t-GRASTA) through

an image alignment process [39]. Different from GRASTA, which used the l1-norm func-

tion as a convex relaxation of the ideal sparsifying function, pROST (lp-quasi-norm Robust

subspace tracking) approached the problem with a smoothed lp-quasi-norm function and it
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outperforms GRASTA in the case of multi-modal backgrounds [85].

1.2.4 Sample-based models

In sample-based models, for each pixel, a set of values taken in the past at the same location or

in the neighbourhood are stored as background samples. Subsequently, this set is compared

to the current pixel value in order to determine whether that pixel belongs to the background.

Visual Background Extractor (ViBe) was the first proposed sample-based algorithm,

where a random selection policy was used to ensure a smooth exponentially decaying lifes-

pan for the sample values that constitute the pixel models [2]. A series of modifications

that alter the operation of ViBe have been made [93], e.g., the inhibition of propagation

around internal borders, a color distortion metric and an adaptive threshold. Based on the

ViBe framework, a Pixel-based Adaptive Segmenter (PBAS) method was proposed, which

used pixel-level feedback loops to dynamically adjust the internal parameters of ViBe with-

out user intervention [41]. Further improvements were made to PBAS, such as, combining

spatiotemporal binary features with color information and measuring local segmentation

noise levels based on the detection of blinking pixels [88, 89]. Additionally, instead of the

random selection policy in ViBe, the efficacy of stored background samples was estimated

based on occurrence statistics so that it is capable of removing the least useful background

samples [95]. To overcome the drawback that single models cannot support clear judgment

of whether a current pixel comes from the neighbourhood or not, two interrelated sample

models have been used: a self-model, which consists of history values at the same position,

and a neighbourhood-model described by neighbourhood pixel values [106].

1.2.5 Neural network models

In this category, the background is represented by means of a neural network suitably trained

on representative frames, then the network further learns how to classify each pixel as back-

ground or foreground.
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To achieve real-time object segmentation of high-resolution images, several parallelized

neural network architectures were proposed, e.g. a neural network (NN) that formed an

unsupervised Bayesian classifier [14, 15], an unsupervised competitive neural network (CNN)

[60] and a dipolar CNN that improved over CNN by using a dipolar representation to capture

the intrinsic directionality of data [61].

Another class of approaches were proposed based on self organization through artificial

neural networks named Self-Organizing Background Subtraction (SOBS), which was robust

to moving backgrounds, gradual illumination changes, cast shadows and bootstrapping [64].

Subsequently, several improvements were made to SOBS. A SOBS-CF approach was pro-

posed that added a spatial coherence variant to SOBS to enhance robustness against false

detections and also formulated a fuzzy model to deal with decision problems typically arising

when crisp settings (binary-valued rule based) are involved [65]. The algorithm SOBS-SC

provided further robustness against false detections by introducing spatial coherence into the

background update procedure in SOBS [66]. An enhanced version of SOBS called 3dSOBS+

introduced initial background estimation, shadow detection and removal and spatial coher-

ence into SOBS [67]. Other self-organizing neural network (SONN) methods include the

Growing Neural Gas (GNG), which learns the distribution of visual features [48]; a hier-

archical architecture composed of SONN, which models inherent hierarchical relations in

the input data and is more flexible in adaptation than the original SONN [74]; and an

ART-type network (adaptive resonant theory) approach, which not only possesses the stable

self-organized structure and learning ability of an ART-based network, but also uses a neural

merging process to adapt to the variability of the input data [63].

The above methods were based on weighted neuron models, approaches relying on a

weightless neural network architecture were also proposed such as WiSAR [16] and CwisarDH

[17], which have yielded good results in terms of recent overall ranking on the standard CDnet

change detection dataset [33].

Finally, instead of using a neural network alone, a multivalued discrete neural network
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was used to detect and correct some of the deficiencies and errors of an underlying Mixture

of Gaussians algorithm [62].

1.2.6 Cluster models

Cluster models suppose that each pixel can be temporally represented by clusters. They

are particularly useful in representing multi-modal backgrounds. In order to represent a

compressed form of a background model for a long image sequence, a codebook algorithm

was proposed, which quantized background values at each pixel into codebooks [46]. To

improve the basic codebook algorithm, two features have been added: layered modelling

and adaptive codebook updating [47]. To economize computation time and save space, an

online clustering background reconstruction algorithm was proposed, where cluster centers

and appearance probabilities of each cluster were calculated and clusters with the appearance

probability greater than threshold are selected as the background pixel intensity value [102].

Instead of clustering based on intensity or color, other features were also used in cluster

models, such as similarity of intensity changes [107], local self-similarity descriptors [42],

local binary patterns (LBP) and photometric invariant color measurements [105].

1.2.7 Other related approaches

Some background subtraction models are built based on simple and basic methods such as

median models [68], histogram analysis over time [110], as well as Mahalanobis distance and

Euclidean distance [3]. Some methods estimate the expected background using filters such as

the Self-Adaptive Kalman filter [29] or Chebyshev filter [12]. Other algorithms achieve prob-

abilistic segmentation of foreground/background based on the Quadratic Markov Measure

Field models [40], Markov Random Field build on probabilistic superpixels [83] or Cheby-

shev probability inequality [70]. Learning algorithms were also used to classify imagery

into foreground and background, e.g. probabilistic support vector machine (SVM) [57] and

on-line updated Support Vector Regression (SVR) [96]. In order to fill in homogeneous re-
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gions of foreground objects and detect sudden global changes of brightness, an integrated

background model was presented, which consists of three complementary approaches: pixel-

level, region-level and frame-level modellings [72, 91]. To deal with incessantly passing or

temporally static foreground, a multilayer background modelling algorithm was presented,

where object-wise regions were clustered using spatio-temporal cohesion together with spec-

tral similarity by comparing inputs with background layers [75]. To be robust in the cases

of sudden illumination fluctuation as well as burst moving background, the background has

been modelled based on co-occurrence probability-based pixel pairs (CP3) [55, 56]. To detect

foreground objects from dynamic and shadow backgrounds in real time, a multiscale back-

ground model was presented, which can propagate motion measurements across different

scales [59]. A physics-based change detection technique called Spectral-360 was also used in

change detection, which is based on the dichromatic color reflectance model [84].

1.2.8 Evaluations

Several datasets have been built to evaluate and compare background subtraction algorithms,

e.g., Wallflower [91], PETS [108], BMC [92], CDnet dataset [33]. A comprehensive intro-

duction to those datasets can be found in Bouwmans’s survey [6]. Among all the datasets

available, the CDnet and BMC datasets are the most recent and large-scale. The BMC

dataset consists of 10 synthetic and 9 real videos and focuses on outdoor situations with

weather variations such as wind, sun and rain. The 2012 CDnet dataset consists of 31 videos

representing 6 categories (Baseline, Dynamic Background, Camera Jitter, Intermittent Ob-

ject Motion, Shadows, Thermal) selected to cover a wide range of challenges in surveillance.

Moreover, CDnet provides a website, www.changedetection.net, that allows users to upload

results and compare them against those of others. So, the comparison of many recent and

more complex methods is available under the benchmark of CDnet dataset.

Currently, there are 40 methods ranked on the 2012 CDnet dataset and 35 provide

results for all categories, see Table 1. The ranking in Table 1 is calculated via averaging
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ranking values across all the categories; so, the smaller the ranking value is, the better the

corresponding method performs. According to the ranking value, except for unpublished

and anonymous methods, sample-based models [41, 88, 89] perform the best. The original

GMMs [90] and GMMs with mild improvement [43, 111] place around the bottom ten. But

dual GMMs with fast and slow updates [27] and Dirichlet process Gaussian mixture model

[35] are within the top ten. The only physics-based method [84] is within the top five. Neural

network models rank in the middle. There are few subspace and cluster models appearing in

the ranking. The simple and basic methods such as histogram [110], Mahalanobis distance

and Euclidean distance [3] are at the bottom.

1.3 Contributions

In the light of previous research in background image modelling and foreground detection,

the following are the main contributions of the current work.

• An analysis is developed that relates marginalized spatiotemporal oriented energy

(MSOE), spatial orientation (SO) and chromatic measurements (CM) features to back-

ground modelling.

• The three features are algorithmically embedded in a selected framework called ViBe

and the resulting algorithm is implemented in software for background image modelling

and foreground detection.

• The performance of different feature combinations (MSOE, SO and CM) is compared

based on the CDnet dataset. The developed change detection system is evaluated

both qualitatively and quantitatively with state-of-the-art algorithms based on the

same dataset.
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Index Method Name on 2012 CDnet dataset results Model Category Ranking
1 CDet anonymous 3.50
2 PAWCS [89] sample-based 3.50
3 SuBSENSE [88] sample-based 5.17
4 Spectral-360 [84] other 7.67
5 SGMM-SOD [27] PDF 8.50
6 PBAS-PID unpublished 9.50
7 PBAS [41] sample-based 11.17
8 DPGMM [35] PDF 11.67
9 GPRMF anonymous 11.67
10 Pixel Based Adaptive Foreground Extractor

(PBAFE)
anonymous 12.00

11 CwisarD [16] neural network 12.50
12 PSP-MRF [83] other 14.67
13 SOBS CF [65] neural network 16.17
14 CDPS [40] other 17.00
15 Chebyshev prob. with Static Object detection [70] other 17.17
16 SC-SOBS [66] neural network 17.67
17 Multi-Layer Background Subtraction [105] cluster 17.67
18 RMoG (Region-based Mixture of Gaussians) [94] PDF 18.50
19 SGMM [28] PDF 19.50
20 KNN [112] PDF 20.17
21 SOBS [64] neural network 20.33
22 KDE-Integrated Spatio-temporal Features [72] other 21.83
23 GMM - KaewTraKulPong [43] PDF 22.00
24 KDE - ElGammal [25] PDF 23.33
25 KDE - Spatio-temporal change detection [107] cluster 23.83
26 Bayesian Background [79] PDF 25.83
27 GMM - Stauffer & Grimson [90] PDF 26.67
28 TUBITAK UZAY 1 [52] PDF 28.17
29 GMM — Zivkovic [111] PDF 29.00
30 Local-Self similarity [42] cluster 29.33
31 GMM - RECTGAUSS-Tex [81] PDF 29.33
32 pROST [85] subspace 29.50
33 Histogram [110] other 30.83
34 Mahalanobis distance [3] other 32.83
35 Euclidean distance [3] other 34.00

Table 1: Average ranking across all the categories in 2012 CDnet dataset, 2015-05-13 3:00
p.m.
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1.4 Outline

This first section of the report has motivated research in background image modelling and

foreground detection and thereby placed the present work in context. Section 2 describes

the proposed technical approach, including a novel feature set for representing background

images as well as specification of how these features can be embedded in a sample-based

modelling framework. Section 3 provides extensive empirical evaluation of the proposed

approach. Finally, Section 4 provides a summary and conclusions.
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2 Technical approach

2.1 Overview

In this section, the developed approach to background modelling and change detection will

be developed in detail. Change detection is realized by the comparison between new ob-

servations and a background model. The presentation will be expanded based on how the

background model is represented and organized. First, the primitive feature representation

will be presented. Each pixel in a real-world digital video sequence is usually stored in the

form of RGB color or gray-level intensity; however, this representation is not enough for

understanding the content of videos. In the proposed approach, dynamic features, spatial

orientation features and chromatic features are extracted as the primitive representation for

background model and new observations. Second, the process of organizing a background

model and classifying new observations based on the proposed primitive features will be pre-

sented. A wide variety of approaches previously have been proposed for background model

definition, as introduced in the related work section of this report. For the current work, a

sample-based framework is adopted, which derives from an algorithm called ViBe [2], as it

previously has been shown to be a strong general performer and the proposed features map

well onto this model. After briefly introducing ViBe, details regarding mapping multiple

features into the framework will be presented.

2.2 Primitive feature representation

The employed primitive feature descriptors for background modelling include dynamic fea-

tures, spatial orientation features and chromatic features. They separately gather different

aspects of information from input imagery. For example, when a person walks down a street,

his motion is captured by dynamic features, the texture or pattern on his clothes or face is

captured by spatial orientation features and the color or intensity information is captured
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by chromatic features. Judicious combination of these different features can support back-

ground modelling that can capture a wide range of real-world scenarios as well as distinguish

subsequent change relative to an acquired model.

2.2.1 Dynamic features

Video sequences induce a variety of patterns in visual spacetime [100]. For example, static

objects have a very different spacetime orientation pattern compared to moving objects.

Therefore, a spatiotemporal oriented decomposition of an input video is an efficient approach

to represent the information that is implicit in videos. In particular, the input video is

subjected to an oriented, bandpass decomposition in both space and time via application of

a spatiotemporal filter bank [18].

Previous work based on this approach has yielded state-of-the-art performance in dynamic

texture recognition [20] and scene recognition [21] as well as allied areas of target tracking [11]

and human action recognition [22]. Such success owes to the approach’s ability to represent

a wide range of imaging variations (owing to lighting, motion, etc.). Further, it is amenable

to real-time computation on GPUs [22, 109], which is crucial for application to time critical

tasks, e.g., surveillance.

The filtering is realized in terms of second derivative of 3D Gaussian filters,

G2θ(x, y, t) =
∂2κe−(x

2+y2+t2)

∂θ2
(1)

and their Hilbert transforms, H2θ(x, y, t), where vector θ represents the direction of the

filter’s 3D axis of symmetry and κ is a normalization factor. The Hilbert transform is

defined such that it keeps the amplitude of a signal the same while it shifts its phase by π
2
.

Both G2θ(x, y, t) and H2θ(x, y, t) are steerable, i.e. can be written as a linear sum of rotated

versions of itself [31],

G2θ(x, y, t) =
Mg∑
i=1

ki(θ)G2θi(x, y, t), (2)
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H2θ(x, y, t) =
Mh∑
j=1

kj(θ)H2θj(x, y, t), (3)

where G2θi(x, y, t) is a basis filter for steering G2θ(x, y, t) and ki(θ) is the corresponding

interpolation function, and similarly for H2θ(x, y, t). There must be at least Mg = 6 basis

filters for steering G2θ(x, y, t) and Mh = 10 for steering H2θ(x, y, t) [18]. So, at least 10

directions are needed to steer the pair, which are conveniently taken as the verticies of a

dodecahedron with antipodal directions identified, as the dodecahedron evenly samples the

sphere. The filters are taken in quadrature, to yield the following local oriented energy

measure,

Eθ(x, y, t) = (G2θ ∗ I)2 + (H2θ ∗ I)2, (4)

where I ≡ I(x, y, t) denotes the input imagery and ∗ symbolizes convolution. If a pair of

filters has the same frequency response but differs in phase by π
2
, they are in quadrature. The

G2 and H2 are employed because they can measure local orientation direction and strength

[31]. Additionally, the steerable and separable formulation of these filters leads to efficient

computations.

For the case of capturing pure pattern dynamics [20], each spatiotemporal oriented en-

ergy measurement, (4), is confounded with spatial orientation. To remove this difficulty,

the spatial orientation component is discounted by marginalizing this attribute. A pattern

exhibiting a single spacetime orientation (e.g., motion) manifests itself as a plane through

the origin in the frequency domain [99]. Correspondingly, summation of a set of energy

measurements (4) spanning such a frequency domain plane removes the influence of purely

spatial oriented energy. Let each plane be parameterized in terms of its unit normal, n̂,

which is also the orientation of the pure dynamic pattern in visual spacetime. The energy

measure, (4), can now be refined to become marginalized spatiotemporal oriented energy

(MSOE),

Ẽn̂(x, y, t) =
N∑
i=0

Eθi(x, y, t), (5)
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where θi represents one of the N + 1 equal spaced orientations distributed within the plane

of normal n̂ and N = 2 is the order of the Gaussian derivative filter (4); for details see [19];

The resulting oriented energies, (5), are confounded with local contrast. This makes it

impossible to determine whether a high response from a particular filter is indicative of a close

match with the underlying structure or is instead a low match that yields a high response due

to significant contrast in the signal. To obtain a purer measure of spatiotemporal dynamic

energy, the energy measures (5) are normalized by the sum of the oriented responses at each

point,

Ên̂i
(x, y, t) =

Ẽn̂i
(x, y, t)∑

n̂j∈S Ẽn̂j
(x, y, t) + ε

, (6)

where S denotes the set of spatiotemporal orientations, with n̂i a particular sample and ε a

small constant that serves as a noise floor and to avoid numerical sensitivity when the overall

energy at a point is small. In addition, to the set of normalized oriented energies at a point,

(6), a normalized ε is computed, as

Êε(x, y, t) =
ε∑

n̂j∈S Ẽn̂j
(x, y, t) + ε

, (7)

to explicitly capture lack of texture within the region. (Note that regions where texture is

less apparent, e.g., a region of clear sky, the summation in the denominator approaches zero;

hence, the normalized ε, (7), approaches one and thereby indicates lack of structure.) In

the current implementation, the spatiotemporal orientation set, S, consists of six different

spacetime orientations, corresponding to, leftward, rightward, upward and downward motion,

static and flicker (vertically and horizontally). This MSOE distribution at each spacetime

point (x, y, t) is maintained as a histogram with k = 6 bins,

FMSOE(x, y, t) = [h1(x, y, t), . . . , hk(x, y, t)] . (8)

20



where

h1(x, y, t) = Êstatic(x, y, t) + Êε(x, y, t), (9)

denotes the non-moving energy by combining static energy and non-texture energy, while

h2(x, y, t), . . . , hk(x, y, t) respectively corresponds to leftward, rightward, upward, downward

motion and flicker energy.

2.2.2 Spatial orientation features

Spatial oriented information is obtained by measuring spatial orientations (SO), which are

defined in terms of a set of evenly distributed first-order spatial derivatives. In practice,

the measuremts are calculated via application of differently oriented first-order Gaussian

derivatives,

G1θ(x, y) =
∂κe−(x

2+y2)

∂θ
, (10)

along (2D) directions θ. In particular, the measurements are defined as

gi(x, y, t) = G1θi ∗ I(x, y, t) (11)

with θi ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} one of k = 6 evenly distributed directions in the image

plane. Notice that, unlike the dynamic feature measurements, (6), the spatial measurements,

(11), are neither converted to (unsigned) energies nor normalized. Preliminary investigation

revealed that maintaining the sign and magnitude of contrast is important to distinguish

spatial structure in background modelling, while it is not necessary for purely dynamic

characterization.

Analogously to the dynamic feature measurements, (8), the spatial measurements at the

spacetime point (x, y, t) are combined by concatenating the k = 6 Gaussian derivatives to

yield,

FSO(x, y, t) = [g1(x, y, t), . . . , gk(x, y, t)] . (12)
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2.2.3 Chromatic features

State-of-the-art background subtraction systems [6, 33] often make use of chromatic informa-

tion in their modelling. Correspondingly, chromatic measurements (CM) will be incorporated

in the proposed primitive feature descriptor. For color input imagery, three measurements

at each point taken as RGB color space observations will be used as the chromatic feature

representation

FCM(x, y, t) = [R,G,B] . (13)

For grayscale input, e.g. thermal imagery, only intensity of each point is used.

2.3 Background image modelling

The framework for the proposed background image modelling algorithm is based on an

algorithm called Visual Background Extractor (ViBe) [2]. ViBe is a sample-based algorithm

and it previously has served as the underlying basic framework for many state-of-the-art

algorithms, e.g., PBAS [41] and SuBSENSE [88], which are among the top algorithms by

CDnet database metrics [33]. Moreover, the ViBe framework is suitable for integrating

multiple features ranging from grey scale and color through various derived measures. In

the following: First, the basic ViBe framework is briefly introduced; second, the developed

approach to mapping multiple features into the framework is described.

2.3.1 ViBe framework

In this section, the general ViBe model and its application to foreground detection will be

introduced first. With the model in hand, initialization and update mechanisms will be

presented.
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2.3.1.1 Model and classification process

ViBe is a sample-based background model. Each pixel, (x, y), in the background image is

modeled by a collection of N background sample values

B(x, y) = {b1, . . . , bn, . . . , bN} (14)

where bn is one of the background samples, whose selection is explained in section 2.3.1.2.

To classify a current input pixel p(x, y, t) according to its corresponding model B(x, y), it

is compared with the closest samples within the background sample set. Here, both the

pixel value, p, as well as the sample value, bi, are given in terms of some primitive feature

representation, e.g., as presented in Section 2.2. Denoting by dn the distance between input

p(x, y, t) and bn, the closest samples are defined as

{bn | dn < R, n ∈ [1, N ]} (15)

where R is a fixed threshold 1. That is, those background samples within the intersection

of the sphere of radius R centered on p(x, y, t) and the collection of model samples B(x, y)

in Figure 1, e.g. b3. If the number of closest samples is larger than or equal to a given

threshold, then the pixel p(x, y, t) is classified as background.

2.3.1.2 Model initialization

The background model is initialized from the first frame. Under the assumption that neigh-

boring pixels share a similar distribution at a given time, the sample set of B(x, y) is filled

with values randomly taken from the neighborhood of (x, y) in the first frame, i.e. at time

t0,

1The exact nature of the distance metric dn depends on the feature representation. As explained later,
we use the L1 metric based on preliminary experimentation.
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Figure 1: Sample-Based Background Modelling and Foreground Detection. Comparison of
a currently observed pixel value, p(x, y, t), with a set of background sample values, bi, yield
classification as background vs. foreground. For the pixel to be classified as background,
there must be at least a certain number of samples, bi, whose distance, di, is less than a
threshold, R.
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B(x, y) = {p(x̄, ȳ, t0) | (x̄, ȳ) ∈ N (x, y)} (16)

where N (x, y) is the neighborhood of position (x, y). The probability of chosing (x̄, ȳ) is

decided by a Gaussian distribution centred on (x, y), so that pixels closer to (x, y) have

higher probabilities appearing in B(x, y).

2.3.1.3 Model update

When p(x, y, t) is classified as background, whether it will be used to update its corresponding

background modelB(x, y) is determined probabilistically. If p(x, y, t) is decided to update the

background model, a sample bn randomly chosen from its corresponding background sample

sets (14) with an uniform probability will be substituted by p(x, y, t). When p(x, y, t) is

classified as background, it also is used to update the background sample set B(x̄, ȳ), where

(x̄, ȳ) is one pixel chosen randomly from its neighborhood N (x, y) again with a uniform

probability distribution. The procedure of updating B(x̄, ȳ) is the same as updating B(x, y).

The update process has been theoretically proven to ensure a smooth exponentially decaying

lifespan for the background samples [2].

2.3.2 Multiple features in ViBe framework

The original ViBe algorithm [2] only used chromatic features. To map multiple features into

ViBe, the framework is extended as follows.

2.3.2.1 Pixel model and classification process

Formally, each input pixel p(x, y, t) consists of M feature descriptors,

p(x, y, t) = {pf1 . . . pfm . . . pfM} (17)
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Figure 2: Extension of Sample-Based Background Modelling and Foreground Detection to
Multiple Features. See text for explanation.
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where m ∈ [1,M ] is the index for each feature, see Figure 2. Correspondingly, there are

M sets of background feature samples for the background model, {Bf1 . . . Bfm . . . BfM}, as

shown in Figure 2. In each feature set, there are N samples; and one sample with index nm

in Bfm is denoted by bfmnm
, that is

Bfm = {bfmnm
| nm ∈ [1, N ]} (18)

Similarly, there is a distance between the input pixel’s feature value, pfm and one of the

corresponding background feature samples, bfmnm
,

dfm
(
bfmnm

, pfm
)
. (19)

As in the case of single features, Section 2.3.1, the distance function must be defined ap-

propriately for the particular feature types considered. In the present work, there could

be at most three different distance functions separately for MSOE, SO and CM feature

comparisons. For the current implementation, L1 distance function is used for all features.

By choosing one sample from each background feature sample set, we can get one back-

ground sample with all features,

bn(x, y) = {bfmnm
| m ∈ [1,M ]} (20)

where nm ∈ [1, N ] could be the same or different values for different features. Thus, the

background sample set B(x, y) for multiple features, see in Figure 2 is

B(x, y) = {bn(x, y) | n ∈ [1, NM ]} (21)

The distance between the input pixel (17) and one background sample (20) in the back-
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ground set (21) is

dn(x, y) =
M∑
m=1

ωfm(x, y, t) · dfm
(
bfmnm

, pfm
)
, (22)

where ωfm(x, y, t) is the weight for feature fm in position (x, y) and time t, as defined in

Section 2.3.2.3. Hereafter, ωfm(x, y, t) will be simplified to ωfm .

To classify the current input pixel (17) according to its corresponding pixel model, ViBe

compares it to the closest samples within the background sample set (21). The closest

samples are defined the same as (15), which are those whose distance (22) is less than a fixed

distance threshold R. If the number of closest samples is larger than or equal to a given

threshold #min, the current pixel p(x, y, t) is classified as background.

Finally, following initial pixelwise background detection, the results are postprocessed

with a 11 × 11 spatial median filter to remove isolated false positive and false negative

responses. In preliminary experiments, median filter processing provided superior results to

alternative morphological operations.

2.3.2.2 Model initialization and update

The background model is initialized using features from the first frame t = t0. For pixel

(x, y), each background feature sample set (18) is initially filled with the corresponding

feature values selected from the pixel’s neighborhood according to a 2D Gaussian probability

distribution centered at that pixel,

Bfm(x, y) = {pfm(x̄, ȳ, t0) | (x̄, ȳ) ∈ N fm(x, y)} (23)

where N fm(x, y) is the neighborhood of the pixel (x, y) in the feature m image.

The update procedure for the ViBe framework containing multiple features also follows

the same procedures mentioned in section 2.3.1.3. If p(x, y, t) is classified as background,

whether it will be used to update the background model is decided probabilistically. If
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p(x, y, t) is decided to update background feature sample sets (18), then

bfmnm
(x, y) = pfm(x, y, t),∀m ∈ [1,M ] (24)

where nm is randomly chosen with an uniform probability from [1, N ] for each m.

If p(x, y, t) is also chosen by a probability to update one of the neighboring pixels of

(x̄, ȳ), then

bfmnm
(x̄, ȳ) = pfm(x, y, t), ∀m ∈ [1,M ] (25)

where nm ∈ [1, N ] is randomly picked for each m and (x̄, ȳ) is a randomly selected pixel from

the neighborhood of (x, y), both with an uniform probability.

2.3.2.3 Feature combination

There are seven different feature combinations from our three primitive feature representa-

tions – MSOE (8), SO (12) and CM (13). Different selected feature combinations lead to

different weight specifications, ω in (22).

When only one feature representation is extracted from input imagery, i.e. M = 1, then

there are three possibilities,

p(x, y, t) ≡ {FCM}‖{FSO}‖{FMSOE}, (26)

with ‖ standing for “or”. In this case, there is no need to use a weight, so implicitly ωf1 = 1.

When there are two or three features in the system, the weight is used to adjust the

local (pixelwise) emphasis placed on different features according to how static vs. dynamic

a pixel is measured to be. In particular, recall that h1 captures the static energy of a pixel,

(9). Similarly, since the hi are normalized (8), 1 − h1 captures the proportion of the local

structure that is accounted for by non-static, i.e., dynamic energy. Correspondingly, define

α = h1(x, y, t), (27)
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β = 1− h1(x, y, t), (28)

where α represents the pixel’s static status value and β represents its dynamic status value.

Now, additional weights for various feature combinations are defined as follows. If MSOE

features, (8), are employed by the system, then the weight assigned to MSOE feature is the

pixel’s dynamic value (28), which means the system relies more heavily on MSOE features

when the input pixel presents as dynamic. In contrast, both CM (13) and SO (12) features

capture static attributes (color and spatial orientation, resp.) and are more heavily relied

upon when the input pixel presents as static via weighing with (27). More precisely, let

f1 ≡ FMSOE, then

M = 2 : ωf1 = β, ωf2 = α (29)

M = 3 : ωf1 = β, ωf2 = ωf3 = α (30)

with f2 and f3 standing for either FSO or FCM . Alternatively, if only CM, (13), and SO,

(12), features are used in the system, then ωf1 = ωf2 = α, (f1 ≡ FCM , f2 ≡ FSO), which can

be simplified to ωf1 = ωf2 = 1.

2.4 Recapitulation

By way of summary, Figure 3 provides a flow diagram that captures the entire proposed

approach.
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Figure 3: Flow diagram of proposed background subtraction system.
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3 Empirical evaluation

3.1 Datasets

To evaluate the performance of the proposed system and compare it with state-of-the-art al-

gorithms, a standard, publicly available dataset, the ChangeDetection.net Video Database, is

considered [33]; see Figure 4 as well as the corresponding website www.changedetection.net.

This dataset contains six video categories with four to six video sequences in each category.

The categories encompass a baseline set, dynamic background, camera jitter, intermittent

object motion, shadows and thermal imagery. The dataset thereby includes a wide va-

riety of challenging, real-world scenarios. All sequences are available with manually con-

structed groundtruth that identifies change relative to a training portion of the video. The

groundtruth images are produced with 5 labels: static (grayscale value is 0), shadow (50),

non-ROI (85), unknown (170), moving (255); see Figure 5. Static and shadow labels are

background, moving labels are foreground and other labels are not included into the statis-

tics computation.

3.2 Results

3.2.1 Comparison among different feature combinations

Letter ‘C’, ‘S’ and ‘D’ separately represents chromatic features (CM), spatial orientation

features (SO) and dynamic features (MSOE). ‘CS’ represents the combination of chromatic

features and spatial orientation features. ‘CD’ represents the combination of chromatic fea-

tures and dynamic features. ‘SD’ represents the combination of spatial orientation features

and dynamic features. ‘CSD’ represents the combination of chromatic features, spatial ori-

entation features and dynamic features. These letter representations are used hereafter.

The CDnet evaluation protocol is followed to rank order the different proposed feature

combinations [33]. Seven individual performance metrics are considered: recall(Re), Speci-
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Figure 4: Sample Images from CDnet Dataset.
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Figure 5: Groundtruth of Sample Images from CDnet Dataset.
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ficity(Sp), False Positive Rate(FPR), False Negative Rate(FNR), Percentage of Wrong Clas-

sifications (PWC), Precision(Pr) and F-measure. Average performance across all videos in

each background category is reported for each metric. Also reported is the average ranking

across all metrics, which is calculated according to the average of the seven metrics’ ranking

numbers.

The rankings of the seven feature combinations for each background category as well as

over all are presented in Tables 2 - 8. Based on average ranking, it is seen that: ‘C’ performs

best in the baseline, dynamic background and thermal categories; ‘CS’ performs best in the

camera jitter and shadow categories; ‘SD’ performs best in the intermittent object motion

category. Moreover, ‘CS’ performs best overall. Although ‘SD’ is worse than ‘S’ or ‘D’ in

most categories based on average ranking, the recall and FNR of ‘SD’ from all tables are

better than ‘S’ or ‘D’.

The binary detection results of sample images for each feature combination are presented

in Figure 6 - 12. A number of general observations can be made by study of the image-based

detection results. Feature combination ‘CS’ detects results with the highest accuracy and the

fewest false positive regions, see Figure 6. Colour alone, ‘C’, (Figure 7) generally provides

the least amount of blur in its detected regions, but detects more false positive regions

compared with features containing both color and spatial or spatiotemporal features. Feature

combinations ‘CD’ and ‘CSD’ (Figures 8 and 9) detect most of the foreground regions in the

dynamic background and camera jitter categories, with little false positive detection except

in the vicinity of the detected foreground objects’ boundaries. The spatial and dynamic

features alone, ‘S’ or ‘D’, provide the lowest recall, as shown in Figures 11 and 10. Feature

combination ‘SD’, Figure 12, detects more true foreground regions than either features ‘S’

or ‘D’ alone.

As a complementary approach to evaluating the various feature combinations, ROCs are

presented in the Appendix to this report.
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Figure 6: Sample Images’ binary results for feature combination ‘CS’.
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Figure 7: Sample Images’ binary results for feature combination ‘C’.
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Figure 8: Sample Images’ binary results for feature combination ‘CD’.
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Figure 9: Sample Images’ binary results for feature combination ‘CSD’.
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Figure 10: Sample Images’ binary results for feature combination ‘D’.
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Figure 11: Sample Images’ binary results for feature combination ‘S’.

41



Figure 12: Sample Images’ binary results for feature combination ‘SD’.
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Method
Overall

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

CS 1.29 0.7894 0.9830 0.0170 0.2106 2.7052 0.7544 0.8015
C 2.86 0.8203 0.9745 0.0255 0.1797 3.0948 0.7361 0.7417
CD 3.14 0.7517 0.9825 0.0175 0.2483 3.1626 0.6816 0.7283
CSD 3.29 0.7862 0.9787 0.0213 0.2138 3.3408 0.6946 0.7163
D 5.29 0.6395 0.9784 0.0216 0.3605 4.2213 0.5562 0.6408
S 6.00 0.5496 0.9782 0.0218 0.4504 4.6617 0.5184 0.6565
SD 6.14 0.7516 0.9633 0.0367 0.2484 5.2341 0.5755 0.5793

Table 2: Overall 7 combinations comparison

Method
Baseline

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

C 2.00 0.9263 0.9972 0.0028 0.0737 0.5352 0.9142 0.9033
CS 2.14 0.8917 0.9975 0.0025 0.1083 0.7289 0.8982 0.9114
CD 2.86 0.9305 0.9918 0.0082 0.0695 1.1693 0.8237 0.7547
CSD 3.86 0.9303 0.9911 0.0089 0.0697 1.2708 0.8144 0.7430
S 5.00 0.6329 0.9968 0.0032 0.3671 1.8510 0.6946 0.8713
D 6.00 0.8230 0.9880 0.0120 0.1770 2.1440 0.7102 0.6681
SD 6.14 0.8797 0.9855 0.0145 0.1203 2.1625 0.7171 0.6437

Table 3: Baseline 7 combinations comparison
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Method
camera-
Jitter

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

CS 1.29 0.8429 0.9841 0.0159 0.1571 2.1080 0.7826 0.7433
CSD 2.29 0.8409 0.9730 0.0270 0.1591 3.1274 0.7395 0.6882
C 3.43 0.8462 0.9562 0.0438 0.1538 4.7178 0.6369 0.5599
CD 3.86 0.7821 0.9687 0.0313 0.2179 3.7214 0.6910 0.6685
S 5.43 0.5314 0.9693 0.0307 0.4686 5.0343 0.4752 0.4714
D 5.71 0.6682 0.9420 0.0580 0.3318 6.7117 0.5228 0.4951
SD 6.00 0.8341 0.9043 0.0957 0.1659 9.8055 0.4982 0.4206

Table 4: Camera Jitter 7 combinations comparison

Method
Dy-
namic
Back-
ground

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

C 2.00 0.8661 0.9930 0.0071 0.1339 0.7927 0.7018 0.6662
CD 2.14 0.8825 0.9901 0.0099 0.1175 1.0552 0.6812 0.6612
CS 2.71 0.8665 0.9860 0.0140 0.1335 1.4714 0.6736 0.6737
CSD 3.43 0.9041 0.9806 0.0194 0.0959 1.9764 0.6313 0.6040
D 5.00 0.7513 0.9824 0.0176 0.2487 2.1503 0.5246 0.5311
SD 5.71 0.8596 0.9484 0.0516 0.1404 5.3579 0.4107 0.3193
S 7.00 0.6766 0.9325 0.0675 0.3234 7.2199 0.2873 0.2160

Table 5: Dynamic Background 7 combinations comparison
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Method
Inter-
mittent
Motion

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

SD 3.29 0.6020 0.9738 0.0262 0.3980 5.5949 0.5972 0.6216
S 3.57 0.5837 0.9755 0.0245 0.4163 5.6038 0.5654 0.6339
D 3.57 0.3909 0.9876 0.0124 0.6091 5.5519 0.4636 0.6810
CS 3.57 0.6651 0.9399 0.0601 0.3349 7.7990 0.6066 0.6741
C 4.43 0.6922 0.9161 0.0839 0.3078 9.3183 0.5841 0.6405
CD 4.71 0.4965 0.9695 0.0305 0.5035 6.4589 0.5059 0.6725
CSD 4.86 0.5804 0.9533 0.0467 0.4196 7.3340 0.5603 0.6533

Table 6: Intermittent Motion 7 combinations comparison

Method
Shadow

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

CS 2.71 0.8741 0.9921 0.0079 0.1259 1.3477 0.8624 0.8611
CD 2.86 0.9426 0.9783 0.0217 0.0574 2.3301 0.8076 0.7220
C 3.29 0.9019 0.9876 0.0124 0.0981 1.5845 0.8153 0.7541
CSD 3.86 0.9391 0.9781 0.0219 0.0609 2.4037 0.8022 0.7160
S 4.43 0.5020 0.9967 0.0033 0.4980 2.8660 0.5926 0.8469
D 5.29 0.9162 0.9741 0.0259 0.0838 2.8226 0.7586 0.6648
SD 5.57 0.9381 0.9720 0.0280 0.0619 2.9684 0.7590 0.6496

Table 7: Shadow 7 combinations comparison

Method
Ther-
mal

Average
ranking

Average
Re

Average
Sp

Average
FPR

Average
FNR

Average
PWC

Average
F-
Measure

Average
Precision

C 1.71 0.6894 0.9971 0.0029 0.3106 1.6202 0.7645 0.9260
CS 1.86 0.5962 0.9982 0.0018 0.4038 2.7766 0.7031 0.9452
S 3.86 0.3710 0.9982 0.0018 0.6290 5.3955 0.4956 0.8992
CSD 4.00 0.5223 0.9962 0.0038 0.4777 3.9322 0.6198 0.8934
CD 4.43 0.4762 0.9963 0.0037 0.5238 4.2405 0.5799 0.8907
SD 6.00 0.3960 0.9956 0.0044 0.6040 5.5156 0.4707 0.8208
D 6.14 0.2874 0.9964 0.0036 0.7126 5.9473 0.3571 0.8047

Table 8: Thermal 7 combinations comparison
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3.2.2 Comparison with state of the art

Among the above seven combinations, ‘CS’, ‘C’ and ‘CD’ have ranked top three for overall

videos, see Table 2. So, ‘CS’, ‘C’ and ‘CD’ are chosen to compete with all the methods

published on the 2012 CDnet results of the website www.changedetection.net, the final

rankings are shown in Figure 13. Overall, it is seen that the best performing of the proposed

feature combinations, ‘CS’, is the tenth best approach based on average ranking, when

compared to the state-of-the-art, see Figure 13. Among methods better than ‘CS’, PAWCS,

SuBSENSE, PBAS and PBAS-PID are sample-based background models, DPGMM and

SGMM-SOD are PDF background models, Spectral-360 is a physical model.

3.3 Discussion

3.3.1 Comparison among different feature combinations

The result that ‘CS’ is the best in Table 2 shows that by adding spatial orientation features

(SO) to chromatic features (CM), the overall performance is improved. ‘C’ is the best for

videos in the baseline category, see Table 3. This result is due to the fact that localization

is very important for the current dataset evaluation and spatial or spatiotemporal features

can blur detection results by involving surrounding information in their recovery, e.g. the

obvious difference of the third image in baseline category between Figure 7 and Figure

8. ‘CS’ and ‘CSD’ are better than ‘C’ in Table 4. This result indicates that spatial and

spatiotemporal features improve foreground detection for videos with heavy camera jitter,

as colour alone does not supply adequate information. In Table 5, the result that ‘CD’ is

better than ‘CS’ shows that spatiotemporal features can help more than spatial orientation

features in dynamic background scenarios, as they explicitly capture the temporal as well as

spatial variations. ‘SD’, ‘S’ and ‘D’ are the top three combinations for videos in intermittent

object motion category, see Table 6. This result arises due to foreground and background

objects having low color contrast in the videos with intermittent object motion, as can be
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Figure 13: Overall CDnet Rank
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observed in the sample images in Figure 4; thus, chromatic features only make this result

worse than purely spatial or spatiotemporal features. The rank in Table 7 shows that spatial

or spatiotemporal features improve the detection results over using only chromatic features

for videos containing shadows. This result is due to the ability of the such features to model

surface texture and thereby avoid falsely labelling regions that go into and out of shadow as

change because the consistency of surface texture is maintained. This can be clearly observed

in the first image of the shadow category in Figures 7 and 8. In Figure 7, the shadow cast

onto the ground surface is wrongly detected as foreground, but feature combination ‘CD’

avoids detecting purely brightness change, as shown in Figure 8. Since objects in thermal

videos are lacking in textures, ‘C’ is better than ‘CS’. As noted above, ‘SD’ is worse than

‘S’ or ‘D’ in most categories based on average ranking, but the recall and FNR of ‘SD’ from

all tables are better than ‘S’ or ‘D’. This result is likely due to the fact that combining the

spatial and dynamic texture features results in more foreground being detected in general.

3.3.2 Comparison with state of the art

As expected, the rankings of the three proposed algorithms (‘CS’, ‘C’ and ‘CD’) that have

been selected for comparison to the state-of-the-art maintain their relative orderings in this

large comparison. Four of the state-of-the-art algorithms (PAWCS, SubSENSE, PBAS and

PBAS-PPID, with PAWCS the current top performer) that rank above the top performing

of the proposed algorithms (‘CS’) share interesting similarities with ‘CS’. First, they all

make use of both chromatic and spatial texture features. Second, they all are sample-based

approaches. Here, it also is interesting to note that adding spatial features to realize ‘CS’

further improves performance of ‘C’ in the rank. The distinguishing attribute of the higher

performing sample-based approaches is that they also incorporate a feedback mechanism.

These observations suggest that further refinement of ‘CS’ to include feedback could boost

its performance to be competitive with the very best current change detection algorithms.
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4 Conclusion

4.1 Summary

In this report, we presented a background modelling algorithm based on dynamic, spatial

orientation and chromatic features. Amongst the various proposed feature combinations, the

combination of chromatic plus spatial orientation features performs best overall. In compar-

ison to the state-of-the-art, this combination ranks tenth best. More generally: The relation-

ship between the three features and background modelling has been explicitly analyzed and

presented. Moreover, a state-of-the-art background model (ViBe) has been introduced and

different feature combinations have been embedded into the framework to form a foreground

detection algorithm. Finally, the resulting algorithm has been implemented in software and

empirically evaluated both qualitatively and quantitatively based on a standard publicly

available change detection dataset.

4.2 Future work

In the light of the work that has been described in this report, several directions for future

work can be considered, as follows.

• The top amongst the state-of-the-art algorithms (PAWCS) is a sample-based approach,

as are three more of the approaches that rank above the proposed approach (Sub-

SENSE, PBAS and PBAS-PID). Significantly, the proposed approach also is sample-

based; however, those that rank above also incorporate a feedback mechanism that the

proposed approach does not. Therefore, a promising direction for future research is to

embed the best of the proposed feature combinations in a sample-based model with

feedback loops.

• The proposed approach is based on purely local feature measurements. Preliminary

experiments suggested that regional aggregations of local measurements can be effective
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in isolating false negatives as well as eliminating false positives. Thus, an interesting

direction for future research would be to use aggregations of the current features in

sample-based background modelling.

• The current system was developed for ease of experimentation with various algorithmic

variations and therefore was not optimized for execution rate. Since many envisioned

applications involve real-time demands, follow-on research that targets efficient imple-

mentation would be of great interest.
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Appendix

In complement to the standard CDnet evaluation results presented in the main body of this

report, this appendix presents ROCs for the proposed features and their combinations. The

plots are shown in Figures 14 - 20. It is seen that the ROC rankings are mostly consistent

with those presented in Tables 2 - 8; however, a few points of discrepancy can be noted, as

follows. First, combination ‘SD’ is better than ‘D’ in Figures 14 and 16, which is a different

ranking than presented in Tables 2 and 4. Addition of the spatial orientation features causes

an increase in Recall, with little change to the FPR, which improves the ‘SD’ ROC results.

However, the PWC and Specificity of ‘SD’ become worse, which pulls its rank down. Second,

feature ‘S’ is the worst in all ROC curves, but it only ranks the worst in Table 5. These

results can be explained by the fact that ‘S’ alone can only detect regions with texture;

therefore, its Recall cannot be increased usefully beyond this inherent limitation via lower

thresholds. Finally, while not necessarily inconsistent with the results shown in the Tables

2 - 8, it is interesting to note that the curves for ‘C’ show a tendency to cross those of ‘CD’

and ‘CSD’, indicating threshold sensitivity in their relative performances.
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Figure 14: ROCs calculated overall categories. The bottom plot shows the full operating
range; the top provides zoomed in view.
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Figure 15: ROCs for the Baseline category. The bottom plot shows the full operating range;
the top provides zoomed in view.
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Figure 16: ROCs for the Camera Jitter category. The bottom plot shows the full operating
range; the top provides zoomed in view.

54



Figure 17: ROCs for the Dynamic Background category. The bottom plot shows the full
operating range; the top provides zoomed in view.
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Figure 18: ROCs for the Intermittent Object Motion category. The bottom plot shows the
full operating range; the top provides zoomed in view.
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Figure 19: ROCs for the Shadow category. The bottom plot shows the full operating range;
the top provides zoomed in view.
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Figure 20: ROCs for the Thermal category. The bottom plot shows the full operating range;
the top provides zoomed in view.
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