
Infinite Paths in the Situation Calculus (Extended Version)

Shakil M. Khan and Yves Lespérance

Technical Report EECS-2015-05

December 1 2015

Department of Electrical Engineering and Computer Science
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Infinite Paths in the Situation Calculus
(Extended Version)

Shakil M. Khan and Yves Lespérance
Department of Electrical Engineering and Computer Science

York University, Toronto, Ontario, Canada
Email: {skhan, lesperan}@cse.yorku.ca

Abstract

The situation calculus has proved to be a very popular
formalism for modeling and reasoning about dynamic
systems. This otherwise elegant and refined language
however lacks a natural way of dealing with “infinite
future histories”. To this end, in this paper we intro-
duce a new sort ranging over infinite paths in the situa-
tion calculus and propose an axiomatization for infinite
paths. We thus obtain a convenient way of specifying
several kinds of notions that involve infinite futures such
as temporal properties of non-terminating executions of
agents or programs and mental attitudes such as desires
and intentions. We prove the correctness of the axiom-
atization and show that our formalization has some in-
tuitively desirable properties. We then illustrate the use-
fulness of our formalization by considering applications
involving desires and non-terminating programs.

1. Introduction
One of the most prominent formalisms for modeling dy-
namic domains is the situation calculus (McCarthy and
Hayes 1969). Since its introduction, much work has been
done to further refine and enrich this language. Researchers
have formalized the prerequisites and effects of actions and
proposed reasonable solutions to the frame problem (Reiter
1991; 2001) and the ramification problem (Lin and Reiter
1994). They have modeled various aspects of agents’ incom-
plete knowledge, perceptual actions, and knowledge change
(Moore 1990; Scherl and Levesque 2003; Levesque 1996;
Lakemeyer and Levesque 1998), agent ability (Lespérance
et al. 2000; Lespérance 2001), continuous time (Pinto
1994), stochastic actions (Reiter 2001), agent communica-
tion (Shapiro, Lespérance, and Levesque 2002; Khan and
Lespérance 2005), belief revision (Shapiro et al. 2011),
and dealt with agents’ motivational attitudes and rational
action/behavior (Shapiro, Lespérance, and Levesque 2005;
Sardina and Shapiro 2003; Khan and Lespérance 2010). Fi-
nally, work has been done to incorporate complex actions
into the formalism that has led to an implemented family of
“high-level” programming languages (Levesque et al. 1997;
De Giacomo, Lespérance, and Levesque 2000; Boutilier et
al. 2000; De Giacomo et al. 2004).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, this otherwise simple yet elegant language lacks
a convenient way of dealing with “infinite future histories”.
One cannot talk directly about infinite paths in the situation
calculus. While some work has been done to capture the no-
tion of paths in the situation calculus, all of these approaches
have drawbacks. We discuss some of these here; see Section
8 for a discussion of other related work. While specifying
agents’ goals and behavior, Shapiro (2005) considers only
finite paths. He models a finite path using a pair of situa-
tions representing the beginning state and the ending state
of the path. Unfortunately, a temporal framework based on
such finite paths has limited expressiveness and can’t cap-
ture arbitrary temporally extended formulae, e.g. the goal to
maintain a property φ indefinitely far in the future,�φ. Also,
quantification over these finite paths requires dealing with a
pair of situations explicitly which is somewhat clumsy.

Lespérance et al. (2000) on the other hand looked at infi-
nite paths. They introduced the notion of action selection
functions (also called ASF or strategies), which are map-
pings from situations to primitive actions, and showed how
ASFs can be used to model infinite paths (see Section 3 for
details). Their account however does not have paths as a sort
and thus does not allow for first-order quantification over
paths.

To deal with these issues, in this paper we introduce a
new sort of infinite paths (along with path variables that
can be quantified over) in the situation calculus and pro-
pose an axiomatization for infinite paths. By adding a new
sort ranging over infinite paths in the situation tree, we ob-
tain a convenient way of specifying several kinds of notions
that involve infinite futures such as temporal properties of
non-terminating executions of agents or programs, and fu-
ture looking mental attitudes such as desires and intentions,
as well as beliefs about the future. We discuss how CTL∗
temporal formulae (Emerson and Halpern 1986) can be in-
terpreted over these infinite paths. We show that our formal-
ization of paths has some intuitively reasonable properties
and prove the correctness of the axiomatization. To illus-
trate the benefits of paths, we then examine two applications
of the situation calculus with paths, namely specification of
temporal goals of agents and definition of execution seman-
tics for infinitely running programs written in the situation
calculus-based ConGolog programming language (De Gia-
como, Lespérance, and Levesque 2000).

2. Background
We adopt the version of the situation calculus as formalized
in (Reiter 2001). In this framework, a possible state of the
domain is represented by a situation. The initial situation is
represented by a special constant S0 which stands for the
empty sequence of actions. There is a distinguished binary
function symbol dowhere do(a, s) denotes the successor sit-
uation to s resulting from performing the action a. Thus the
domain of situations can be viewed as a tree, where the root
of the tree is the initial situation S0 and the arcs represent
actions (this is enforced by the foundational axioms; see be-
low). Relations (and functions) whose truth values vary from
situation to situation, are called relational (functional, resp.)
fluents, and are denoted by predicate (function, resp.) sym-
bols taking a situation term as their last argument. There is a
special predicate Poss(a, s) used to state that action a is ex-
ecutable in situation s. s @ s′ means that s′ can be reached
from s by performing a sequence of actions. s v s′ is an ab-
breviation for s @ s′∨s = s′.We will use s ≺ s′ and s � s′
to denote that the sequence of actions performed to reach s′
from s were all executable. Finally, a situation is called exe-
cutable if every action in its history was executable, i.e.:

Executable(s)
.
= ∀a, s′. do(a, s′) � s ⊃ Poss(a, s′).

A dynamic domain can be represented by a basic action
theory (Reiter 2001)Dbat that includes: (1) action precondi-
tion axioms, one per action a characterizing Poss(a, s), (2)
successor state axioms (SSA), one per fluent, that succinctly
encode both effect and frame axioms and specify exactly
how and when the fluent changes (Reiter 2001), (3) initial
state axioms describing what is true initially (including the
mental states of the agents), (4) unique names axioms for
actions, and (5) domain-independent foundational axioms Σ
describing the structure of situations (Levesque, Pirri, and
Reiter 1998). All these axioms are first-order except for Σ,
which includes a second order induction axiom for defining
the tree of situations.

3. Infinite Paths in the Situation Calculus
Following (Lespérance et al. 2000), we only consider “re-
alistic” paths; paths involving non-executable actions can-
not really occur as they are not realistic. Thus a path in our
framework is essentially an infinite sequence of situations,
where each situation along the path can be reached by per-
forming some executable action in the preceding situation.
To allow (first-order) quantification over infinite paths, we
in addition introduce a new sort called paths in the language
with (possibly sub/super-scripted) variables p ranging over
paths. We give an axiomatization for infinite paths below.

Thus our formalization of infinite paths is more general
than Shapiro’s (2005) finite paths. Arbitrary temporally ex-
tended formulae such as unbounded maintenance goals can
be interpreted using our paths. Moreover, our account is sim-
pler than that of (Lespérance et al. 2000), and unlike them,
we allow quantification over paths, which makes our lan-
guage easier to use.

Before delving into the technical details, let us point out
some notational conventions. We will use both state and path

formulae denoted by uppercase and lowercase Greek letters,
resp., e.g. Φ(s) and φ(p). Here s is a free situation vari-
able in which the state formula must be evaluated and p is
a free path variable over which the path formula must hold.
We sometimes suppress these variables where the intended
meaning is clear. Finally, as usual Φ[s] denotes the reintro-
duction of situation s in the situation suppressed formula Φ.
Axiomatization: We now give our axiomatization for infi-
nite paths. We have a predicate OnPath(p, s), meaning that
situation s is on path p. Also, the abbreviation Starts(p, s)
means that s is the starting situation of path p. A path p starts
with s iff s is the earliest situation on p:
Definition 1.

Starts(p, s) .
= OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s � s′.

As shown in (Lespérance et al. 2000), one can use ac-
tion selection functions (ASFs) to model infinite paths. Re-
call that ASFs or strategies are mappings from situations to
primitive actions. The idea is that given a situation s, an ASF
F prescribes an action that the agent must perform in s if she
were to follow the path induced by this strategy. An infinite
path can then be formalized as a tuple (s, F), where s is the
starting situation of the path, and F is a strategy that defines
an infinite sequence of situations by specifying an action for
every situation starting from s. Thus, one way of axiomatiz-
ing paths is by making them correspond to such pairs (s, F):
Axiom 2.

(a). ∀p. (∃F, s. Executable(F, s)

∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

(b). ∀F, s. Executable(F, s) ⊃ (∃p. Starts(p, s) ∧
∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′)).

This second-order axiom says that for every path p, there is
an action selection function F and a situation s such that F
starting in s is executable, and that F produces exactly the
same sequence of situations on p starting from s. Also, for
every executable action selection function F and situation
s, there is a path p that starts with s and that corresponds
exactly to the sequence of situations produced by F starting
from s. Here, OnPathASF(F, s, s′) means that the situation
sequence defined by (s, F) includes the situation s′:
Definition 3.

OnPathASF(F, s, s′)
.
=

s � s′ ∧ ∀a, s∗. s ≺ do(a, s∗) � s′ ⊃ F (s∗) = a.

Also, the situation sequence encoded by a strategy F and a
starting situation s is executable iff s is executable, and for
all situations s′ on this sequence, the action selected by F in
s′ is executable in s′.
Definition 4.

Executable(F, s)
.
= Executable(s) ∧

∀s′. OnPathASF(F, s, s′) ⊃ Poss(F (s′), s′).

Another axiom is needed to state that different situation
sequences represent different paths.
Axiom 5.

∀p, p′. (∀s. OnPath(p, s) ≡ OnPath(p′, s)) ≡ p = p′.

Note that, for every situation s on a path, there must be
an action that is possible in s, i.e. ∀p, s. OnPath(p, s) ⊃
∃a. Poss(a, s). We consider that situations where no ac-
tion is possible are “artificial”. One can always introduce
a dummy action noOp that has the precondition that True,
and consequently is always executable. Taking paths to be
sequences of executable situations means that there may
be infinite sequences of successor situations that are not
paths; even if the situations on a prefix of a sequence are
executable, the presence of a non-executable situation in
the sequence means that it is not a path. One could easily
modify the above axiomatization to include paths with non-
executable situations, and identify the subset of such paths
that are executable.

Also, while we focus on infinite paths, finite (executable)
paths can be viewed as prefixes of paths since a finite path
can always be extended to an infinite one, e.g. by extending
the prefix with an infinite sequence of noOp actions.

We now define what it means for a path p′ to be a suffix of
another path p w.r.t. a situation s:
Definition 6.

Suffix(p′, p, s)
.
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s � s′ ⊃ (OnPath(p, s′) ≡ OnPath(p′, s′)).

That is, a path p′ is a suffix of another path pw.r.t. a situation
s iff s is on p, and p′ which starts with s, contains exactly
the same situations as p starting from s. Below, we denote
by Dpath the axioms and definitions for modeling paths in
the situation calculus.

4. CTL∗ in the Situation Calculus
CTL∗ (Emerson and Halpern 1986) is an expressive
branching-time temporal logic that allows arbitrary combi-
nations of path quantifiers and temporal operators with no
additional complexity (Schnoebelen 2002) over LTL (Pnueli
1977). In this section, we show how CTL∗ formulae can be
interpreted over the situation calculus with paths. We start
by inductively defining a class of state and path formulae
(we use Φ and φ to denote state and path formulae, resp.):

Φ ::= ϕ | Eφ | Aφ | Φ ∧ Φ | ¬Φ | ∀x. Φ

φ ::= Φ | φ ∧ φ | ¬φ | ∀x. φ | ©φ | φ U φ

Here, ϕ is an arbitrary situation suppressed situation calcu-
lus formula. Eφ, i.e. over some path φ and Aφ, i.e. over all
paths φ are path quantifiers that are used to construct state
formulae from given path formulae. Moreover, any state for-
mula is also a path formula. Thus we need to be able to eval-
uate a state formula Φ over a path. But since state formulae
can only be evaluated over a state (in our case, a situation),
following (Emerson and Halpern 1986) we evaluate it w.r.t.
the starting situation of the path (see below).©φmeans that
φ holds next over a path while φ U ψ stands for φ until ψ.
Finally, other logical connectives like ∨,⊃,⊂,≡, and ∃ are
handled as the usual abbreviations.

Let us now define a function J·K that translates these for-
mulae into formulae of the situation calculus with paths. We
write ΦJsK (and φJpK) to mean that state formula Φ (and path
formula φ) holds in situation s (and over path p, resp.). J·K is
defined inductively as follows:

Definition 7.

A. ϕJsK .
= ϕ[s], where ϕ is a sit. suppressed sit. calc. formula,

B. EφJsK .
= ∃p. Starts(p, s) ∧ φJpK,

C. AφJsK .
= ∀p. Starts(p, s) ⊃ φJpK,

D. (Φ ∧Ψ)JsK .
= ΦJsK ∧ΨJsK,

E. ¬ΦJsK .
= ¬(ΦJsK),

F. (∀x. Φ)JsK .
= ∀x.(ΦJsK),

G. ΦJpK .
= ∃s. Starts(p, s) ∧ ΦJsK,

H. (φ ∧ ψ)JpK .
= φJpK ∧ ψJpK,

I. ¬φJpK .
= ¬(φJpK),

J. (∀x. φ)JpK .
= ∀x.(φJpK),

K. © φJpK .
=

∃s, a, p′. Starts(p, s) ∧ Suffix(p′, p, do(a, s)) ∧ φJp′K,
L. (φ U ψ)JpK .

= ∃s, s′, p′. Starts(p, s) ∧ Suffix(p′, p, s′) ∧ ψJp′K
∧ (∀s∗, p∗. s � s∗ ≺ s′ ∧ Suffix(p∗, p, s∗) ⊃ φJp∗K).

Thus, the situation suppressed situation calculus formula ϕ
holds in situation s if ϕ[s] is true, i.e. the formula obtained
by reintroducing situation s in ϕ holds in s. EφJsK holds
if φ holds over at least one path in the future of s. On the
other hand, AφJsK holds if φ holds over all the paths in the
future of s. φ holds next over a path p (i.e. ©φJpK) if φ
holds over the suffix of p that starts with the successor to
the starting situation of p. φ until ψ holds over a path p (i.e.
(φ U ψ)JpK) if there is a suffix p′ of p that starts with s′,
ψ holds over p′, and for all suffixes p∗ of p that start with
an earlier situation s∗ than s′ (i.e. s∗ ≺ s′), φ holds over
p∗. The rest are self-explanatory. It should be clear that our
semantics of CTL∗ is essentially the same as the one given
by Emerson and Halpern (1986).

Other CTL∗ operators can be defined as usual, e.g. eventu-
ally φ (denoted by ♦φ), always φ (denoted by �φ), φ unless
ψ (denoted by φW ψ), φ before ψ (denoted by φ B ψ), etc.
Definition 8.

A. ♦φJpK .
= (True U φ)JpK,

B. �φJpK .
= ¬♦¬φJpK,

C. (φW ψ)JpK .
= ((φ U ψ) ∨�(φ ∧ ¬ψ))JpK,

D. (φ B ψ)JpK .
= ¬(¬φ U ψ)JpK.

Let DCTL∗ be our definitions of CTL∗ above.
Example: Consider an agent in a mine-sweeper-like do-
main. Assume that there are only a finite number of cells
(one can also handle a version where the grid of cells is infi-
nite). The agent has two actions visit(x, y) and flag(x, y),
for visiting cell (x, y) and flagging/marking that cell (x, y)
possibly has a mine, respectively. There are three fluents,
Dead(s),Visited(x, y, s), and Flagged(x, y, s). Initially the
agent is alive, but she can die if she accidentally steps on a
cell with a mine. Initially all the cells are neither visited nor
flagged. The objective here is to visit as many cells as possi-
ble without stepping on a mine and dying. If the agent sus-
pects that a cell has a mine in it, she can block the possibility
of visiting it by flagging it provided that she is alive. Also,
she can visit a cell if it is not flagged, again provided that

she is alive.1 The action theory Dswip includes the founda-
tional axioms Σ, Dpath, DCTL∗ , unique names axioms for
visit() and flag() actions, and the following initial situation
description, and precondition and successor-state axioms:
∃n. Cell(x, y) ≡ (x = 1 ∧ y = 1) ∨ · · · ∨ (x = n ∧ y = n),

Mine(x, y) ⊃ Cell(x, y),

¬Dead(S0) ∧ ¬Visited(x, y, S0) ∧ ¬Flagged(x, y, S0),

Poss(visit(x, y), s) ≡
Cell(x, y) ∧ ¬Dead(s) ∧ ¬Flagged(x, y, s),

Poss(flag(x, y), s) ≡ Cell(x, y) ∧ ¬Dead(s),

Dead(do(a, s)) ≡ Dead(s)

∨ (a = visit(x, y) ∧Mine(x, y)),

Visited(x, y, do(a, s)) ≡ Visited(x, y, s)

∨ (a = visit(x, y) ∧ Cell(x, y)),

Flagged(x, y, do(a, s)) ≡ Flagged(x, y, s)

∨ (a = flag(x, y) ∧ Cell(x, y)).

Now, define Solved(s) as follows:
Solved(s)

.
= ∀x, y. Mine(x, y) ⊃ Flagged(x, y, s)

∧ Cell(x, y) ∧ ¬Mine(x, y) ⊃ Visited(x, y, s).

Then from Dswip, we have that there is a path where sooner
or later the problem will be solved. Using CTL∗ introduced
above, we have that:

Dswip |= E(♦Solved()).

Also, from Dswip and the additional constraint that there is
at least one cell with a mine in it, we have that there is a path
where eventually the agent dies and that for all paths she will
be always alive as long as she never visits any cells:
Dswip ∪ {∃x, y. Mine(x, y)} |= E(♦Dead()),

Dswip ∪ {∃x, y. Mine(x, y)} |=
A(∀x, y. �¬Visited(x, y) ⊃ �¬Dead()).

On the other hand, if we assume that there are no mines at
all, then we have that for all futures she is always alive:

Dswip ∪ {∀x, y. ¬Mine(x, y) |= A(�¬Dead()).

5. Properties of Paths
We now show some properties of our axiomatization of
paths. Proofs of the properties appear in the appendix.

Let Σ be the set of foundational axioms, andDpath consist
of the axiomatization for paths, i.e. Axioms 2 and 5 and the
associated definitions. Our first property captures the con-
ditions under which a situation can be extended to a path:
Σ ∪ Dpath entails that for any executable situation, there is
a path that starts with that situation, provided that for any
situation there exists an executable action.

1Since the agent cannot perform an action when she is dead,
we assume the inclusion of other executable actions, e.g. a noOp
action that is executable when she is dead so that she does not run
out of executable actions.

Proposition 9.
Σ ∪ Dpath |= (∀s′. ∃a. Poss(a, s′)) ⊃

(∀s. Executable(s) ⊃ ∃p. Starts(p, s)).

This can be proven by constructing an executable ASF and
using Axiom 2(b). Again, we maintain that situations with
no executable actions are “artificial”.

Next, we prove some properties of the starting situation
of a path. In particular, we can show that Σ ∪ Dpath entails
that (a) any path starts with some situation, (b) the starting
situation of any path is unique, and (c) the starting situation
of any path is executable.
Proposition 10.

(a). Σ ∪ Dpath |= ∀p. ∃s. Starts(p, s),
(b). Σ ∪ Dpath |= ∀p, s, s′. Starts(p, s) ∧ Starts(p, s′) ⊃ s = s′,

(c). Σ ∪ Dpath |= ∀p, s. Starts(p, s) ⊃ Executable(s).

These properties can be proven using Axiom 2(a) and Defi-
nitions 1, 3, and 4.

The next two properties deal with the successor situation
of a situation on a path that is also on the path. The first states
that Σ ∪ Dpath entails that for any situation s on a path p,
there is a successor situation s′ = do(a, s) on p, and s′ can
be reached from s by performing an executable action a.
Proposition 11.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s)

⊃ ∃s′, a. OnPath(p, s′) ∧ s′ = do(a, s) ∧ Poss(a, s).

This can be proven by Axiom 2(a) and Definitions 3 and 4.
Moreover, Σ ∪ Dpath entails that the successor situation

of a situation on a path is unique.
Proposition 12.
Σ ∪ Dpath |= ∀p, s. [OnPath(p, s) ∧

OnPath(p, do(a, s)) ∧ OnPath(p, do(b, s))] ⊃ a = b.

We can prove this using Axiom 2(a) and Definition 3.
The next property deals with the uniqueness of paths: Σ∪

Dpath entails that if p 6= p′, then there is a situation that is
on path p but not on path p′.
Proposition 13.

Σ ∪ Dpath |= ∀p, p′. p 6= p′ ⊃
∃s. (OnPath(p, s) ∧ ¬OnPath(p′, s)).

This follows from Axiom 5.
We can also show that Σ∪Dpath entails that all situations

on a path are executable.
Corollary 14.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ Executable(s).

This can be proven by induction on s using Propositions
10(b, c), 11, and 12.

We say that two situations are co-linear if they are the
same or if one of them strictly precedes the other. Our next
set of properties deal with the structure of situations on paths
and shows that paths are essentially linear sequences of sit-
uations. First, we have Σ ∪ Dpath entails that any pair of
situations on the same path are co-linear:

Proposition 15.
Σ ∪ Dpath |= ∀p, s, s′. OnPath(p, s) ∧ OnPath(p, s′) ⊃

s = s′ ∨ s ≺ s′ ∨ s′ ≺ s.

We can prove this using Axiom 2(a), Definition 3, and other
properties of structure of situations w.r.t. ≺.

Secondly, we have Σ ∪ Dpath entails that if situations s
and s′ are on a given path p, then all situations in the interval
defined by these two situations are also on p.
Proposition 16.

Σ ∪ Dpath |= ∀p, s, s′, s∗. (OnPath(p, s) ∧ OnPath(p, s′)

∧ s � s∗ � s′) ⊃ OnPath(p, s∗).

We can prove this using Axiom 2(a) and Definition 3.
Finally, we can show that Σ∪Dpath entails that two paths

can share only one common prefix. Once they branch at
some situation, they never merge after that.
Proposition 17.

Σ ∪ Dpath |= ∀p1, p2, s, a, b, s1, s2. [OnPath(p1, do(a, s))

∧ OnPath(p2, do(b, s)) ∧ a 6= b ∧ s ≺ s1 ∧ s ≺ s2
∧ OnPath(p1, s1) ∧ OnPath(p2, s2)] ⊃ s1 6= s2.

We can prove this using Proposition 15 and other properties
of structure of situations w.r.t. actions and ≺.

The next few properties deal with suffixes and prefixes of
a given path. The first of these states that Σ ∪ Dpath entails
that for any situation s on a path p, there is a suffix of p that
starts with s.
Proposition 18.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ ∃p′. Suffix(p′, p, s).

This can be proven using Axioms 2(a, b), and Definitions 3,
4, and 6.

Secondly, we can show that given a path p with starting
situation do(a, s), Σ∪Dpath entails that there is a path p′ s.t.
p′ starts with s, and p is a suffix of p′ starting from do(a, s).
Proposition 19.

Σ ∪ Dpath |= Starts(p, do(a, s)) ⊃
∃p′. Starts(p′, s) ∧ Suffix(p, p′, do(a, s)).

This can be proven using Axioms 2(a, b), and Definitions 1,
3, 4, and 6, and Proposition 10(b).

Finally, Σ ∪ Dpath entails that any path that starts with
a non-initial situation can be extended in the past; formally,
for all situations s1 and s2, if s1 strictly precedes s2 and
there is a path p2 that starts with s2, then there must also
exist a path p1 such that p1 starts with s1 and p2 is a suffix
of p1 starting from s2.
Proposition 20.

Σ ∪ Dpath |= ∀s1, s2, p2. s1 ≺ s2 ∧ Starts(p2, s2) ⊃
∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, s2).

We can prove this by induction on situation s2 using Propo-
sition 19 and Definition 6.

We now prove some second-order induction principles for
paths and for situations in a path. First we have Σ∪Dpath en-
tails that if some propertyQ holds for all paths that start with

an initial situation, and if wheneverQ holds for all paths that
start with situation s, then it holds for all paths that start with
any successor situation to s, then the propertyQ holds for all
paths.
Theorem 21 (Induction on Paths).

Σ ∪ Dpath |= ∀Q. [{∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q(p)} ∧
{∀a, s. (∀p. Starts(p, s) ⊃ Q(p))

⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q(p′))}]
⊃ ∀p. Q(p).

Moreover, Σ∪Dpath entails that if some propertyQ holds
for the starting situation of a given path p, and if whenever
Q holds for a situation s on path p, then it holds for the
successor situation to s on p, then the property Q holds for
all situations on path p.
Theorem 22 (Induction on Situations in a Path).

Σ ∪ Dpath |= ∀p,Q. [{∀s. Starts(p, s) ⊃ Q(s)} ∧
{∀a, s. (OnPath(p, s) ∧Q(s) ∧ OnPath(p, do(a, s)))

⊃ Q(do(a, s))}]
⊃ ∀s. OnPath(p, s) ⊃ Q(s).

See the appendix for proofs of these.
Next, we prove the correctness of our axiomatization. A

natural way of capturing the notion of infinite path is by
specifying it as a mapping from the set of natural numbers
to situations on a path. To this end, we use a function σ of
the following sort (here S denotes the set of all situations):
σ : N → S. We say that such a function σ models a path
sequence if σ maps the number 0 to an executable situation
(representing the starting situation of the path), and for each
number n, there is an action a that is executable in the situ-
ation sn produced by σ(n) such that σ maps the immediate
successor of n (i.e. n+ 1) to the situation do(a, sn).
Definition 23.

PathSeq(σ)
.
= Executable(σ(0)) ∧

∀n. ∃a. Poss(a, σ(n)) ∧ σ(n+ 1) = do(a, σ(n)).

We say that a path p matches a path sequence σ if σ is
indeed a path sequence, σ(0) is the starting situation of p,
and for all n, s and a, if σ(n) is a situation s on path p, then
σ(n+ 1) is the successor situation do(a, s) of s on p:
Definition 24.

Matches(p, σ)
.
= PathSeq(σ) ∧ (σ(0) = s ≡ Starts(p, s))

∧ ∀n, s. [σ(n) = s ∧ OnPath(p, s) ⊃
∀a. (σ(n+ 1) = do(a, s) ≡ OnPath(p, do(a, s)))].

Given this formalization, the task of proving correctness
of our axiomatization for infinite paths can be reduced to
showing that path sequences are isomorphic to paths defined
by Σ ∪ Dpath, i.e. that there is an one-to-one mapping be-
tween these two. To this end, we first show that for any path
p, there is a path sequence σ that matches p.2

2Here ΣN is an axiomatization of the natural numbers, i.e., stan-
dard second-order Peano arithmetic, for the natural number sort.

Theorem 25 (Soundness).

ΣN ∪ Σ ∪ Dpath |= ∀p. (∃σ. PathSeq(σ) ∧Matches(p, σ)).

See the appendix for a proof. Note that our soundness re-
sult implies that for any path p, there is a countably infinite
number of distinct situations on p.

Conversely, for any path sequence σ, there is a path p that
matches σ.
Theorem 26 (Completeness).

ΣN ∪ Σ ∪ Dpath |= ∀σ. PathSeq(σ) ⊃ ∃p. Matches(p, σ).

A proof for this appears in the appendix.

6. Application: Temporally Extended Goals
In this section, we illustrate the utility of introducing infi-
nite paths in the situation calculus by showing how these
paths can be used to formalize motivational attitudes. Our
formalization is a simplified version of that in (Khan and
Lespérance 2010) and is only meant to demonstrate the use
of infinite paths in formalizing simple temporally extended
goals in the situation calculus.

Here, we use a variant of basic action theories described
in (Levesque, Pirri, and Reiter 1998). In particular, to deal
with multiple possible worlds, rather than having just one
initial situation, we assume that there is a set of possible
initial situations, i.e. situations in which no actions have yet
occurred. Init(s) means that s is an initial situation. S0 is
taken to denote the actual initial situation.

We specify an agent’s goals using a goal accessibility re-
lation/fluent G. A path p is G-accessible in situation s, de-
noted by G(p, s), iff the goals of the agent in s are satisfied
over this path and if it starts with a situation that has the same
action history as s. The latter requirement follows from our
assumption that the agent is aware of the actions that have
already occurred and that her goals should be compatible
with this knowledge.

We say that an agent has the goal that φ in situation s iff
φ holds over all paths that are G-accessible in s:

Goal(φ, s) .
= ∀p. G(p, s) ⊃ φJpK.

A domain theory for our framework includes the axioms
of a theory Dbat, which is as in Section 2, but with a modi-
fied set of foundational axioms Σ that captures multiple ini-
tial situations (Shapiro 2005), the axiomatization of paths
and CTL∗, i.e. Dpath and DCTL∗ , domain dependent ini-
tial goal axioms and the domain independent axioms 27-28
(see below). Typically the modeler provides some specifica-
tion of what paths are G accessible initially. We call these
axioms initial goal axioms. This can be done by providing
an axiom as in the example below. Nevertheless, the agent’s
goals can be incompletely specified, i.e. the theory might not
specify fully what the goals are initially.

Returning to our example of Section 4, assume that our
mine-sweeper agent initially has the goal φ1 to eventually
visit cell (1,1), i.e. φ1 = ♦Visited(1, 1); then her initial goals
can be specified using the following initial goal axiom:

Init(s) ⊃ ∀p. (G(p, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1JpK).

This specifies the goals φ1 of the agent in the initial situa-
tions by making G(p, s) true for every path p that starts with
an initial situation and over which φ1 holds.
Goal Dynamics: An agent’s goals change as a result of the
occurrence of an action (including exogenous events), or
when she adopts or drops a goal. Here, we only discuss how
goals change as a result of a regular action as well as that of
an adopt(φ) action, i.e. the agent adopting φ as a goal.3 We
assume that agents are aware of all actions that occur. The
action precondition axiom for adopt() is as follows:
Axiom 27.

Poss(adopt(φ), s) ≡ ¬Goal(φ, s).

That is, an agent can adopt the goal that φ in situation s if
she does not already have φ as her goal in s.

In the following, we specify the dynamics of goals by giv-
ing the successor-state axiom (SSA) for G:
Axiom 28 (SSA for G).

G(p, do(a, s)) ≡
∃p′, s′. G(p′, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′))

∧ a = adopt(φ) ⊃ φJpK.

The overall idea of the SSA for G is as follows. To han-
dle the occurrence of a non-adopt (i.e. regular) action a, we
progress all G-accessible paths to reflect the fact that this
action has just happened; this is done by replacing each G-
accessible path p′ in s with starting situation s′ by its suffix
p, provided that it starts with do(a, s′). Any path over which
the next action performed is not a is eliminated from the
G-accessibility relation.

Moreover, to handle the adoption of a goal φ, we progress
the set of G-accessible paths as above and then we elim-
inate from this set all paths over which φ does not hold.
Thus the agent acquires the goal that φ after she performs
the adopt(φ) action.

In our example, it can be shown that the agent will have
the goal that ♦Solved() after she adopts the goal to eventu-
ally solve the problem in S0; let Dgoalswip includes Dswip as
in Section 4 (with modified Σ), Axioms 27 and 28, and the
above initial goal axiom; then we have:4

Dgoal
swip |= Goal(♦Solved(), do(adopt(♦Solved()), S0)).

This is because when the agent adopts the goal that
♦Solved(), all her G-accessible paths in S0 will be pro-
gressed, i.e. these paths will be replaced by their “imme-
diate” suffixes and any such path over which the next ac-
tion performed is not adopt(♦Solved()) will be dropped
from the new G-relation. This is to reflect that this adopt
action has happened. Moreover, any path over which the

3Since the action adopt(φ) takes a formula as argument, we
must encode formulae as terms as in (De Giacomo, Lespérance,
and Levesque 2000). For notational simplicity, we suppress this
encoding and use formulas as terms directly.

4Note that, this holds even if there is a mine in cell (1,1)
since in that case the agent’s set of G-accessible paths in
do(adopt(♦Solved()), S0) will become empty and thus the result
trivially follows; see (Khan and Lespérance 2010) to see how one
can properly deal with such inconsistent goals.

agent does not eventually solve the problem will be elim-
inated from the G-relation in do(adopt(♦Solved()), S0).
Thus the agent acquires the goal that ♦Solved(). Note that
from the given theory and the assumption that cell (1,1) is
free of mines, it can be shown that there are no paths in
do(adopt(♦Solved()), S0) over which both ♦Solved() and
♦Dead() hold, and thus the agent will also acquire the goal
that �¬Dead() (as well as all other consequences of the
adopted goal) after she adopts the goal that ♦Solved():

Dgoal
swip ∪ {¬Mine(1, 1)} |=

Goal(�¬Dead(), do(adopt(♦Solved()), S0)).

In this section, we used a simplified framework to
show that infinite paths in the situation calculus enable a
very straightforward and intuitive model of future-looking
attitudes like goals and desires. Again, see (Khan and
Lespérance 2009; 2010) for a much enhanced account of
goals that handles the dropping of a goal φ as well as the
adoption of a subgoal ψ w.r.t a parent goal φ and deals with
(possibly inconsistent) prioritized goals and various grades
of commitments towards goals, e.g. desires, intentions, etc.
It also discusses agents’ knowledge and its relationship to
their goals, in particular how agents’ knowledge can be used
to filter out their “realistic goals” from their set of desires,
what kind of constraints are required to manage the rational
balance needed among these mental attitudes, etc.

7. Application: Non-terminating Programs
As a second application, in this section we show how paths
in the situation calculus can be used to represent the execu-
tions of non-terminating high-level programs and then check
that these satisfy given temporal properties. We consider
programs in a subset of the situation calculus-based pro-
gramming language ConGolog (De Giacomo, Lespérance,
and Levesque 2000).

We start by outlining the ConGolog programming lan-
guage, which is developed on top of situation calculus action
theories to express and reason about complex processes that
exhibit semantically rich agent behaviors. Here we focus on
a subset of ConGolog that allows programs to be composed
according to the following grammar:5

δ ::= α | ϕ? | (δ1; δ2) | (δ1 | δ2) | (πx. δ) | (δ1‖δ2) | δ∗

Here α denotes a situation calculus primitive action, ϕ
is a situation-suppressed situation calculus formula, and
δ, δ1, and δ2 stand for complex actions. Thus programs
can be constructed of primitive actions α, tests for con-
ditions ϕ?, sequences δ1; δ2, nondeterministic branch δ1 |
δ2, nondeterministic choices of arguments πx. δ, concur-
rent executions of programs (understood as interleavings)
δ1‖δ2, and nondeterministic iteration δ∗, which performs
δ 0 or more times. πx.δ nondeterministically picks a le-
gal binding for the variable x and performs the program
δ for this binding of x. Other convenient control struc-
tures such as conditionals and while loops can be intro-
duced as abbreviations, e.g. while ϕ do δ endWhile

5Other ConGolog constructs include concurrency with different
priorities, interrupt calls, concurrent iterations, procedure calls, etc.

can be defined as (ϕ?; δ)∗;¬ϕ?. As an example, consider
the simple program to clear a table in a blocks world:
πb. (OnTable(b)?; putAway(b))∗;¬∃b. OnTable(b)?; this
repeatedly picks a block that is on the table and puts it away
until the table is clear.

The semantics of ConGolog programs is defined in
terms of single-step transitions using two special predi-
cates Final and Trans, where Final(δ, s) means that pro-
gram δ may legally terminate in situation s, and where
Trans(δ, s, δ′, s′) means that program δ in situation s may
legally execute one step, ending in situation s′ with pro-
gram δ′ remaining. Trans and Final are inductively char-
acterized by giving equivalence axioms for each construct,
such as: Trans((δ1 | δ2), s, δ′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨
Trans(δ2, s, δ

′, s′). Complete executions of a terminating
ConGolog program are specified by theDo predicate, which
is defined as follows:

Do(δ, s, s′)
.
= ∃δ′. (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)),

where Trans∗ is the reflexive transitive closure of Trans.
Thus Do(δ, s, s′) holds if and only if s′ can be reached by
performing a sequence of transitions starting with the pro-
gram δ in s, and the remaining program δ′ may legally ter-
minate in s′.

We can use paths to give a characterization of complete
executions of non-terminating programs. We useDo(δ, s, p)
to mean that the path p can be produced by a complete exe-
cution of the non-terminating ConGolog program δ starting
from situation s:

Do(δ, s, p)
.
=

Starts(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ ∃δ′. T rans∗(δ, s, δ′, s′).

Thus Do(δ, s, p) holds if path p starts with s and any situ-
ation s′ on p can be reached from s by executing δ starting
in s with some program δ′ remaining to be executed. Note
that this implies that for any situation s′ on p, there is a se-
quence of transitions (involving a sequence of intermediate
programs) from program δ in s to a program δ′ in s′. Thus all
situations in p are produced by an execution of δ starting in
s. Also, any terminating program can easily be transformed
into a non-terminating one that loops over a “completed”
state. Thus our Do generalizes the original one.

Given this characterization of the complete executions of
non-terminating programs, we can use our temporal logic
encoding to express/verify properties over executions of
such programs. All executions of a non-terminating program
δ starting in situation s satisfy an LTL property φ if and only
if we have:

∀p. Do(δ, s, p) ⊃ φJpK.

LTL properties are path formulae that do not contain any
path quantifiers. Note that we cannot verify general CTL∗
properties in this way, as the path quantifiers in our CTL∗
encoding quantify over the executable paths in the situation
tree, not the execution paths of the program.6

6For so called situation-determined ConGolog programs, there
is a unique remaining program for each situation that is reachable
in an execution of the program. As shown in (De Giacomo et al.
2016), it is possible to compile such a program into the action the-

Also given the above definition of Do, one can easily
model what it means for an agent to have a procedural
goal, i.e. a goal to execute a program. An agent having
the goal in situation s to execute a (non-terminating) pro-
gram δ starting in s, Goal(Do(δ), s), can be defined as:
∀p. G(p, s) ⊃ Do(δ, s, p), i.e. we require G-accessible
paths to be produced by an execution of δ.

8. Discussion
We have already discussed the work most closely related
to ours in Section 1. Beyond this, there is some work that
deals with the temporal aspects of situations, i.e. the start-
ing time of situations and action durations (Pinto 1994;
Reiter 1996), but not temporally extended paths. Another
set of approaches introduces some notion of paths while
addressing some application of paths and shows how var-
ious temporal logic formulae can be interpreted over such
paths. Gabaldon (2004) was the first to introduce state-
ments of temporal logic (LTL) into the situation calculus. He
used these to express search control knowledge for forward-
chaining planning. However, he only considers finite paths
defined by pairs of situations. Fritz and McIlraith (2006)
show how an extended version of LTL interpreted over a
finite horizon can be compiled into ConGolog. (Claßen and
Lakemeyer 2008) develops a second-order modal logic in-
spired by CTL∗ and dynamic logic to express properties
about (possibly) non-terminating ConGolog programs. The
authors define infinite “traces” using program configura-
tions. A configuration is a pair (δ, z), where δ is a ConGolog
program that remains to be executed and z is a sequence
of actions that have been already performed. Given z and
world w, they define infinite execution traces of δ as infi-
nite sequences of configurations, s.t. the ending configura-
tion of any finite prefix of the sequence can be reached from
the initial configuration (δ, z) and w. Note that, a key differ-
ence between this work and our formalization is that while
we define program semantics and paths axiomatically in the
situation calculus, they define a modal logic on top of the
situation calculus that allows temporal properties over exe-
cution of programs to be expressed and the semantics of pro-
grams is part of the model theoretic semantics of the logic.
For the CTL-like fragment of the language, the authors also
propose a verification method based on fixpoint approxima-
tion and “characteristic graphs”, which can finitely represent
a ConGolog program’s configuration graph; the method is
sound but incomplete. (De Giacomo, Ternovskaia, and Re-
iter 1997) uses a first-order version of the µ-calculus (Emer-
son 1996) to specify properties of non-terminating Golog
(Levesque et al. 1997) programs. The µ-calculus is a very
expressive temporal logic that provides least and greatest
fixpoints. It subsumes CTL∗, but translating a CTL∗ formula
often results in a much less readable µ-calculus formula.

ory so that actions are only possible if they can be performed by the
program, and then one can use the resulting theory to verify CTL∗

properties of the program. In general however, CTL∗ properties of
a program must be evaluated over the program’s transition system,
where nodes are program configurations consisting of a remaining
program and a situation. One cannot use paths in the situation tree
to do this.

To summarize, our main contribution in this paper is
twofold: first, we introduced infinite paths in the situation
calculus by providing a sound and complete axiomatization
for infinite paths; and second, we proved some desirable
properties and showed that infinite paths in the situation cal-
culus indeed correspond to an intuitive notion of paths. To
the best of our knowledge, ours is the only work that intro-
duces infinite paths as a sort in the language of the situa-
tion calculus and proves interesting properties. To comple-
ment this main result, we showed how CTL∗ formulae can
be interpreted in the situation calculus with paths. Also, we
discussed two applications involving temporally extended
goals and non-terminating programs that illustrate the use-
fulness of infinite paths.

In the future, we would like to utilize paths in the situa-
tion calculus to develop/further refine various applications
involving infinite histories, such as verification of tempo-
ral properties of non-terminating programs and modeling of
agents’ beliefs about the future, etc. Also, it would be inter-
esting to incorporate program execution paths explicitly in
the language of situation calculus. Introducing a notion of
program execution path, i.e. sequence of program configu-
rations (situation and remaining program) would allow state
and path formulae to be evaluated w.r.t. the tree of configura-
tions induced by a given program and starting situation, and
this would in turn allow the verification of CTL∗ properties
over arbitrary programs within the situation calculus.

Acknowledgments
We would like to thank Mikhail Soutchanski for helpful
comments on an earlier version of this paper. This work was
supported in part by the National Science and Engineering
Research Council of Canada under a Discovery grant for
the project Specification, Verification, and Synthesis of Au-
tonomous Adaptive Agents.

Appendix: Proofs
The following Lemmata are required for some of the proofs.
Σ entails that doing an action yields a different situation:

Lemma 29.
Σ |= ∀a, s. s 6= do(a, s).

Proof. See Proposition 2.4.1 in (Shapiro 2005).

Σ entails that a situation s strictly precedes the situation
that results from doing an action in s:

Lemma 30.
Σ |= ∀a, s. s ≺ do(a, s).

Proof. See Proposition 2.4.2 in (Shapiro 2005).

Σ entails that if a situation strictly precedes another situ-
ation, then they are different:

Lemma 31.

Σ |= ∀s, s′. s ≺ s′ ⊃ s 6= s′.

Proof. (By contradiction) Fix situations S1 and S2 and as-
sume that S1 ≺ S2 and S1 = S2. If we substitute S1 for S2

in the former, we have S1 ≺ S1, but this is contradictory to
the irreflexivity of ≺.

Σ entails that the result of doing a in s does not precede
s:

Lemma 32.
Σ |= ∀a, s. do(a, s) ⊀ s.

Proof. See Proposition 2.4.9 in (Shapiro 2005).

Σ entails that a situation s precedes doing an action in s:

Lemma 33.

Σ |= ∀a, s. s � do(a, s).

Proof. See Corollary 2.4.3 in (Shapiro 2005).

Σ entails that if do(a, s) is executable, then it is possible
to execute a in s, and s is executable:

Lemma 34.

Σ |= ∀a, s. Executable(do(a, s)) ⊃
Poss(a, s) ∧ Executable(s).

Proof. See Proposition 2.4.16 in (Shapiro 2005).

Σ entails that if two situations do(a, s) and do(b, s) ob-
tained by performing two actions a and b in the same situa-
tion s each precedes a third situation s′, then a and b repre-
sent the same action.

Lemma 35.

Σ |= ∀a, b, s, s′. (do(a, s) � s′ ∧ do(b, s) � s′) ⊃ a = b.

Proof. (By induction on s′) For the base case, fix
A1, B1, S1, and S′1, and assume that:

do(A1, S1) = S′1,

do(B1, S1) = S′1.

From this, we have:

do(A1, S1) = do(B1, S1).

From this and the injectivity of do(·, ·), we have A1 = B1.
For the inductive hypothesis, fix S′′1 and assume that:

(do(A1, S1) � S′′1 ∧ do(B1, S1) � S′′1) ⊃ A1 = B1. (1)

Fix action C1. We have to show that:

(do(A1, S1) � do(C1, S
′′
1) ∧ do(B1, S1) � do(C1, S

′′
1))

⊃ A1 = B1.

Assume that (do(A1, S1) � do(C1, S
′′
1) ∧ do(B1, S1) �

do(C1, S
′′
1)). Then we have 4 cases to consider.

Case 1. do(A1, S1) = do(C1, S
′′
1) and do(B1, S1) =

do(C1, S
′′
1). In this case, by the injectivity of do(·, ·), we

have A1 = C1 and B1 = C1, and thus A1 = B1.
Case 2. do(A1, S1) = do(C1, S

′′
1) and do(B1, S1) ≺

do(C1, S
′′
1). From the former and the injectivity of do(·, ·),

we have S1 = S′′1 . If we substitute S1 for S′′1 in the lat-
ter, we have do(B1, S1) ≺ do(C1, S1). From this, the def-
inition of ≺, and the fact that do is a function, we have
do(B1, S1) � S1; but by the definition of � and Lemmata
29 and 32, this is impossible.
Case 3. do(A1, S1) ≺ do(C1, S

′′
1) and do(B1, S1) =

do(C1, S
′′
1). As in Case 2, this case is also not possible.

Case 4. do(A1, S1) ≺ do(C1, S
′′
1) and do(B1, S1) ≺

do(C1, S
′′
1). From these, the definition of ≺, and the fact

that do is a function, we have:

do(A1, S1) � S′′1 ∧ do(B1, S1) � S′′1 .

Thus we can apply the inductive hypothesis (1), which gives
us A1 = B1.

Assume that s1 and s2 are successors of two different sit-
uations, obtained by performing two different actions a and
b, respectively, in the same situation s. Σ entails that s1 and
s2 are not co-linear.
Lemma 36.

Σ |= ∀s, s1, s2, a, b. a 6= b ∧ do(a, s) � s1 ∧ do(b, s) � s2
⊃ s1 6= s2 ∧ s1 ⊀ s2 ∧ s2 ⊀ s1.

Proof. (By contradiction) Fix A1, B1, S1, S
1
1 , and S2

1 and
assume that:

A1 6= B1, (2)
do(A1, S1) � S1

1 ∧ do(B1, S1) � S2
1 , and (3)

S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1 . (4)
Now, (3) above gives us the following four cases:
Case 1. Assume that:

S1
1 = do(A1, S1), and (5)

S2
1 = do(B1, S1). (6)

From these, (2), and injectivity of do(·, ·), we have:

S1
1 6= S2

1 . (7)

Thus from (4) and (7), we have: S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1 . As-
sume that S1

1 ≺ S2
1 . Then from this, (5), and (6), we have:

do(A1, S1) ≺ do(B1, S1). From this, the definition of ≺,
and the fact that do is a function, we have: do(A1, S1) � S1.
From this and the definition of �, it follows that either
do(A1, S1) = S1 or do(A1, S1) ≺ S1. But by Lemma 29,
the former is impossible. By Lemma 32, the latter is also
impossible. It thus follows that:

S1
1 ⊀ S2

1 . (8)

Similarly, it can be shown that:

S2
1 ⊀ S1

1 . (9)

But (7), (8), and (9) is contradictory to (4).
Case 2a. Assume that:

S1
1 = do(A1, S1), and (10)

do(B1, S1) ≺ S2
1 . (11)

I will show that ¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1) by
going over each case, one at a time. First, suppose that S1

1 =

S2
1 . From this and (10), we have S2

1 = do(A1, S1). From
this and (11), we have do(B1, S1) ≺ do(A1, S1). From this,
the definition of ≺, and the fact that do is a function, we
have do(B1, S1) � S1. But again, this is impossible by the
definition of � and Lemmata 29 and 32. Thus we have:

S1
1 6= S2

1 . (12)

Now suppose that S1
1 ≺ S2

1 . Then from this and (10), we
have:

do(A1, S1) ≺ S2
1 .

From this, (11), and the definition of �, we have:

do(A1, S1) � S2
1 ∧ do(B1, S1) � S2

1 .

From this and Lemma 35, we have A1 = B1, which is con-
tradictory to (2). Thus we have:

S1
1 ⊀ S2

1 . (13)

Finally, suppose that S2
1 ≺ S1

1 . Then from this and (10),
we have S2

1 ≺ do(A1, S1). From (11), this, and transitiv-
ity of ≺, we have do(B1, S1) ≺ do(A1, S1). But as shown
above, this is impossible. Thus:

S2
1 ⊀ S1

1 . (14)

But (12), (13), and (14) is contradictory to (4).
Case 2b. Assume that:

do(A1, S1) ≺ S1
1 , and (15)

S2
1 = do(B1, S1). (16)

The proof for this case is similar to that of Case 2a.
Case 3. Assume that:

do(A1, S1) ≺ S1
1 , and (17)

do(B1, S1) ≺ S2
1 . (18)

Again, we will show that ¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺

S1
1) by going over each case separately. First, assume that
S1
1 = S2

1 . From this and (18), we have do(B1, S1) ≺ S1
1 .

From this and (17), we have:

do(A1, S1) ≺ S1
1 ∧ do(B1, S1) ≺ S1

1 .

From this and the definition of �, we have:

do(A1, S1) � S1
1 ∧ do(B1, S1) � S1

1 .

From this and Lemma 35, we have A1 = B1, which is con-
tradictory to (2). Thus we have:

S2
1 6= S1

1 . (19)

Next, assume that S1
1 ≺ S2

1 . Then by this, (17), and tran-
sitivity of≺, we have do(A1, S1) ≺ S2

1 . From this, (18), and
the definition of �, we have:

do(A1, S1) � S2
1 ∧ do(B1, S1) � S2

1 .

From this and Lemma 35, we have A1 = B1, which is con-
tradictory to (2). Thus we have:

S1
1 ⊀ S2

1 . (20)

Finally, assume that S2
1 ≺ S1

1 . The proof for this case is
similar to the above. Hence we have:

S2
1 ⊀ S1

1 . (21)

But (19), (20), and (21) is contradictory to (4).

If two situations are both preceded by a third situation and
they are not co-linear, then there must be two different situa-
tions that precede them, and these situations can be obtained
by performing two different actions in the same situation.
Lemma 37.

Σ |= ∀s, s1, s2. (s � s1 ∧ s � s2
∧ ¬(s1 = s2 ∨ s1 ≺ s2 ∨ s2 ≺ s1)) ⊃

(∃s′, a1, a2. s � s′ ∧ do(a1, s′) � s1
∧ do(a2, s′) � s2 ∧ a1 6= a2).

Proof Sketch. Fix S1, S
1
1 , and S2

1 , and assume that:

S1 � S1
1 , (22)

S1 � S2
1 , and (23)

¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1). (24)

Now (22) and (23) above give us 4 cases.
Case 1. Assume that S1 = S1

1 and S1 = S2
1 . Then we have

S1
1 = S2

1 ; but then this case is ruled out by (24).
Case 2. Assume that S1 = S1

1 and S1 ≺ S2
1 . Then we have

S1
1 ≺ S2

1 ; but then this case too is ruled out by (24).
Case 3. Assume that S1 ≺ S1

1 and S1 = S2
1 . Then we have

S2
1 ≺ S1

1 ; again by (24), this is also impossible.
Case 4. Assume that:

S1 ≺ S1
1 , and (25)

S1 ≺ S2
1 . (26)

Consider the path from S1 to S1
1 : there must be a situation

s′ such that S1 ≺ s′ � S1
1 and ¬(s′ � S2

1), otherwise S1
1

and S2
1 are colinear, contradicting (24). Let S′ be the unique

situation such that:

S1 ≺ S′ � S1
1 , (27)

¬(S′ � S2
1), and (28)

∀s∗. S1 � s∗ ≺ S′ ⊃ s∗ ≺ S2
1 . (29)

From (27), we have S1 ≺ S′. From this and Definition of
≺, it follows that there is an action A1 and situation S′′ such
that:

S′ = do(A1, S
′′), and (30)

S1 � S′′. (31)

From (30) and (27), we have:

do(A1, S
′′) � S1

1 . (32)

From (31), (30), and Definition of ≺, we have: S1 � S′′ ≺
S′. By this and (29), we have: S′′ ≺ S2

1 . From this, (30),
and (28), it follows that there exists an action A2 such that:

A1 6= A2, and (33)
do(A2, S

′′) � S2
1 . (34)

The consequent thus follows from (31), (32), (34), and (33).

Proposition 9.

Σ ∪ Dpath |= (∀s′. ∃a. Poss(a, s′)) ⊃
(∀s. Executable(s) ⊃ ∃p. Starts(p, s)).

Proof. Fix situation S1 and assume that ∀s. ∃a. Poss(a, s)
and Executable(S1). Construct an action selection function
F1 as follows: F1(s) = a, for any situation s, where a is an
arbitrary action that is executable in s, i.e. Poss(a, s); by the
antecedent, such an action is always available. Then by the
antecedent, Definitions 4 and 3, and by construction of F1,
we have: Executable(F1, S1). The consequent follows from
this and Axiom 2(b).

Proposition 10.

(a). Σ ∪ Dpath |= ∀p. ∃s. Starts(p, s),
(b). Σ ∪ Dpath |= ∀p, s, s′. Starts(p, s) ∧ Starts(p, s′)

⊃ s = s′,

(c). Σ ∪ Dpath |= ∀p, s. Starts(p, s) ⊃ Executable(s).

Proof. (a). Fix path P1. By Axiom 2(a), there is a corre-
sponding function F1 and situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s).

From this and Definition 3, it follows that:.

∀s. OnPath(P1, s) ≡
S1 � s ∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a.

From this and Definition of�, we have: OnPath(P1, S1) and
∀s. OnPath(P1, s) ⊃ S1 � s. From these and Definition 1,
it follows that Starts(P1, S1).
(b). Fix path P1 and starting situations S1 and S′1. By the
antecedent, we have Starts(P1, S1). From this and Definition
1, we have:

OnPath(P1, S1), (35)
∀s. OnPath(P1, s) ⊃ S1 � s. (36)

Again, from the antecedent, we have Starts(P1, S
′
1). From

this and Definition 1, we have:

OnPath(P1, S
′
1), (37)

∀s. OnPath(P1, s) ⊃ S′1 � s. (38)
From (36) and (37), we have: S1 � S′1, and from (35) and
(38), we have: S′1 � S1. The consequent follows from these
and antisymmety of �.
(c). Fix path P1. By Axiom 2(a), there is a corresponding
function F1 and situation S1 such that: Executable(F1, S1)
and ∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). As in
the proof of Proposition 10(a), from the latter and Def-
initions 1 and 3, it follows that Starts(P1, S1). Finally,
from Executable(F1, S1) and Definition 4, it follows that
Executable(S1).

Proposition 11.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s)

⊃ ∃s′, a. OnPath(p, s′) ∧ s′ = do(a, s) ∧ Poss(a, s).

Proof. Fix path P1. By Axiom 2(a), there is a correspond-
ing function F1 and situation S1 such that:

Executable(F1, S1), (39)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (40)

Consider any situation Sn on P1, i.e., OnPath(P1, Sn). By
(40), Sn must also be on the sequence defined by (S1, F1):

OnPathASF(F1, S1, Sn). (41)

From (41) and Definition 3, we have:

S1 � Sn, and (42)

∀a, s. S1 ≺ do(a, s) � Sn,⊃ F1(s) = a. (43)
Assume F1(Sn) = An. Then from (42), transitivity of �,
and Lemma 33, we have:

S1 � do(An, Sn). (44)

From (44), (43), the assumption that F1(Sn) = An, and
Definition 3, it follows that the situation do(An, Sn) must
be on the sequence defined by (S1, F1):

OnPathASF(F1, S1, do(An, Sn)). (45)

Also, by (45) and (40), do(An, Sn) must be on path P1:

OnPath(P1, do(An, Sn)). (46)

Finally, by (39), (45), and Definition 4, action An must have
been executable in Sn:

Poss(An, Sn). (47)

The proposition follows from (46) and (47).

Proposition 12.

Σ ∪ Dpath |= ∀p, s. [OnPath(p, s) ∧
OnPath(p, do(a, s)) ∧ OnPath(p, do(b, s))]

⊃ a = b.

Proof. (By contradiction) Fix path P1. By Axiom 2(a),
there is a corresponding function F1 and situation S1 such
that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (48)

Fix S1
1 , A1, and A2 and assume that:

OnPath(P1, do(A1, S
1
1)), (49)

OnPath(P1, do(A2, S
1
1)), and (50)

A1 6= A2. (51)
From (48), (49), and Definition 3, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(A1, S
1
1) ⊃ F1(s∗) = a. (52)

Similarly, from (48), (50), and Definition 3, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(A2, S
1
1) ⊃ F1(s∗) = a. (53)

But from (52), (53), and (51), we have that:

F1(S1
1) = A1 ∧ F1(S1

1) = A2 ∧A1 6= A2,

which is contradictory to the fact that F1 is a function.

Proposition 13.

Σ ∪ Dpath |= ∀p, p′. p 6= p′ ⊃
∃s. (OnPath(p, s) ∧ ¬OnPath(p′, s)).

Proof. Follows from Axiom 5.

Corollary 14.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ Executable(s).

Proof. (By induction on s) Fix path P1. The base case fol-
lows from Propositions 10(b) and 10(c). For the inductive
hypothesis, fix situation S1 and assume that:

OnPath(P1, S1), and (54)

Executable(S1). (55)

From this and Propositions 11 and 12, it follows that there is
a unique successor situation S2 and action A1 such that:

OnPath(P1, S2) ∧ S2 = do(A1, S1), and (56)

Poss(A1, S1). (57)

From (55), (57), and definition of Executable(·), it follows
that Executable(do(A1, S1)).

Proposition 15.

Σ ∪ Dpath |= ∀p, s, s′. OnPath(p, s) ∧ OnPath(p, s′) ⊃
s = s′ ∨ s ≺ s′ ∨ s′ ≺ s.

Proof. (By contradiction) Fix path P1. By Axiom 2(a),
there is a corresponding function F1 and situation S1 such
that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (58)

Fix Sm and Sn and assume that:

OnPath(P1, Sm), (59)

OnPath(P1, Sn), (60)

¬(Sm = Sn ∨ Sm ≺ Sn ∨ Sn ≺ Sm). (61)

From (58), (59), and Definition 3,it follows that:

S1 � Sm, and (62)

∀a, s∗. S1 ≺ do(a, s∗) � Sm ⊃ F1(s∗) = a. (63)

Similarly, from (58), (60), and Definition 3, it follows that:

S1 � Sn, and (64)

∀a, s∗. S1 ≺ do(a, s∗) � Sn ⊃ F1(s∗) = a. (65)

From (61), (62), (64), and Lemma 37, it follows that there is
a situation S2 and actions A1 and A2 such that:

S1 � S2∧do(A1, S2) � Sm∧do(A2, S2) � Sn∧A1 6= A2.
(66)

But from (63), (65), and (66), we have that:

F1(S2) = A1 ∧ F1(S2) = A2 ∧A1 6= A2,

which is contradictory to the fact that F1 is a function.

Proposition 16.

Σ ∪ Dpath |= ∀p, s, s′, s∗. (OnPath(p, s) ∧ OnPath(p, s′)

∧ s � s∗ � s′) ⊃ OnPath(p, s∗).

Proof. Fix path P1. By Axiom 2(a), there is a correspond-
ing function F1 and situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (67)

Fix Sm, Sn, Sp and assume that:

OnPath(P1, Sm), (68)

OnPath(P1, Sp), (69)
Sm � Sn � Sp. (70)

From (67) and (68), it follows that:

OnPathASF(F1, S1, Sm). (71)

Similarly, from (67) and (69), it follows that:

OnPathASF(F1, S1, Sp). (72)

From (71) and Definition 3, it follows that:

S1 � Sm. (73)

From this, (70), and transitivity of �, it follows that:

S1 � Sn. (74)

From (72) and Definition 3, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � Sp ⊃ F1(s∗) = a. (75)

From this, (70), and (74), it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � Sn ⊃ F1(s∗) = a. (76)

From (74), (76), and Definition 3, it follows that
OnPathASF(F1, S1, Sn). The proposition follows from this
and (67).

Proposition 17.

Σ ∪ Dpath |= ∀p1, p2, s, a, b, s1, s2. [OnPath(p1, do(a, s))

∧ OnPath(p2, do(b, s)) ∧ a 6= b ∧ s ≺ s1 ∧ s ≺ s2
∧ OnPath(p1, s1) ∧ OnPath(p2, s2)]

⊃ s1 6= s2.

Proof. (By contradiction) Fix P1, P2, S1, A1, B1, S11, and
S12, and assume that:

OnPath(P1, do(A1, S1)), (77)

OnPath(P2, do(B1, S1)), (78)
A1 6= B1, (79)
S1 ≺ S11, (80)
S1 ≺ S12, (81)

OnPath(P1, S11), and (82)
OnPath(P2, S12). (83)

Also, assume that the consequent is false:

S11 = S12. (84)

From (77), (82), Proposition 15, and definition of �, it fol-
lows that:

do(A1, S1) � S11 ∨ S11 � do(A1, S1). (85)

Now suppose that:

S11 ≺ do(A1, S1).

Then by Definition of ≺, we have:

∃b, s. (do(A1, S1) = do(b, s) ∧ S11 � s).

Then from this and injectivity of do(·, ·), it follows that
S11 � S1. By (80) and Lemma 31, it follows that S11 6= S1.
Thus by Definition of �, we have:

S11 ≺ S1.

Since ≺ is asymmetric, it follows from this that ¬(S1 ≺
S11). But this contradicts (80). Thus it follows that:

¬(S11 ≺ do(A1, S1)). (86)

From (85) and (86), it follows that:

do(A1, S1) � S11. (87)

Similarly, it can be shown that:

do(B1, S1) � S12. (88)

Now from (84), we have S11 = S12. But from (87), (88),
(79), and Lemma 36, this is impossible.

Proposition 18.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ ∃p′. Suffix(p′, p, s).

Proof. Fix path P1. By Axiom 2(a), there is a function F1

and situation S1 such that:

Executable(F1, S1), (89)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (90)
Fix situation Sn such that:

OnPath(P1, Sn). (91)

We will show that there is a path Pn s.t. Pn, that starts with
Sn, is a suffix of P1.

Consider the pair (Sn, F1). From (90) and (91), we have
that:

OnPathASF(F1, S1, Sn). (92)
From this and Definition 3, it follows that:

S1 � Sn. (93)

From (92), (93), (89), and the definitions of Executable(·, ·)
and Executable(·), we have:

Executable(F1, Sn). (94)

By (94) and Axiom 2(b), it follows that there is a path Pn
s.t.:

Starts(Pn, Sn), and (95)
∀s. OnPathASF(F1, Sn, s) ≡ OnPath(Pn, s). (96)

Now, we need show that Suffix(Pn, P1, Sn). From (90) and
Definition 3, we have:

∀s. OnPath(P1, s) ≡ (S1 � s
∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a).

(97)

Similarly, from (96) and Definition 3, we have:

∀s. OnPath(Pn, s) ≡ (Sn � s
∧ ∀a, s∗. Sn ≺ do(a, s∗) � s ⊃ F1(s∗) = a).

(98)

From (97), (98), (93), and (91), it follows that:

∀s. Sn � s ⊃ OnPath(P1, s) ≡ OnPath(Pn, s). (99)

Then Suffix(Pn, P1, Sn) follows from (91), (95), (99), and
Definition 6.

Proposition 19.

Σ ∪ Dpath |= Starts(p, do(a, s)) ⊃
∃p′. Starts(p′, s) ∧ Suffix(p, p′, do(a, s)).

Proof. Fix P1, A1, and S1 and assume that:

Starts(P1, do(A1, S1)). (100)

By Axiom 2(a), there is a function F1 and situation S2 such
that:

Executable(F1, S2), and (101)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S2, s). (102)

From (102), reflexivity of �, and Definition 3, we have:

OnPath(P1, S2). (103)

Again, from (102) and Definition 3, we have:

∀s. OnPath(P1, s) ⊃ S2 � s. (104)

From (103), (104), and Definition 1, we have that:

Starts(P1, S2). (105)

From (100), (105), and Proposition 10(b), it follows that:

S2 = do(A1, S1).

From this and (101) and (102), it follows that:

Executable(F1, do(A1, S1)), and (106)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, do(A1, S1), s).
(107)

Now, consider the pair (S1, F
1
1), where F 1

1 is defined as fol-
lows:

F 1
1 (s) = A1, if s = S1

= F1(s), otherwise .

From (106) and Definition 4, it follows that:

Executable(do(A1, S1)).

From this and Lemma 34, it follows that:

Poss(A1, S1), and (108)

Executable(S1). (109)

From (106), (108), Definition 4, and by definition of F 1
1 , it

follows that:

∀s. OnPathASF(F 1
1 , S1, s) ⊃ Poss(F 1

1 (s), s). (110)

From (109), (110), and Definition 4, we have that:

Executable(F 1
1 , S1). (111)

Now, by (111) and Axiom 2(b), there is a path P 1
1 such that:

Starts(P 1
1 , S1), and (112)

∀s. OnPathASF(F 1
1 , S1, s) ≡ OnPath(P 1

1 , s). (113)

We need to show that Suffix(P1, P
1
1 , do(A1, S1)). From

Lemma 33, we have:

S1 � do(A1, S1). (114)

Also, by definition of F 1
1 , it follows that:

∀a, s. S1 ≺ do(a, s) � do(A1, S1) ⊃ F 1
1 (s) = a. (115)

From (114), (115), and Definition 3, it follows that:

OnPathASF(F 1
1 , S1, do(A1, S1)).

From this and (113), it follows that:

OnPath(P 1
1 , do(A1, S1)). (116)

From (107) and Definition 3, we have:

∀s. OnPath(P1, s) ≡ do(A1, S1) � s
∧ ∀a, s∗. do(A1, S1) ≺ do(a, s∗) � s ⊃ F1(s∗) = a.

(117)

Similarly, from (113) and Definition 3, we have:

∀s. OnPath(P 1
1 , s) ≡ S1 � s

∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F 1
1 (s∗) = a.

(118)

Note that, by Lemmata 30 and 31 and transitivity of ≺, it
follows that:

∀s. do(A1, S1) � s ⊃ s 6= S1.

From this, (118), and definition of F 1
1 , we have:

∀s. do(A1, S1) � s ⊃
OnPath(P 1

1 , s) ≡ S1 � s
∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a.

(119)

From (117) and (119), it follows that:

∀s. do(A1, S1) � s ⊃ OnPath(P1, s) ≡ OnPath(P 1
1 , s).

(120)
From (116), (100), (120), and Definition 6, it follows that:

Suffix(P1, P
1
1 , do(A1, S1)). (121)

The consequent follows from (112) and (121).

Proposition 20.

Σ ∪ Dpath |= ∀s1, s2, p2. s1 ≺ s2 ∧ Starts(p2, s2) ⊃
∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, s2).

Proof. (By induction on situation s2) For the base case, fix
Sb2 such that Init(Sb2). Then by this and the definitions of
Init(·) and≺, we have:¬∃s. s < Sb2, and thus the antecedent
is false and the thesis follows trivially.

For the inductive hypothesis, fix situation S2 and assume
that:

∀s1, p2. s1 ≺ S2 ∧ Starts(p2, S2) ⊃
∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, S2).

(122)

Fix A2. We have to show that:

∀s1, p2. s1 ≺ do(A2, S2) ∧ Starts(p2, do(A2, S2)) ⊃
∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, do(A2, S2)).

Fix S1 and P2 and assume that:

S1 ≺ do(A2, S2), and (123)
Starts(P2, do(A2, S2)). (124)

By (124) and Proposition 19, it follows that there is a path
P3 s.t.:

Starts(P3, S2) ∧ Suffix(P2, P3, do(A2, S2)). (125)

Also by (123) and the definition of ≺, we have:

∃s, a. do(A2, S2) = do(a, s) ∧ S1 � s.

By this and the injectivity of do(·, ·), we have:

S1 � S2.

By this and the definition of �, it follows that:

S1 = S2 ∨ S1 ≺ S2.

Case 1. Assume that S1 = S2. Then by (124) and Proposi-
tion 19, it follows that:

∃p. Starts(p, S1) ∧ Suffix(P2, p, do(A2, S2)),

and we are done.
Case 2. Assume that S1 ≺ S2. Then by this, (125), and
(122), it follows that there is a path P4 s.t.:

Starts(P4, S1) ∧ Suffix(P3, P4, S2). (126)

We will show that Suffix(P2, P4, do(A2, S2)). By (125) and
Definition 6, we have:

OnPath(P3, do(A2, S2)), and (127)
∀s′. do(A2, S2) � s′ ⊃

(OnPath(P3, s
′) ≡ OnPath(P2, s

′)).
(128)

By (126) and Definition 6, we have:

∀s′. S2 � s′ ⊃ (OnPath(P3, s
′) ≡ OnPath(P4, s

′)). (129)

Since by Lemma 33, S2 � do(A2, S2), it follows from (127)
and (129) that:

OnPath(P4, do(A2, S2)). (130)

Also from (128) and (129), it follows that:

∀s′. do(A2, S2) � s′ ⊃
(OnPath(P2, s

′) ≡ OnPath(P4, s
′)).

(131)

Finally, from (124), (130), (131), and Definition 6, we have:
Suffix(P2, P4, do(A2, S2)).

Theorem 21 (Induction on Paths).

Σ ∪ Dpath |= ∀Q. [{∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q(p)} ∧
{∀a, s. (∀p. Starts(p, s) ⊃ Q(p))

⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q(p′))}]
⊃ ∀p. Q(p).

Proof. (By contradiction) Fix property Q1 and assume:

∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q1(p), (132)
∀a, s. (∀p. Starts(p, s) ⊃ Q1(p))

⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q1(p′)).
(133)

Also assume that there is a path P1 over which Q1 is false:

¬Q1(P1). (134)

By Proposition 10(a,b), P1 must start with some unique sit-
uation, call it S1:

Starts(P1, S1). (135)
We now prove by induction on s that:

∀s, p. Starts(p, s) ⊃ Q1(p).

For the base case when s is an initial situation, the thesis
follows from (132).

For the inductive step, fix S2 and assume that:

∀p. Starts(p, S2) ⊃ Q1(p). (136)

Take some arbitrary action A1. It follows from (133) and
(136) that:

∀p. Starts(p, do(A1, S2)) ⊃ Q1(p). (137)

Thus by induction on s, we have:

∀s, p. Starts(s, p) ⊃ Q1(p). (138)

By (138) and (135), it follows that Q1(p); but this is contra-
dictory to (134).

Theorem 22 (Induction on Situations in a Path).

Σ ∪ Dpath |= ∀p,Q. [{∀s. Starts(p, s) ⊃ Q(s)} ∧
{∀a, s. (OnPath(p, s) ∧Q(s) ∧ OnPath(p, do(a, s)))

⊃ Q(do(a, s))}]
⊃ ∀s. OnPath(p, s) ⊃ Q(s).

Proof. (By contradiction) Fix path P1 and property Q1 and
assume:

∀s. Starts(P1, s) ⊃ Q1(s), (139)
∀a, s. OnPath(P1, s) ∧Q1(s) ∧ OnPath(P1, do(a, s))

⊃ Q1(do(a, s)).
(140)

Also assume that there is a situation Sp1 on path P1 over
which Q1 is false:

OnPath(P1, SP1) ∧ ¬Q1(SP1). (141)

By Proposition 10(a,b), P1 must start with some unique sit-
uation, call it S1:

Starts(P1, S1). (142)

From this and Definition 1, we have:

OnPath(P1, S1). (143)

We now prove by induction on s that:

∀s. OnPath(P1, s) ⊃ Q1(s).

For the base case when s is the starting situation of P1, i.e.
S1, the thesis follows from (139), (142), and (143).

For the inductive step, fix S2 and assume that:

OnPath(P1, S2) ∧Q1(S2). (144)

Take some arbitrary action A1 such that
OnPath(P1, do(A1, S2)). Then by this, (144), and (140), it
follows that:

Q1(do(A1, S2)). (145)

Thus by induction on s, we have:

∀s. OnPath(P1, s) ⊃ Q1(s). (146)

But this is contradictory to (141).

Theorem 25 (Soundness).

ΣN ∪ Σ ∪ Dpath |= ∀p. (∃σ. PathSeq(σ) ∧Matches(p, σ)).

Proof. Fix path P1. By Propositions 10(a), and 10(c), there
is an executable situation S1 such that P1 starts with S1:

Starts(P1, S1), and (147)

Executable(S1). (148)

By Axiom 2(a), there is an action selection function
F1 and situation S2 such that: Executable(F1, S2) ∧
∀s′. OnPathASF(F1, S2, s

′) ≡ OnPath(P1, s
′). From this

and Definition 3, it follows that S2 is the earliest situation of
path P1. Moreover, from Definition 1 and (147), it follows
that S1 is the earliest situation that is also on path P1. Thus
it follows that S1 = S2 and hence we have:

Executable(F1, S1), and (149)

∀s′. OnPathASF(F1, S1, s
′) ≡ OnPath(P1, s

′). (150)

Let σ1 be defined as follows:

σ1(0) = S1, (151)
σ1(n+ 1) = do(F1(σ1(n)), σ1(n)), for n ≥ 0. (152)

We have to prove that PathSeq(σ1) ∧Matches(P1, σ1).
First, let us show that PathSeq(σ1). By Definition 23, to

show this we have to prove that:

(a). Executable(σ1(0)), and
(b). ∀n. ∃a. Poss(a, σ1(n)) ∧ σ1(n+ 1) = do(a, σ1(n)).

(a) follows from (148) and (151). By (152), for each n
there is indeed an action a = F1(σ1(n)) s.t. σ1(n + 1) =
do(a, σ1(n)). Thus to show (b), we have to prove that
∀n. Poss(F1(σ1(n)), σ1(n)). Now, from (149) and Defini-
tion 4, it follows that:

∀s′. OnPathASF(F1, S1, s
′) ⊃ Poss(F1(s′), s′).

Thus, to prove that ∀n. Poss(F1(σ1(n)), σ1(n)), we just
need to show that:

∀n. OnPathASF(F1, S1, σ1(n)).

I will show this by induction on n. For the base case, i.e.
when n = 0, it follows from (151) that σ1(n) = S1. Thus
we have to show that OnPathASF(F1, S1, S1). This follows
trivially from the definition of �, Definition 3, and transi-
tivity and irreflexivity of ≺ (which imply that there are no
situations do(a, s∗) such that S1 ≺ do(a, s∗) � S1). For the
inductive case, fix N1 and assume that:

OnPathASF(F1, S1, σ1(N1)). (153)

We have to show that OnPathASF(F1, S1, σ1(N1 + 1)).
From (153) and Definition 3, we have:

S1 � σ1(N1), and (154)
∀a, s∗. S1 ≺ do(a, s∗) � σ1(N1) ⊃ F1(s∗) = a. (155)

From (155) and Definition 3, it follows that
OnPathASF(F1, S1, σ1(N1 + 1)) holds if the follow-
ing hold:

(b1). S1 � σ1(N1 + 1), and
(b2). ∀a, s∗. σ1(N1) ≺ do(a, s∗) � σ1(N1 + 1)

⊃ F1(s∗) = a.

Now, from (152), we have:

σ1(N1 + 1) = do(F1(σ1(N1)), σ1(N1)). (156)

From this and Lemma 33, we have:

σ1(N1) � σ1(N1 + 1).

(b1) follows from this, (154), and the transitivity of�. More-
over, (b2) follows from (156) and transitivity and irreflexiv-
ity of ≺ (which imply that there are no situations between
σ1(N1) and σ1(N1 + 1)). Thus, we have PathSeq(σ1).

Next, let us show that Matches(P1, σ1). We already
proved that σ1 is a path sequence. Thus by Definition 24,
we need to show that:

(c). σ1(0) = s ≡ Starts(P1, s) and
(d). ∀n, s. [σ1(n) = s ∧ OnPath(P1, s) ⊃
∀a. (σ1(n+ 1) = do(a, s) ≡ OnPath(P1, do(a, s)))].

(c) follows from (147), (151) and the uniqueness of starting
situations of paths, i.e. Proposition 10(b). For (d), fixN1 and
Ŝ1 and assume that:

σ1(N1) = Ŝ1, and (157)

OnPath(P1, Ŝ1). (158)

For the (⊃) direction, fix A1 and assume that:

σ1(N1 + 1) = do(A1, Ŝ1).

Then by this and (152), we have:

do(A1, Ŝ1) = do(F1(σ1(N1)), σ1(N1)).

From this and (157), we have:

do(A1, Ŝ1) = do(F1(Ŝ1), Ŝ1). (159)

From (150) and (158), we have:

OnPathASF(F1, S1, Ŝ1).

From this and Definition 3, it follows that:

S1 � Ŝ1, and (160)

∀a, s∗. S1 ≺ do(a, s∗) � Ŝ1 ⊃ F1(s∗) = a. (161)

Now, consider the situation do(F1(Ŝ1), Ŝ1). From Lemma
33, we have:

Ŝ1 � do(F1(Ŝ1), Ŝ1). (162)

From this, (160), and the transitivity of �, it follows that:

S1 � do(F1(Ŝ1), Ŝ1). (163)

Moreover, from (161), (162), and transitivity and irreflexiv-
ity of ≺, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(F1(Ŝ1), Ŝ1) ⊃ F1(s∗) = a.
(164)

From (163), (164), and Definition 3, it follows that:

OnPathASF(F1, S1, do(F1(Ŝ1), Ŝ1)).

From this and (150), it follows that
OnPath(P1, do(F1(Ŝ1), Ŝ1)), i.e. by (159) that OnPath(P1,

do(A1, Ŝ1)).
For the (⊂) direction, fix A1 and assume that:

OnPath(P1, do(A1, Ŝ1)).

Then from this and (150), it follows that:

OnPathASF(F1, S1, do(A1, Ŝ1)).

From this and Definition 3, it follows that:

A1 = F1(Ŝ1). (165)

Now, since by (157), σ1(N1) = Ŝ1, it follows by (152) that:

σ1(N1 + 1) = do(F1(Ŝ1), Ŝ1).

From this and (165), we have:

σ(N1 + 1) = do(A1, Ŝ1).

Thus P1 matches σ1.

We will use the following to prove the completeness the-
orem. Given Definition 23, it can be shown that if σ is a
path sequence and i < j, then the situation given by σ(i)
precedes the one given by σ(j):

Lemma 38.

ΣN ∪ Σ ∪ Dpath |= ∀σ, i, j. PathSeq(σ) ∧ i < j

⊃ σ(i) ≺ σ(j).

Proof. (By induction on n, where n = j − i) Fix σ1 and
assume:

PathSeq(σ1). (166)

For the base case, fix I1 and J1 and assume that J1−I1 = 1.
Then it follows from (166) and Definition 23 that there is an
action A1 s.t.:

σ1(J1) = σ1(I1 + 1) = do(A1, σ1(I1)).

From this and Lemma 30, it follows that σ1(I1) ≺
do(A1, σ1(I1)), i.e. σ1(I1) ≺ σ1(I1+1), and thus σ1(I1) ≺
σ1(J1).

For the inductive case, fix IN , JN , and N1 and assume
that:

JN − IN = N1, and (167)
PathSeq(σ1) ∧ IN < JN ⊃ σ1(IN) ≺ σ1(JN). (168)

We have to show that:

PathSeq(σ1) ∧ IN < JN+1 ⊃ σ1(IN) ≺ σ1(JN+1),

where JN+1−IN = N1 +1, i.e. by (167), JN+1 = JN +1.
Now, from (166) and (167), it follows that PathSeq(σ1) ∧
IN < JN . From this and the inductive hypothesis (i.e.
(168)), we have:

σ1(IN) ≺ σ1(JN). (169)

Moreover, from (166) and Definition 23 it follows that there
is an action AN s.t.:

σ1(JN + 1) = do(AN , σ1(JN)).

From this and Lemma 30, it follows that σ1(JN) ≺
do(AN , σ1(JN)), i.e. σ1(JN) ≺ σ1(JN + 1), and thus:

σ1(JN) ≺ σ1(JN+1). (170)

Finally, from (169), (170), and the transitivity of≺, we have:
σ1(IN) ≺ σ1(JN+1).

To show that for every path sequence there is a corre-
sponding path, it is useful to first introduce a corresponding
ASF. Given path sequence σ, let Fσ be the ASF defined as
follows:

Fσ(s) = an, if ∃n. σ(n) = s ∧ σ(n+ 1) = do(an, s),

Fσ(s) = b otherwise,

where b is some fixed but arbitrary action.
We can show that that given a path sequence σ, any situ-

ation s that is on the path defined by the corresponding ASF
Fσ and the initial situation of the path sequence σ(0) is in
fact on the path sequence σ at some position n:

Lemma 39.

ΣN ∪ Σ ∪ Dpath |=
∀s, σ. PathSeq(σ) ∧ σ(0) ≺ s ∧ OnPathASF(Fσ, σ(0), s)

⊃ ∃n. σ(n) = s.

Proof. (By induction on s) Fix σ1. Construct a function
from situations to actions Fσ1 such that Fσ1 is the corre-
sponding ASF to σ1. Also, assume that:

PathSeq(σ1). (171)

In the base case where s is an initial situation, ¬∃s′. s′ ≺
s by the definition of Init(·) and≺, so the antecedent is false
and the thesis trivially holds.

For the inductive step, fix SN and assume that:

σ1(0) ≺ SN ∧ OnPathASF(Fσ1
, σ1(0), SN)

⊃ ∃n. σ1(n) = SN .
(172)

Also, fix action AN and assume that:

σ1(0) ≺ do(AN , SN), and (173)
OnPathASF(Fσ1

, σ1(0), do(AN , SN)). (174)

From (174) and Definition 3, it follows that:

∀a, s. σ1(0) ≺ do(a, s) � do(AN , SN) ⊃ Fσ1
(s) = a.

(175)
From (173) and the definition of ≺, it follows that:

σ1(0) � SN . (176)

From Lemma 33, we have SN � do(AN , SN). From this
and (175), we have:

∀a, s. σ1(0) ≺ do(a, s) � SN ⊃ Fσ1
(s) = a. (177)

From (176), (177), and Definition 3, we have:

OnPathASF(Fσ1
, σ1(0), SN). (178)

Now, (176) and the definition of � give us two cases.
In the case where σ1(0) = SN , it trivially follows that
∃n. σ1(n) = SN . In the case where σ1(0) ≺ SN , from
this, (178), and the induction hypothesis, i.e. (172), it fol-
lows that ∃n. σ1(n) = SN . Thus, in both these cases, there
is a N1 such that:

σ1(N1) = SN . (179)

From (171), (179), and Definition 23, it follows that there is
an action, let us call it A∗N , s.t.:

σ1(N1 + 1) = do(A∗N , σ1(N1)). (180)

We just need to show that A∗N = AN . From the definition of
Fσ1

, it follows that:

∀a. σ1(N1 + 1) = do(a, σ1(N1)) ⊃ Fσ1
(σ1(N1)) = a.

(181)
From (179), (180), and (181), it follows that:

Fσ1
(SN) = A∗N . (182)

From (175), we have Fσ1
(SN) = AN . Finally from this

and (182), we have AN = A∗N , and thus from this, (180),
and (179), it follows that σ1(N1 + 1) = do(AN , SN), i.e.
∃n. σ1(n) = do(AN , SN).

Theorem 26 (Completeness).

ΣN ∪ Σ ∪ Dpath |= ∀σ. PathSeq(σ) ⊃ ∃p. Matches(p, σ).

Proof. Fix function σ1 and assume that:

PathSeq(σ1). (183)

From this and Definition 23, it follows that:

Executable(σ1(0)), and (184)
∀n. ∃a. Poss(a, σ1(n)) ∧ σ1(n+ 1) = do(a, σ1(n)). (185)

Construct a tuple (σ1(0), Fσ1
) such that Fσ1

, which is a
function from situations to actions, is the corresponding ASF
to σ1. We will now show that Executable(Fσ1 , σ1(0)). As-
sume otherwise. Then from Definition 4 and (184), it follows
that there is a situation SN such that:

OnPathASF(Fσ1
, σ1(0), SN), and (186)

¬Poss(Fσ1(SN), SN). (187)

From (186) and Definition 3, it follows that σ1(0) � SN .
This and the definition of � give us two cases. In the case
where σ1(0) = SN , it trivially follows that ∃n. σ1(n) =
SN . In the case where σ1(0) ≺ SN , from (183), the assump-
tion for this case that σ1(0) strictly precedes SN , (186), and
Lemma 39, it follows that ∃n. σ1(n) = SN . Thus, for both
these cases, we have that there is a n, say N1, s.t.:

σ1(N1) = SN . (188)

Then from this and (185), it follows that there is an action
AN s.t.:

σ1(N1 + 1) = do(AN , SN), and (189)
Poss(AN , SN). (190)

From (188), (189), and the definition of Fσ1
, it follows that:

Fσ1
(SN) = AN .

Finally, from this and (190), we have Poss(Fσ1(SN), SN);
but this is contradictory to (187). Thus, we have:

Executable(Fσ1
, σ1(0)). (191)

From this and Axiom 2(b), it follows that there is a path P1

such that:

Starts(P1, σ1(0)), and (192)
∀s. OnPathASF(Fσ1

, σ1(0), s) ≡ OnPath(P1, s). (193)

Now, we need to show that Matches(P1, σ1). By Defini-
tion 24, this amounts to showing that:

(a). PathSeq(σ1), and
(b). σ1(0) = s ≡ Starts(P1, s) and
(c). ∀n, s. [σ1(n) = s ∧ OnPath(P1, s) ⊃

∀a. (σ1(n+ 1) = do(a, s) ≡ OnPath(P1, do(a, s)))].

(a) follows from the antecedent, i.e. (183). (b) follows from
(192) and the uniqueness of starting situations of paths, i.e.
Proposition 10(b). For (c), fix N̂1 and Ŝ1 and assume that:

σ1(N̂1) = Ŝ1, and (194)

OnPath(P1, Ŝ1). (195)

For the (⊃) direction, fix Â1 and assume that:

σ1(N̂1 + 1) = do(Â1, Ŝ1). (196)

From (195) and (193), it follows that:

OnPathASF(Fσ1
, σ1(0), Ŝ1).

From this and Definition 3, we have:

∀a, s. σ1(0) ≺ do(a, s) � Ŝ1 ⊃ Fσ1
(s) = a. (197)

From (194), (196), and the definition of Fσ1 , we have:

Fσ1(Ŝ1) = Â1. (198)

Now, suppose ¬OnPath(P1, do(Â1, Ŝ1)). Then by (193), we
have:

¬OnPathASF(Fσ1
, σ1(0), do(Â1, Ŝ1)). (199)

From Lemma 38, (183), and the fact that 0 < N̂1 + 1, we
have σ1(0) ≺ σ1(N̂1 + 1). From this and (196), we have:

σ1(0) ≺ do(Â1, Ŝ1).

From this, (199), and Definition 3, we have:

∃a, s. σ1(0) ≺ do(a, s) � do(Â1, Ŝ1) ∧ ¬Fσ1(s) = a.

From this and (197), it follows that ¬(Fσ1
(Ŝ1) = Â1); but

this is contradictory to (198).
For the (⊂) direction, fix Â2 and assume that:

OnPath(P1, do(Â2, Ŝ1)). (200)

From (183) and Definition 23, it follows that there is an ac-
tion, say Â3, s.t.:

σ1(N̂1 + 1) = do(Â3, σ1(N̂1)). (201)

I will show that Â2 = Â3. From (201) and (194), it follows
that:

σ1(N̂1 + 1) = do(Â3, Ŝ1). (202)
From (200) and (193), we have:

OnPathASF(Fσ1 , σ1(0), do(Â2, Ŝ1)).

From this and Definition 3, we have Fσ1(Ŝ1) = Â2. Finally
from this, (194), (202), and the definition of Fσ1 , we have
Â2 = Â3. Thus from this and (202), it follows that σ1(N̂1 +

1) = do(Â2, Ŝ1).

References
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming in
the situation calculus. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, 355–362.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Eleventh
International Conference (KR-08), 589–599.

De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sar-
dina, S. 2004. On the semantics of deliberation in IndiGolog
– from theory to implementation. Annals of Mathematics
and Artificial Intelligence 41(2–4):259–299.
De Giacomo, G.; Lespérance, Y.; Patrizi, F.; and Sardina, S.
2016. Verifying ConGolog programs on bounded situation
calculus theories. In AAAI Conference on Artificial Intelli-
gence (to appear).
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109–169.
De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Working
Notes of Robots, Softbots, Immobots: Theories of Action,
Planning and Control. AAAI-97 Workshop.
Emerson, E. A., and Halpern, J. Y. 1986. “sometimes” and
“not never” revisited: On branching versus linear time tem-
poral logic. J. ACM 33(1):151–178.
Emerson, E. A. 1996. Model checking and the mu-calculus.
In Descriptive Complexity and Finite Models, Proceedings
of a DIMACS Workshop, 185–214.
Fritz, C., and McIlraith, S. A. 2006. Decision-theoretic
golog with qualitative preferences. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Tenth International Conference (KR-06), 153–163.
Gabaldon, A. 2004. Precondition control and the progres-
sion algorithm. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Con-
ference (KR-04), 634–643.
Khan, S. M., and Lespérance, Y. 2005. ECASL: A Model
of Rational Agency for Communicating Agents. In Pro-
ceedings of the Fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-05),
762–769.
Khan, S. M., and Lespérance, Y. 2009. Prioritized goals
and subgoals in a logical account of goal change - A prelim-
inary report. In Declarative Agent Languages and Technolo-
gies VII, 7th International Workshop, DALT 2009, Budapest,
Hungary, May 11, 2009. Revised Selected and Invited Pa-
pers, 119–136.
Khan, S. M., and Lespérance, Y. 2010. A logical frame-
work for prioritized goal change. In 9th International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3,
283–290.
Lakemeyer, G., and Levesque, H. J. 1998. AOL: A logic of
acting, sensing, knowing, and only-knowing. In Principles
of Knowledge Representation and Reasoning: Proceedings
of the Sixth International Conference (KR-98), 316–327.
Lespérance, Y.; Levesque, H. J.; Lin, F.; and Scherl, R. 2000.
Ability and knowing how in the situation calculus. Studia
Logica 66(1):165–186.
Lespérance, Y. 2001. On the epistemic feasibility of plans
in multiagent systems specifications. In Meyer, J.-J. C., and
Tambe, M., eds., Intelligent Agents VIII, Agent Theories,

Architectures, and Languages, 8th International Workshop
(ATAL-2001).
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31:59–84.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Foundations
for a calculus of situations. Electronic Transactions of AI
(ETAI) 2(3–4):159–178.
Levesque, H. J. 1996. What is planning in the presence of
sensing? In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence, 1139–1146.
Lin, F., and Reiter, R. 1994. State constraints revisited.
Journal of Logic and Computation 4(5):655–678.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Ma-
chine Intelligence 4:463–502.
Moore, R. C. 1990. A formal theory of knowledge and ac-
tion. In Allen, J. F.; Hendler, J.; and Tate, A., eds., Readings
in Planning. San Mateo, CA: Morgan Kaufmann Publishers.
480–519.
Pinto, J. A. 1994. Temporal Reasoning in the Situation Cal-
culus. Ph.D. Dissertation, University of Toronto, Toronto,
ON, Canada.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the Eighteenth Annual Symposium on Founda-
tions of Computer Science (FOCS-77), 46–57.
Reiter, R. 1991. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a completeness re-
sult for goal regression. In Lifschitz, V., ed., Artificial Intel-
ligence and Mathematical Theory of Computation: Papers
in the Honor of John McCarthy. San Diego, CA: Academic
Press. 359–380.
Reiter, R. 1996. Natural actions, concurrency, and con-
tinuous time in the situation calculus. In Principles of
Knowledge Representation and Reasoning: Proceedings of
the Fifth International Conference (KR-96), 2–13.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Sardina, S., and Shapiro, S. 2003. Rational action in agent
programs with prioritized goals. In Second International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS ’03), 417–424.
Scherl, R. B., and Levesque, H. J. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144:1–39.
Schnoebelen, P. 2002. The complexity of temporal logic
model checking. In Advances in Modal Logic 4, papers from
the fourth conference on “Advances in Modal logic”, 393–
436.
Shapiro, S.; Pagnucco, M.; Lespérance, Y.; and Levesque,
H. J. 2011. Iterated belief change in the situation calculus.
Artificial Intelligence 175(1):165–192.
Shapiro, S.; Lespérance, Y.; and Levesque, H. 2002. The
cognitive agents specification language and verification en-

vironment for multiagent systems. In Castelfranchi, C., and
Johnson, W. L., eds., Proc. of the 1st Int. Joint Confer-
ence on Autonomous Agents and Multiagent Systems, 19–26.
Bologna, Italy: ACM Press.
Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2005. Goal
change. In International Joint Conference on Artificial In-
telligence (IJCAI 2005).
Shapiro, S. 2005. Specifying and Verifying Multiagent
Systems using the Cognitive Agents Specification Language
(CASL). Ph.D. Dissertation, University of Toronto, Toronto,
ON, Canada.

