
Interactive Visualization of Large Data Sets

Parke Godfrey, Jarek Gryz and Piotr Lasek

Technical Report EECS-2015-03

March 31 2015

Department of Electrical Engineering and Computer Science
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

39

Interactive Visualization of Large Data Sets

Parke Godfrey, York University
Jarek Gryz, York University
Piotr Lasek, York University

TBA

Categories and Subject Descriptors: TBA [TBA]: TBA

General Terms: TBA

Additional Key Words and Phrases: TBA

ACM Reference Format:
Parke Godfrey, Jarek Gryz, Piotr Lasek, 2015. Interactive Visualization of Large Data Sets ACM Trans.
Embedd. Comput. Syst. 9, 4, Article 39 (March 2010), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
One picture is worth a thousand words. The idea of replacing a complex narrative
with a single image may have become a cliche in journalism, but it is an absolute re-
quirement in data exploration. After all, one may be able to read a thousand words,
but cannot possibly look at, let alone understand, a billion data points. Understand-
ing the data or, as some like to say, turning data into knowledge, may mean different
things to different people (extracting structure, patterns, rules, constraints, etc.), but
in all such cases visualization offers an indispensable tool in this effort. Indeed, vi-
sualization techniques can be applied at every step of data analysis, starting with
initial exploration, through hypothesis generation, experimental validation up to the
final presentation of discovery results. The path of exploration is by its very nature
unpredictable, we may need to revise constantly what data is presented and how it is
presented. Visual data exploration and analysis is interactive.

The distinction between interactive and non-interactive (call it passive) data visu-
alization may seem a trivial one. After all, the process of interactive visualization is
just a sequence of passive visualization steps with distinct data sets presented in dif-
ferent ways. In reality, however, the data sets accessed during this process are almost
never distinct. The very point of interaction is to decide what data one wants to see
in the next step based on what one has learned in the previous step. Most typically,
one may want to see just a subset of the previous data (via selection or projection) or
its aggregation. Some of the operations between the exploration steps became so com-
mon in the data analytics community that they acquired special names: for example,
roll-up, drill-down, slice and dice, pivot. The fact that the data sets retrieved during

This work is supported by TBA
Author’s addresses:
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 P. Godfrey et al.

the exploration process are related is of fundamental importance for the design of any
interactive visualization tool.

The process of data visualization can be described from a high-level perspective as
consisting of two simple steps: bringing the data into memory; then applying one of
the visualization algorithm to this. There has been significant work on data visualiza-
tion over the last 50 years. Interestingly, most of this work concentrated on the second
step of the visualization process. This was understandable, as data sets were relatively
small and the performance of the visualization tools was often determined by the ef-
ficiency of the graphics algorithms. Morever, if one wanted to show all data points on
screen (even if it made little sense from the point of view of human perception), there
were enough pixels to do so. With the advent of large data sets, whether in the form
of data warehouses or scientific databases, a radical shift in the design of data visu-
alization tools has to be made. First, we may no longer assume that raw data can be
displayed on screen. The number of data points is now larger by orders of magnitude
than the number of available pixels [Shneiderman 2008]. Data has to be compacted be-
fore any standard visualization techniques can be applied. We need visual scalability.
Second, data retrieval and processing time now dominates the performance of the visu-
alization process, so cannot be ignored. Without efficient database support, interactive
visualization is impossible. Thus, we also need data processing scalability.

We limit the scope of this survey in specific ways. Indeed, writing a complete survey
of computer-based visualization would be impossible to cover in a single paper. First,
as made clear in the title, we are only interested in visualization of large data sets.
To make it more concrete, let us fix ”large” to mean around a terabyte of data. This
is reasonable, as many commercial data warehouses or scientific data sets are already
beyond that size. We also do not discuss here the challenge of visualizing data sets of
high dimensionality. This is another meaning of ”large” pointed out in [Heer and Kan-
del 2012]. Second, we focus on data stored in relational databases that is not domain
specific (for example, geo-spatial or time-series)1 Most of business data is natively in
that form and many scientific databases, even if initially represented as graphs or
XML, are transformed into and stored in relational format. By these two restrictions,
our focus is on database support for visualization. We exclude in this survey work in
visualization that does not explicitly address the issue of data processing scalability.

Last but not least, this paper is as much a reality check as it is a survey. Most re-
searchers have assumed, and some of them still do, that ”visual analytics tools must
support the fluent and flexible use of visualizations at rates resonant with the pace of
human thought” [Heer and Shneiderman 2012]. In other words, for data exploration
to be truly interactive, queries need to be responded to within a latency bound of 1–5
seconds [Kamat et al. 2014]. We must report that we have not encountered any system
that would deliver this kind of performance under reasonable assumptions.2 In fact, it
has been observed that ”the appetite for data collection, storage, and analysis is out-
stripping Moore’s Law, meaning that the time required to analyze massive data sets
is steadily growing” (Greg Papadopoulos, CTO of SUN, quoted in [Hellerstein et al.
1999]). Our message is not all bad news, however. Our reality check is that the com-
munity must re-calibrate its expectations in specific ways so that the expectations are
achievable. We are at a point in data analytics and visualization research when we
should reflect on what can and cannot be done in this area. We discuss these issues in
Section 5).

1We list a few such systems in Section 5 without, however, discussing them in detail.
2By reasonable we mean an ad-hoc SQL query issued to a large database over a typical schema built within
a sensible budget (say, under $10k).

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:3

The paper is organized as follows. In Section 2, we start with a overview of visualiza-
tion techniques and systems developed over the last 30 years. Given the sheer amount
of work done in the area, this is necessarily a subjective and high-level description of
a subset of the relevant papers. Section 3 provides an overview of query optimization
techniques developed mostly within a database community and then used in visualiza-
tion systems. Then, in Section 4, we discuss data presentation challenge and conclude
with some final thoughts in Section 5.

2. INTERACTIVE VISUALIZATION PREHISTORY
Over the last three hundred years inspiring data visualizations have been created. The
famous Chart of Biography by Joseph Priestley from 1765 [Priestley 1765], Napoleon’s
Russian Campaign of 1812 [Minard 1812], and the map of Cholera Clusters in Lon-
don in 1854 [Snow and Richardson 1965] which helped to identify the sources of water
contamination are three such. These and other historically important visualizations
[Tufte 1990] proved to be of great importance in the field of data analysis. They were
successful because a user was able to intuitively understand the graphical representa-
tion of data to easily draw valuable conclusions.

Nevertheless much work has been done in order to create visualization in a compre-
hensive way. If the visualizations designer wants to pass certain knowledge about data
to the perceiver, the semiotics approach by Bertin needs to be considered. In his Semi-
ology of Graphics [Bertin 1983], he addresses the different issues related to the process
of creation of a good visualization. He says that a designer should understand a system
of related information, be able to create a mapping from data to its visual representa-
tion, present the visual representation on a computer screen, and provide appropriate
methods of interacting with the visual representation that could include methods for
varying the presentation. He should be also able to verify usefulness of the represen-
tation and its interaction methods. Bertin bridged the world of data with the world of
graphics by connecting a number of basic graphical shapes with the types of knowledge
they could represent. For example, he believed that points were best for representing
location, lines were best to express a measurable length, boundaries, routes or connec-
tions whereas areas signified something important on the plane that had a measurable
size. Bertin specified and described in details numerous types of visual variables such
as position, size, shape, value, orientation, color, texture and motion. This set could
be easily extended and adapted by using other visual variables such as motion, satu-
ration, flicker, depth, illumination and transparency. All of these variables may have
their own features and attributes (e.g., saturation intensity) which could be altered to
better reflect the data the variable represents. Additionally, the variables can be com-
bined into more complex constructs, for example charts, diagrams, networks, maps or
symbols. Bertin’s work was the first attempt to provide theoretical foundations to con-
temporary data visualizations. A great majority of existing tools still employs concepts
described almost sixty years ago in the first edition of his Semiology of Graphics.

The advent of database management systems brought automation to storing and
accessing digital data. This created possibilities to visualize large amounts of data ef-
ficiently. For the first systems designed for data visualizations Bertin’s work and the
idea of mapping data into visual variables was useful. For example, in CHART [Benson
and Kitous 1977] which was a simple data analysis and report design program, a mech-
anism for mapping numerical data to graphic variables was used. Rows and columns
could be re-organized by means of different operators such as ranking, sequencing and
grouping, as well as re-computed from arithmetic combinations of existing rows and
columns. Another system which used concepts presented by Bertin such as mapping a
data object to visual variables and which was designed to work with data stored in a re-
lational database was developed in 1986 [Mackinlay 1986]. The goal of the tool called

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 P. Godfrey et al.

APT (A Presentation Tool) was to develop an application independent system which
would be capable of creating automatically visual representations of relational data.
In order to achieve good results, the authors of APT codified graphic design elements
and made the assumption that graphical presentations (visualizations) are sentences
in a graphical language. They defined additionally a concept of expressiveness and ef-
fectiveness, which were likely inspired by the Bertin’s idea of usefulness of graphical
representation of data. Expressiveness can be intuitively understood as an ability to
express a set of facts by means of a given language; effectiveness is related to the
ability of a viewer to understand a given graphical representation. Formalization of
graphical sentences (visualization) allowed APT to determine to what extent a given
visualization meets the expressiveness and effectiveness criteria. A similar approach
(in terms of automated determination of effectiveness of produced graphics as well as
for defining visualization goals by means of a logical language) was used in BOZ [Cas-
ner 1991]. This tool employed a task-analytic approach which meant that users could
specify a logical description of a visualization task to be performed. The system ana-
lyzed the task and chose an optimized way to generate the results. The system also
supported interactive manipulations of the graphical objects representing the data.

The early tools were able to support automatically a process of visualization genera-
tion but many ideas related to creating better and more understandable visualizations
remained unimplemented. Mackinley, for example, considered animation and 3-D pre-
sentation as means which could used in the process of data visualization. What is even
more interesting perhaps, is that researchers noticed a need for designing their sys-
tems so that they were interactive. Nevertheless, the interactivity in the early eighties
and nineties was only considered as an ability to generate visualizations automatically,
or semi-automatically, based on a special visualization query language or a graphical
representation of a traditional SQL query. Shneiderman’s mantra Overview first, zoom
and filter, and then details on demand... [Shneiderman 1996] in most of the systems
was implemented so that each of its steps was actually generated by a separate query
issued to the database system.

Subsequent research efforts focused on generating graphics using application-
independent design knowledge. For example, in the case of the SAGE system [Roth
and Mattis 1991], the design knowledge module was composed of two components: a
library of presentation techniques (techniques such as tables, charts, maps, network
diagrams; information connecting types of data with suitable technique; syntactic or
structural relations among elements such as axes, lines, points or labels), and mech-
anisms for selecting and combining those techniques. With SAGE, it was possible to
automatically generate presentations of information and design displays with com-
plex combinations of data by interactively changing the so-called presentation goals,
which could be specified by a system’s operator in a form of a special language. A
user could specify relations (such as Has-Part and Responsible-For), objects (simply
tables from a database) and presentation goals (such as Show-Correlation and Locate-
Easily). Other systems based on SAGE used similar approaches of semi-interactive
exploration of databases. IDES [Goldstein et al. 1994], for example, aimed directly at
similar knowledge-based interactive data exploration and tried to overcome the limi-
tations of existing systems with complex and difficult to learn query mechanisms that
still did not cover all the operations required by users. It integrated work on SAGE,
and extended this with a prototypical graphical interactive manipulation component.
Nevertheless, the concept of interactive data exploration was rather naive, by means
of workspaces with different widgets such as buttons, sliders, combo boxes, tables,
and an aggregate manipulator by which a user was able to generate, execute, and re-
issue queries. At the end, the user received a corresponding data visualization view.
If the result was not satisfactory, the user could adjust settings of the widgets to re-

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:5

peat the whole process. The dynamic queries allowed drag-and-drop construction of
queries, which allowed users to focus more on the process of data exploration rather
than on the tools. IDES was capable of changing granularity of the data by aggregation
(creating meaningful groups of data objects) or by decomposition (dividing larger data
groups into smaller ones). Similarily, Keim and Kriegen in VisDB [Keim and Kriegel
1994] noticed the possibility of arranging data objects or dimensions into groups, even
though they designed their system so that each display pixel represented one database
item. Experiments which they performed on geographical data led them to formulate
another problems: for example, how to deal with data that do not have natural repre-
sentation as a map; how to fit large data into small screen; and how to find the best
highlighting methods such as points, colours, flicker, and light.

Another step forward to more interactive visualization and exploration was the idea
of using stored results of visualization in a form of a slide show (Visage [Roth et al.
1996]). Slides were created by a user by dragging and dropping desired graphics onto
a special frame. A user had an option to come back to those stored visualizations at any
time. Further research led to creation of Visual Query Language (VQE) [Derthick et al.
1997] which added capabilities of direct manipulation and exploration of databases to
Visage. By means of this language it was possible to dynamically link queries and vi-
sualizations so that operations on visualizations updated the data and vice versa - if
data was changed, the visualization changed automatically. Some systems were even
designed so that they supported building queries by means of a specialized graphical
language. Such a language was used in InfoCrystal [Spoerri 1993]. In this case, how-
ever, a graphical language was used both for defining queries and visualizing results.
Its structure composed of so-called crystals based on Venn’s diagrams and the elements
of graphical queries could be combined into complex blocks and organized hierarchi-
cally. In case of larger data sets (with the number of tuples much greater than number
of a screens pixels) the systems (especially Visage) had functions for dynamic data
aggregation. With Visage it was possible to aggregate a set of data tuples into a new
tuple having properties derived from its elements. The family of SAGE systems and
solutions (SAGE, IDES, Visage, VQE) was commercialized and evolved into CoMotion
[Chuah and Roth 2003] (a product enabling data sharing, visualization and messaging)
and later into Command Post of the Future (CPOF) [Chuah and Roth 2003] a software
allowing military commanders to manage a battlefield.

Some other systems put more attention to design more flexible graphical user in-
terface so that users could perform a number of visual operations such as zooming,
3-D manipulation, panning, filtering and selection of details. Those systems were also
interactive thanks to numerous sliders (similarly to [Ahlberg and Wistrand 1995]).
For example VIS [Ahlberg and Shneiderman 1994b] and IVEE [Ahlberg and Wistrand
1995] and eventually Spotfire [Ahlberg 1996] were designed so that they used the con-
cepts of dynamic query filters (allowing users adjust query parameters by means of
sliders), starfield displays (scatter plots with additional features such as selection or
zooming) and tight coupling (an idea of using a query result as an input to produce
another query to support progressive query refinement [Ahlberg and Shneiderman
1994a]). Later, a concept of dynamic queries [Ahlberg et al. 1992] was introduced.
Dynamic queries allowed users to formulate queries using graphical widgets called
query devices (e.g., rangesliders, alphasliders, and toggles). Spotfire worked so that
it attached a graphical object to each object from the database. However, in order to
achieve appropriate performance in some cases it had to use approximations when ren-
dering visualization. For example, it might have to render objects at a lower resolution,
display complex objects as wire frame models, skip textual labels, not fully redraw the
screen while performing time-expensive computations. Nevertheless, the necessity of
using approximations was prompted not by the size of a dataset but rather by limi-

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 P. Godfrey et al.

1975

1990

2000

2010

2015

BIM

VisReduce (2013) Scorpion (2013)
BMR

BlinkDB (2013)

TDE (2011)

DIGLR

Polaris (2002)

BDGILR

Tableau (2003)

ShowMe (2007)

Ermac (2014)
AI

SeeDB (2014)

DI

Rivet (2000)

AIDR

SAP Lumira / M4 (2013)

GI*

DEVise (1997)
I*

Tioga-2 (1996)

VIQING (1998)
I*

DataSplash (1998)

AI

Visage (1996)
I*

Spotfire (1996)

I*R

DataSpace (1997)VQE (1997)

I*

IVEE (1995)

I*

VIS (1994)
I*

VisDB (1994)
IR

IDES (1994)
GI*

InfoCrystal (1993)
G

Tioga (1993)

AL

BOZ (1991)

AIL

APT (1986)

AIL

SAGE (1991)

I*

CHART (1977)

based on

use similar concepts to
generate visualizations

interactive
database explo-
ration throught
visual queries

employ logical languages to
define visualization goals

commercialized as Illus-
tra Object Knowledge
and Informix Visionary

Visage evolved into Com-
mand Post of the Future
software developed by Gen-
eral Dynamics for DARPA

commercialized by
IVEE Development
AB / Spotfire

commercialized as Tableau

Massachusetts Institute
of Technology

University of California

predecessor of

a result of cooper-
ation of authors of

employ MapReduce-
based concepts

Fig. 1. A map of database visualization tools covering the years 1986 to 2014. (A - generates visualizations
automatically, B - operates on Big Data, D - uses an integrated database or a table-like structures to store
imported data, G - uses a graphical language to define visualizations, I - supports interaction (* - naively,
e.g. by), L - uses a special language to define visualizations, M - uses a concept of Map-Reduce to deal with
big data, R - has a function to aggregate data; gray area denotes a family of systems developed by the same
team; elements within a family of systems marked with gray color do not fulfill our database visualization
tool criteria, however were important with respect to the other tools in the group.

tations of graphics hardware. Similarly, the progressive refinement was implemented
using widgets (sliders, buttons, etc.) and worked so that each change of a widget’s state
triggered another query which result could be used to refine it by properly adjusting
the widgets. So the process of query refinement was not optimized, did not use cashed
results and in order to get results the data had to be retrieved again. As regards 3-
D manipulation mentioned above, the DataSpace [Petajan et al. 1997] system needs
some attention. It was a mouse-based 3-D navigation tool which allowed user to zoom-
in and zoom-out graphically presented data. Additionally it incorporated a variety of
techniques such as: aggregation, data drill down, multidimensional scaling, variable
transparency and query by example.

Another approach used in VisDB [Keim and Kriegel 1994] but not common in other
visualization tools took advantage of the fact that in many cases only a limited number
of attributes are of interest so the number of visualised dimensions was restricted to
those which were part of the query. This tool was also capable of visualizing not only
tuples fulfilling query criteria, but also the approximate results by determining tuples

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:7

similar (in terms of a distance measure) to those returned as a result. Data in VisDB
were visualized so that the system first sorted them with respect to their relevance to
a specified query. Next, the relevance factors were mapped to appropriate colors. How-
ever, similarly to the other tools, in order to support interactivity, the system basically
recalculated visualization after each modification of the query by means of a graphical
interface.

The idea of incremental generation of visualizations was common in early database
visualization systems. While some systems were using sliders, buttons, text boxes and
other widgets, Tioga [Stonebraker et al. 1993] and Tioga-2 [Aiken et al. 1996] intro-
duced recipes as definitions of a whole process of data visualization. A recipe was con-
structed by a user in a form of a graph in which each node represented a single step.
A user could execute such a recipe interactively changing parameters of different steps
based on obtained visualization. The authors of Tioga-2 also noticed that in case the
data is aggregated or some areas of a dataset need more attention it could be useful to
use a mechanism of zooming in or drilling down in order to see more details. To that ef-
fect the mechanism of wormholes was introduced and worked so that a user could move
from one canvas to another as zooming in. If a user wanted to go back to the previous
view, in was possible with a rear view mirror which was used to illuminate wormholes
back to the starting canvas from which user started zooming in. Wormholes and rear
view mirrors were later replaced by portals (subareas of a canvas used to display other
canvases) in DataSplash [Woodruff et al. 2001]. This family of systems used a special
graphical environment for defining queries called VIQING [Olsten et al. 1998], which
provided a visual interactive interface for query specification.

The general approach in the 1990s was to represent a single database object by
a single instance of a graphical variable. However, the DEVise system [Livny et al.
1997a] introduced the idea of construction a visualization view employing three differ-
ent layers such as: a background (on which a visualization was drawn), a data display
(for graphical objects representing data objects) and an additional cursor display (a
data-independent layer used for example for highlighting a portion of the data).

Tools designed in early 2000s put even more attention on interactive visual data
analysis. For example, in case of Rivet [Bosch et al. 2000] the internal database struc-
ture was designed to support the rapid development of interactive visualization of
large data. Data were imported to the system and stored in Rivet in a form of tuples,
which Rivet considered as unordered collections of attributes which could be grouped
into tables if they were of the same format. Rivet was capable of supporting different
types of data sources such as data bases and files. Rivet used a homogeneous data
model, separation of data objects from visual objects, a mechanism of selectors and
visual metaphors (functions translating data objects into their graphical representa-
tions) to visualize selected portions of data. Expertise gained during development of
Rivet led to formulation of VisQL - a language for the Polaris system [Stolte et al. 2002]
which used a concept of shelves corresponding to tables’ attributes. It facilitated the
generation of precise sets of relational queries directly from visual specifications rep-
resented by a given configuration of fields. It also supported interactive visualization
by using techniques such as: deriving additional fields, sorting and filtering, brushing
and tool-tips, and undo and redo functions. Additional fields introduced in Polaris al-
lowed users to see additional information derived from a data set such as aggregated
quantitative measures, a count of distinct values, ad hoc grouping, and threshold ag-
gregates. Soon after Polaris was created, Tableau Software was founded and Polaris
became the first product of the company.

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 P. Godfrey et al.

3. DATA PROCESSING CHALLENGE
Almost all of the systems described in the previous section were designed to work with
just megabytes of data. They did not need any special data processing or data presen-
tation techniques to allow truly interactive visualization. Over the last decade or so,
however, our ability to collect and store data has grown faster than our ability to pro-
cess it. Scalability has become the key challenge for visual analytics. Indeed, keeping
up with ever increasingly large data sets has been an uphill battle in many other areas
of computer science. The database community has been hard at work to find solutions
to the challenge for many years now. Some of them were hardware based (e.g., paral-
lelization, increased bandwidth, and clever storage schemes), but most involved new
algorithms or even new paradigms for query processing.

In this section we will review major trends in this area with examples–wherever
possible–of implemented visualization systems. To organize these trends, we divided
research in this area into four major domains along two orthogonal dimensions as
shown in Table 2. The first dimension refers to the type of data against which queries
are executed, that is, whether the data is pre-processed or not. The second dimension
refers to the type of answers expected, that is, whether they are supposed to be exact
or just approximate. Within each of the dimensions some other subdivisions can be
identified; they will be discussed in more detail below.

3.1. Exact answers
3.1.1. Exact answers from raw data. The paradigm of query processing in database sys-

tems has always been the batch approach (represented as the top-left quadrant in in
Table 2). The user issues queries, the system processes them silently for some time,
and then the system returns an exact answer. Many tools have been designed over the
last 30 years to speed up query processing time, but the default has been to process
queries against the raw data, that is, individual records stored in relational tables.
Not surprisingly, this has been the least efficient way, in terms of latency, of providing
input to a visualization tool. Indeed, most of research in database query processing
over the last years has been to move away from that paradigm either by providing a
user with approximate answers only or by preprocessing the data to improve query
performance. (These are the three remaining quadrants in Table 2.)

But the batch approach has one important advantage over all other systems de-
scribed below: it allows the user to issue a truly ad hoc query and get an exact answer
to it. In the era of the ”big data” this may be considered a luxury, but there are scenar-
ios where this approach is necessary. The Dremel system, which has been in production
at Google since 2006, provides all advantages of the batch approach with the latency
expected of an interactive system. Dremel puts together a number of well-known tech-
niques: parallelism on a shared cluster of commodity machines, columnal storage, and
data compression to process terabytes of data in a matter of seconds. It is unlikely,
however, that a system like Dremel will find its way into a wider market: the cost of
the system (3000 machines in a cluster), and a proprietary query language and query
processing scheme put it out of reach but for the largest enterprises.

3.1.2. Exact answers from preprocessed data. The idea of data preprocessing is simple:
rather than executing a query at runtime, do it in advance and save the results for
future use. The concept of materialized view (which is in fact a misnomer as it is re-
ally a materialized query result) had been introduced within a database community as
early as 1980s (see [Ashish Gupta 1999] for an overview). Like a cache, a materialized
view provided fast access to data; the performance difference may be critical in appli-
cations where queries are complex or need to retrieve large amount of data. In a data
warehouse, where pretty much all queries involve aggregation, such pre-aggregated

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:9

Exact answers
Approximate answers

Static Incremental

Raw data Dremel [Melnik et al.
2010]

Control [Hellerstein
et al. 1999],
sampleAction ([Fisher
et al. 2012a], [Fisher
et al. 2012b]),
VisReduce [Im et al.
2013],
[Jermaine et al. 2006]

Preprocessed data

Static inMens [Liu et al.
2013]

[Li et al. 2008],
[Chaudhuri et al.
2007], AQUA [Acharya
et al. 1999a] and
[Acharya et al. 1999b]

BlinkDb [Agarwal et al.
2013]

Dynamic
XmdvTool [Doshi et al.
2003],
ATLAS [Chan et al.
2008]

[Chaudhuri et al. 1999] DICE [Kamat et al.
2014]

Fig. 2. Categorization of data processing paradigms with some representative systems. Visualization sys-
tems are in red.

materialized views have been called ’cubes’ [Gray et al. 1996]. Again, the idea was
that rather than process the queries as they arrive, typical aggregations (for example,
total sale value grouped by product, location and time) should be preprocessed in ad-
vance and stored in a warehouse along with the raw data. Such aggregations can be
linked directly to their visual display for more efficient interaction at runtime. This
idea has been explored in [Liu et al. 2013].

The advantages of data preprocessing are as obvious as the limitations: queries can
be answered fast as long as their answers have been previously stored3. If a cube con-
tains total sales per state, it cannot be used to answer a query that asks for sales per
city. For applications where a set of possible queries is fixed this is not an issue, but for
interactive exploration of data, static pre-processing is of limited use.

Not surprisingly, few systems (the Hotmap project [Fisher 2007] being one of the ex-
ceptions) used static data pre-processing. But queries do not have to be preprocessed
off-line; that is, before the user starts her query session. Instead, once the user starts
asking queries, future queries can be predicted and processed in the background. The
idea of dynamic data preprocessing is based on a few clever observations [Doshi et al.
2003]. First, visualization tools limit - to some extent - the types of queries that are
asked. Queries tend to be contiguous rather than entirely ad hoc as the visual interface
provides controlled means of expressing navigational requests. Second, a user tends to
look around a particular region (defined geographically, chronologically, or along some
other dimension) before moving to another region. In other words, the user navigation
tends to be composed of several small and local movements rather than major and un-
related movements. Third, since the user will be examining the visual displays, there
typically would be delays between user queries. The first two observations suggest a
certain level of predictability of future queries; the last one offers time to precompute

3This is not quite correct: a query may be answered from a combination of materialized views even when
it cannot be answered from any of them individually. But even in this case, there must be views that are
related in very specific ways to the query

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 P. Godfrey et al.

these queries. The XmdvTool [Doshi et al. 2003] offers an array of speculative pre-
fetching strategies. When the system is idle, a prefetcher will bring data into the cache
that is likely to be used next. In addition to prefetching XmdvTool is also using se-
mantic caching techniques which group data in cache with respect to their semantic
locality (for example, proximity in time or distance) rather than recency of their use.

Of course, the performance of a system based on query pre-fetching depends on the
level of predictability of future queries. In some domains user interactions will be nat-
urally limited. For example, the Atlas system [Chan et al. 2008] designed to store large
historical time-series data, allows only six directions of exploration (pan left, pan right,
scroll up, scroll down, zoom in, zoom out). The predictive algorithm is based on observ-
ing that there is a sense of momentum associated with the direction of exploration.
For example, if an analyst is panning to the left at time t, she is likely to continue
panning left at time t+1. It is worth noting that pre-fetching not only speeds up query
processing, but also makes the process of visual analysis less disruptive from the HCI
point of view.

3.2. Approximate Answers
As discussed in Section 1, the amount of data to be visualized often exceeds by orders
of magnitude the number of pixels available on a display. The data has to be reduced
(by filtering, aggregation, principal component analysis, etc.) as only a small portion of
it can be displayed. Since each of the reduction techniques causes a loss of detail, the
“visual answers” can only be approximate. But if we can no longer show exact answers
to our queries, perhaps the answers retrieved from a database should be approximate
as well. Indeed, most of the research in visualization systems over the last few years
focused on computing approximate rather than exact answers. There are two primary
ways to achieve that: statically, when queries are computed over preprocessed samples
of data or dynamically through incremental (online) query processing.

3.2.1. Sampling. Sampling has been used routinely in database systems. IBM’s DB2,
for example, supports the tablesample operator that can be applied to base tables to
return a desired fraction of tuples. Thus, it may seem that instead of running queries
on full tables one may access only their samples to achieve an appropriate balance of
processing time and answer precision. Unfortunately, most of SQL operators do not
commute with sampling, that is, a uniform random sample of a query result cannot be
produced from a uniform random samples (no matter how large) of the tables used in
a query. Consider the following example [Chaudhuri et al. 1999].

Example 3.1. Let the query be Q = R 1 S, where: R(A,B) = {(a1, b0), (a2, b1),
(a2, b2), (a2, b3), . . . , (a2, bk)} and S(A,C) = {(a2, c0), (a1, c1), (a1, c2), (a1, c3), . . . , (a1, cl)}.
Given any samples of R and S, it is impossible to generate a random sample of Q for
any reasonable sampling fraction or under any reasonable sampling semantics.

Similar examples of non-commutativity can be provided for select distinct, group
by, min, max, and other typical SQL operators. Nested queries pose yet another chal-
lenge. If a nested query returns a value used in a selection condition of the outer query,
that value has to be computed precisely. Otherwise the query result is meaningless.

To overcome this problem two solutions have been proposed. One is to pre-process
the data in a certain way to make the sampling useful for query processing. For the ex-
ample above, this might require including a1 and a2 in samples of R and S respectively.
The second solution is to design algorithms - mostly for joins - that would be immune
to the problem discussed above. We should emphasize, however, that it is impossible
to provide a meaningful approximate answer to every SQL query with only a fraction
of the data processed. In other words, there is a limit to what approximate query an-

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:11

swering can deliver, a limit that is often ignored or overlooked. Many papers reviewed
here do not even specify what types of SQL queries their systems can handle.

3.2.2. Approximate Incremental Answers. As we pointed out in Section 1, data analysis
is fundamentally an interactive process in which a user issues a query, receives a re-
sponse, formulates the next query based on the response, and repeats. People naturally
start by asking broad, big-picture questions and then continually refine their ques-
tions based on feedback. They do not need exact answers to such questions, but the do
expect rapid results. They also want control over the precision of the answers. Inter-
active systems should produce continuously refining approximate answers and when
such answers are good enough the user should be able to stop the process and move
on.

The most straightforward approach to incremental visualization has been imple-
mented in VisReduce [Im et al. 2013]. The system is in fact similar to Dremel described
above: it uses columnar storage combined with slightly modified MapReduce approach.
But rather than computing complete answers (as in Dremel) VisReduce incrementally
returns partial answers computed over progressively larger samples of the data. A
similar idea is explored in the sampleAction system [Fisher et al. 2012a; Fisher et al.
2012b], but here a user is also provided with a confidence bound (error measure) for
the returned results. Unfortunately, the descriptions of both systems are not detailed
enough to determine how they circumvent the problems associated with sampling.

A more sophisticated approach has been used in the Control project [Hellerstein
et al. 1999]. Here, the first specialized techniques for joins over samples, called ripple
join algorithms, were introduced [Haas and Hellerstein 1999]. The idea was to adjust
the sampling rates over each of the tables dynamically during the join based on the
data seen so far. Similar algorithms have been also proposed in [Jermaine et al. 2006].
Still, even these more sophisticated join algorithms cannot handle extreme data skew
described in Example 3.1.

The DICE system [Kamat et al. 2014] combines sampling with speculative query
execution (similar to the XmdvTool) to achieve interactive latencies for data cube ex-
ploration.

3.2.3. Static Approximate Answers. To address this and other problems of non-
commutativity of sampling with SQL operators, the idea of precomputed samples, or
sample synopses, was introduced. Rather than sampling base tables at runtime, we can
pre-compute certain carefully crafted samples and store them for future use [Acharya
et al. 1999c; Acharya et al. 2000; Gryz et al. 2004; Chaudhuri et al. 2007]. These sam-
ples are designed to be used only with specific queries so that the queries executed over
the samples are guaranteed to return answers of an arbitrary precision. Also, the cost
of storing the samples - compared to the traditional materialized views - is negligible.
However, just as in the case of materialized views, we sacrifice flexibility: not every
query can be answered using the stored samples. And this is not a question of preci-
sion as there will always be queries that cannot be answer with any precision (unless
samples of all possible queries are stored).

Example 3.2. Consider the following SQL query:

select a, max(b)
from R
where c=X
group by a

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 P. Godfrey et al.

The groups returned by the query and the maximum value of attribute b in each
of the groups depends on the value of c. Unless we store samples of this query for all
values of c, no meaningful answer based on sampling is possible.

We should also note that since sample synopses are pre-processed statically off-line
they are of limited value for incremental visualization as they can only provide one
approximate answer of a fixed precision (storing multiple samples of the same data
is not feasible in practice). One way to avoid this problem is to pick an appropriately
sized sub-sample of a stored sample based on the query’s required response time or
precision constraints [Agarwal et al. 2013].

The idea of materializing samples can be pushed even further to build the entire
database out of them. This idea has been explored in [Li et al. 2008].

3.3. Tightly-Coupled Systems
Most visualizations systems described above retrieve data from a database first and
then use specialized visualization tools to render it. This decoupled approach results in
significant duplication of functionality and misses tremendous opportunities for cross-
optimization. The idea of integrating a database system with a visualization systems
seems self-evident, yet the exact level and juncture of integration has been understood
differently by different people.4

Probably, the first attempt to build a tightly-coupled database/visualization system
was the DEVise system [Livny et al. 1997b]. The emphasis there was on integrating
querying with data visualization features: users could render their data in a flexible
easy-to-use manner. Mapping visual operations to data access makes query optimiza-
tion more effective as the semantics of how different parts of visual presentations are
linked offered hints on what to index, materialize or cache.

The idea of mapping visual operations to database queries has been explored and im-
plemented in various ways in many systems since then (the most notable implementa-
tions are [Doshi et al. 2003] and [Chan et al. 2008] discussed above). But communicat-
ing to the database what the user wants to see may help in other ways than just query
performance. A visualization tool may also tell the database how much data it needs to
render a picture thus limiting the amount of data sent from a database. This improves
performance at two levels: it reduces the communication costs and eliminates the need
for data reduction at a later stage. The M4 system [Jugel et al. 2014] implemented in
SAP Lumira addresses exactly this problem. Rather than executing a query as given,
M4 relies on the parameters of the desired visualization to rewrite the query. Then, it
develops an appropriate visualization-driven aggregation that only selects data points
that are necessary to draw the complete visualization of the complete underlying data.
A similar ideas have been implemented in the ScalaR system [Battle et al. 2013].

Recently, a call for even tighter integration of a database and visualization systems
has been made [Wu et al. 2014]. The decoupled approach has three major drawbacks.
First, the database is unaware of related queries. Second, visualization tools duplicate
basic database operations. Third, visualization tools assume that all data fits entirely
in memory. To alleviate these problems the authors advocate building a Data Visual-
ization Management System, a system that would make all database features avail-
able for visualizations (being a vision paper, no specific solutions - other than possible
research directions - are provided).

4The distinction between coupled and decoupled systems adds yet another dimension to the categorization
in Table 2. We did not include it there not only because it is hard to visualize, but also because it is not a
binary property of any system.

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:13

It is interesting to see how the data processing challenge was addressed in a commer-
cial data visualization system. Tableau Software is likely the most successful among
them. The company delivers a number of data visualization tools suited for business in-
telligence such as: Tableau Desktop, Tableau Server, Tableau Online, Tableau Reader
and Tableau Public. The early architecture of Tableau Desktop was designed so that
it was capable to connect to different relational as well as hierarchical databases. In
order to reduce the load (in terms of processing large data sets) it uses data extracts (a
filtered or sampled subsets of original data set) which were originally processed using
the Firebird open source database. However, even with extracts generated based on fil-
tered, sampled or rolled up subsets of the original data set, Firebird turned out not to
be efficient enough and Tableau Software decided to create its own read-only column-
based data engine (TDE) optimized for data visualization [Wesley et al. 2011]. Still,
further growth of sizes required further improvements of TDE’s efficiency by leverag-
ing compression techniques [Wesley and Terlecki 2014] so that Tableau products could
be more interactive. As a result Tableau’s in-memory database (also implemented in
Vertica and PowerPivot) scales up to interactive queries across millions of rows. Be-
yond this range, however, we are back to the fundamental issue: a database simply
cannot produce a full response to a query in interactive time [Fisher 2011].

4. DATA PRESENTATION CHALLENGE
Visual scalability is the capability of a system to effectively display large data sets
in terms of either the dimension of data points (usually understood as the number of
attributes to be presented) or the sheer number of these points. The issue of presenting
multiple dimensions on a 2-d display has been with us for a while now; the second
problem is relatively new. In most realistic visualization systems the amount of data
to be visualized exceeds the number of pixels of display by orders of magnitude. The
data has to be reduced or compressed in some way before it can be displayed. As the
rate of compression is increasing, more and more details of the actual data will be lost.
Thus, the data reduction process must be followed by an appropriate presentation of
the modified data.

The data reduction process can be performed by the database system or by special-
ized algorithms tied to the rendering tools. There are three main methods for reducing
data within a database: filtering, aggregation, and sampling [Battle et al. 2013].

Filtering is the most straightforward method: rather than presenting the complete
data set, only a subset of the data points is selected (using the where clause in SQL)
for display. Filtering does not require any specialized visualization methods as the
original data points are presented. An obvious disadvantage of filtering is its inability
of showing the complete data set.

Aggregation groups data into subsets (usually performed via the group by clause in
SQL) and returns summaries of the groups as sum, average, etc. At the presentation
level, aggregations require new visualization techniques as individual points are no
longer displayed. [Elmqvist and Fekete 2010] provides a comprehensive overview of
rendering techniques for displaying aggregated data.

Sampling (which is supported by most database systems) returns a fraction of the
original data points given some specified probability. In this sense, the answer pro-
duced by sampling is approximate and represents uncertain information. In general,
uncertain information can be specified in three different ways [Streit et al. 2008]: esti-
mates (the values are known to be inaccurate with unknown precision), intervals (the
value is known to fall within a specific range), and probabilities (the value can be ex-
pressed as a probability curve). It is a challenge to display uncertain data in a way
easily readable to users; there is no straightforward solution to it from the HCI per-
spective. Of course, the problem is not specific to large data sets; the reader is referred

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 P. Godfrey et al.

to [Olston and Mackinlay 2002; Kosara et al. 2001; Wittenbrink et al. 1996; Sanyal
et al. 2009] for more discussion.

5. CONCLUSIONS
Visualization provides a powerful means of making sense of data. Visual analysis typ-
ically progresses in an iterative process of view creation, exploration, and refinement.
To be most effective, visual analytics tools must support the fluent and flexible use of
visualizations at rates resonant with the pace of human though [Heer and Shneider-
man 2012]. But this appetite for visual data analysis will most likely remain insatiable.
Computing power has not kept pace with the growth of digital data and there is no sign
that this will change any time soon. It is unlikely, that a general purpose visualization
system can provide smooth interaction over large data sets (we have not seen such a
system so far).

What then can we get instead? What constraints do we have to impose on an ar-
chitecture of a system to provide truly interactive visualization? The answers to these
questions are in fact provided in the papers reviewed here. In all cases when the re-
ported latency was within the limits expected of an interactive performance, one or
more of the following constraints were imposed upon a respective system:

— The data set is small (often in single gigabytes). Although this condition disregards
the call for visualization of large data sets, it is acceptable for most of the typical
application in real world.

— A system is built for a very specific type of data, for example, time-series only. Limit-
ing the type of data to be visualized often simplifies the types of queries (even if it is
not stated explicitly) that a user can ask, thus making their execution more efficient.

— Queries are processed over samples of data rather than full database. This has been
a path chosen in most of the recent systems as it provides truly interactive perfor-
mance. There are two problems with this approach. The first, already discussed in
Section 3, is the limit on the types of queries that can be meaningfully asked against
a database. The second, is the inability of discovering outliers in data (unless spe-
cial provisions are made in sampling techniques) which for some applications may be
indispensable.

— Data is reprocessed (for example, by storing materialized views). This is a method
routinely used in OLAP. Unfortunately, it does not allow for ad-hoc queries.

— Massively parallel systems. This is the only approach that works. But it is costly
(3000 machines in a cluster were used to build Dremel).

REFERENCES
Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. 2000. Congressional Samples for Approximate

Answering of Group-By Queries. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA., Weidong Chen, Jeffrey F. Naughton, and
Philip A. Bernstein (Eds.). ACM, 487–498. DOI:http://dx.doi.org/10.1145/342009.335450

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. 1999a. Join Synopses
for Approximate Query Answering. In Proceedings of SIGMOD. 275–286.

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. 1999b. Join Synopses
for Approximate Query Answering. In Proceedings SIGMOD. 275–286.

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. 1999c.
Join Synopses for Approximate Query Answering, See Delis et al. [1999], 275–286.
DOI:http://dx.doi.org/10.1145/304182.304207

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica.
2013. BlinkDB: queries with bounded errors and bounded response times on very large data.
In Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013,
Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek (Eds.). ACM, 29–42.
DOI:http://dx.doi.org/10.1145/2465351.2465355

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:15

Christopher Ahlberg. 1996. Spotfire: an information exploration environment. ACM SIGMOD Record 25, 4
(1996), 25–29.

Christopher Ahlberg and Ben Shneiderman. 1994a. The alphaslider: a compact and rapid selector. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems. ACM, 365–371.

Christopher Ahlberg and Ben Shneiderman. 1994b. Visual information seeking: tight coupling of dynamic
query filters with starfield displays. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 313–317.

Christopher Ahlberg, Christopher Williamson, and Ben Shneiderman. 1992. Dynamic queries for informa-
tion exploration: An implementation and evaluation. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems. ACM, 619–626.

Christopher Ahlberg and Erik Wistrand. 1995. IVEE: An information visualization and exploration envi-
ronment. In Information Visualization, 1995. Proceedings. IEEE, 66–73.

Alexander Aiken, Jolly Chen, Michael Stonebraker, and Allison Woodruff. 1996. Tioga-2: A direct manipu-
lation database visualization environment. In 2013 IEEE 29th International Conference on Data Engi-
neering (ICDE). IEEE Computer Society, 208–208.

Inderpal Singh Mumick Ashish Gupta (Ed.). 1999. Materialized Views. MIT Press.
Duane A Bailey, Janice E Cuny, and Craig P Loomis. 1990. Paragraph: Graph editor support for parallel

programming environments. International Journal of Parallel Programming 19, 2 (1990), 75–110.
Leilani Battle, Michael Stonebraker, and Remco Chang. 2013. Dynamic reduction of query result sets for

interactive visualizaton, See Hu et al. [2013], 1–8. DOI:http://dx.doi.org/10.1109/BigData.2013.6691708
Thomas Baudel. 2004. Browsing through an information visualization design space. In CHI’04 Extended

Abstracts on Human Factors in Computing Systems. ACM, 765–766.
Steve Benford, Dave Snowdon, Chris Greenhalgh, Rob Ingram, Ian Knox, and Chris Brown. 1995. VR-VIBE:

A Virtual Environment for Co-operative Information Retrieval. In Computer Graphics Forum, Vol. 14.
Wiley Online Library, 349–360.

William H Benson and Bernard Kitous. 1977. Interactive analysis and display of tabular data. ACM SIG-
GRAPH Computer Graphics 11, 2 (1977), 48–53.

Jacques Bertin. 1983. Semiology of Graphics. University of Wisconsin Press.
Wes Bethel, Cristina Siegerist, John Shalf, Praveenkumar Shetty, TJ Jankun-Kelly, Oliver Kreylos, and

Kwan-Liu Ma. 2003. VisPortal: Deploying grid-enabled visualization tools through a web-portal inter-
face. Lawrence Berkeley National Laboratory (2003).

Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum, and Pat Hanrahan. 2000. Rivet:
A flexible environment for computer systems visualization. ACM SIGGRAPH Computer Graphics 34, 1
(2000), 68–73.

Michael Bostock and Jeffrey Heer. 2009. Protovis: A graphical toolkit for visualization. Visualization and
Computer Graphics, IEEE Transactions on 15, 6 (2009), 1121–1128.

Andreas Buja, Dianne Cook, and Deborah F Swayne. 1996. Interactive high-dimensional data visualization.
Journal of Computational and Graphical Statistics 5, 1 (1996), 78–99.

Stephen M Casner. 1991. Task-analytic approach to the automated design of graphic presentations. ACM
Transactions on Graphics (TOG) 10, 2 (1991), 111–151.

RGG Cattell. 1980. An entity-based database user interface. In Proceedings of the 1980 ACM SIGMOD
international conference on Management of data. ACM, 144–150.

Sye-Min Chan, Ling Xiao, John Gerth, and Pat Hanrahan. 2008. Maintaining interactivity while exploring
massive time series. In Proceedings of the IEEE Symposium on Visual Analytics Science and Tech-
nology, IEEE VAST 2008, Columbus, Ohio, USA, 19-24 October 2008. IEEE Computer Society, 59–66.
DOI:http://dx.doi.org/10.1109/VAST.2008.4677357

Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. 2007. Optimized stratified sam-
pling for approximate query processing. ACM Trans. Database Syst. 32, 2 (2007), 9.
DOI:http://dx.doi.org/10.1145/1242524.1242526

Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random Sampling over Joins. In
Proceedings SIGMOD. 263–274.

Mei C Chuah and Steven F Roth. 2003. Visualizing common ground. In Information Visualization, 2003. IV
2003. Proceedings. Seventh International Conference on. IEEE, 365–372.

Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (Eds.). 1999. SIGMOD 1999, Proceedings
ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia, Penn-
sylvania, USA. ACM Press.

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 P. Godfrey et al.

Glynn Dennis Jr, Brad T Sherman, Douglas A Hosack, Jun Yang, Wei Gao, H Clifford Lane, Richard A
Lempicki, and others. 2003. DAVID: database for annotation, visualization, and integrated discovery.
Genome biol 4, 5 (2003), P3.

Mark Derthick, John Kolojejchick, and Steven F Roth. 1997. An interactive visual query environment for
exploring data. In Proceedings of the 10th annual ACM symposium on User interface software and tech-
nology. ACM, 189–198.

Punit R. Doshi, Elke A. Rundensteiner, and Matthew O. Ward. 2003. Prefetching for Visual
Data Exploratio. In Eighth International Conference on Database Systems for Advanced Ap-
plications (DASFAA ’03), March 26-28, 2003, Kyoto, Japan. IEEE Computer Society, 195–202.
DOI:http://dx.doi.org/10.1109/DASFAA.2003.1192383

Stephen G Eick, M Andrew Eick, Jesse Fugitt, Brian Horst, Maxim Khailo, and Russell A Lankenau. 2007.
Thin client visualization. In Visual Analytics Science and Technology, 2007. VAST 2007. IEEE Sympo-
sium on. IEEE, 51–58.

Niklas Elmqvist and Jean-Daniel Fekete. 2010. Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines. IEEE Trans. Vis. Comput. Graph. 16, 3 (2010), 439–454.
DOI:http://dx.doi.org/10.1109/TVCG.2009.84

Danyel Fisher. 2007. Hotmap: Looking at Geographic Attention. IEEE Trans. Vis. Comput. Graph. 13, 6
(2007), 1184–1191. DOI:http://dx.doi.org/10.1109/TVCG.2007.70561

Danyel Fisher. 2011. Incremental, approximate database queries and uncertainty for exploratory visu-
alization. In IEEE Symposium on Large Data Analysis and Visualization, LDAV 2011, Providence,
Rhode Island, USA, 23-24 October, 2011, David Rogers and Cláudio T. Silva (Eds.). IEEE, 73–80.
DOI:http://dx.doi.org/10.1109/LDAV.2011.6092320

Danyel Fisher, Steven M. Drucker, and Arnd Christian König. 2012a. Exploratory Visualization Involving
Incremental, Approximate Database Queries and Uncertainty. IEEE Computer Graphics and Applica-
tions 32, 4 (2012), 55–62. DOI:http://dx.doi.org/10.1109/MCG.2012.48

Danyel Fisher, Igor O. Popov, Steven M. Drucker, and m. c. schraefel. 2012b. Trust me, i’m partially right:
incremental visualization lets analysts explore large datasets faster. In CHI Conference on Human
Factors in Computing Systems, CHI ’12, Austin, TX, USA - May 05 - 10, 2012, Joseph A. Konstan, Ed H.
Chi, and Kristina Höök (Eds.). ACM, 1673–1682. DOI:http://dx.doi.org/10.1145/2207676.2208294

Jade Goldstein, Steven F Roth, John Kolojejchick, and Joe Mattis. 1994. A framework for knowledge-based
interactive data exploration. Journal of Visual Languages & Computing 5, 4 (1994), 339–363.

Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. 1996. Data Cube: A Relational Aggrega-
tion Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In Proceedings of the Twelfth Interna-
tional Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, Stanley
Y. W. Su (Ed.). IEEE Computer Society, 152–159. DOI:http://dx.doi.org/10.1109/ICDE.1996.492099

Jarek Gryz, Junjie Guo, Linqi Liu, and Calisto Zuzarte. 2004. Query Sampling in DB2 Universal Database.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France,
June 13-18, 2004, Gerhard Weikum, Arnd Christian König, and Stefan Deßloch (Eds.). ACM, 839–843.
DOI:http://dx.doi.org/10.1145/1007568.1007664

Peter J. Haas and Joseph M. Hellerstein. 1999. Ripple Joins for Online Aggregation, See Delis et al. [1999],
287–298. DOI:http://dx.doi.org/10.1145/304182.304208

Jeffrey Heer and Sean Kandel. 2012. Interactive analysis of big data. ACM Crossroads 19, 1 (2012), 50–54.
DOI:http://dx.doi.org/10.1145/2331042.2331058

Jeffrey Heer and Ben Shneiderman. 2012. Interactive dynamics for visual analysis. Commun. ACM 55, 4
(2012), 45–54. DOI:http://dx.doi.org/10.1145/2133806.2133821

Joseph M. Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston, Vijayshankar Raman, Tali
Roth, and Peter J. Haas. 1999. Interactive Data Analysis: The Control Project. IEEE Computer 32, 8
(1999), 51–59. DOI:http://dx.doi.org/10.1109/2.781635

Matthias Hemmje, Clemens Kunkel, and Alexander Willett. 1994. LyberWorlda visualization user interface
supporting fulltext retrieval. In SIGIR94. Springer, 249–259.

Robert J Hendley, Nick S Drew, Andrew M Wood, and Russell Beale. 1995. Case study. Narcissus: visualising
information. In Information Visualization, 1995. Proceedings. IEEE, 90–96.

Christopher F Herot. 1980. Spatial management of data. ACM Transactions on Database Systems (TODS)
5, 4 (1980), 493–513.

W Hibbard, J Kellum, and B Paul. 1990. Vis5D Version 5.2. Visualization Project, University of Wisconsin–
Madison Space Science and Engineering Center (1990).

Xiaohua Hu, Tsau Young Lin, Vijay Raghavan, Benjamin W. Wah, Ricardo A. Baeza-Yates, Geoffrey Fox,
Cyrus Shahabi, Matthew Smith, Qiang Yang, Rayid Ghani, Wei Fan, Ronny Lempel, and Raghunath
Nambiar (Eds.). 2013. Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 Octo-

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:17

ber 2013, Santa Clara, CA, USA. IEEE. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
6679357

Jean-Francois Im, Felix Giguere Villegas, and Michael J. McGuffin. 2013. VisReduce: Fast and re-
sponsive incremental information visualization of large datasets, See Hu et al. [2013], 25–32.
DOI:http://dx.doi.org/10.1109/BigData.2013.6691710

Allan S Jacobson, Andrew L Berkin, and Martin N Orton. 1994. LinkWinds: interactive scientific data anal-
ysis and visualization. Commun. ACM 37, 4 (1994), 42–52.

Chris Jermaine, Alin Dobra, Subramanian Arumugam, Shantanu Joshi, and Abhijit Pol.
2006. The Sort-Merge-Shrink join. ACM Trans. Database Syst. 31, 4 (2006), 1382–1416.
DOI:http://dx.doi.org/10.1145/1189775

Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014. Faster Visual Analytics through
Pixel-Perfect Aggregation. Proceedings of the VLDB Endowment 7, 13 (2014).

Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. 2014. Distributed and inter-
active cube exploration. In IEEE 30th International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and
Goce Trajcevski (Eds.). IEEE, 472–483. DOI:http://dx.doi.org/10.1109/ICDE.2014.6816674

Daniel A Keim and H-P Kriegel. 1994. VisDB: Database exploration using multidimensional visualization.
Computer Graphics and Applications, IEEE 14, 5 (1994), 40–49.

Konstantinos Konstantinides and John Robert Rasure. 1994. The Khoros software development environ-
ment for image and signal processing. Image Processing, IEEE Transactions on 3, 3 (1994), 243–252.

David Koop, Carlos E Scheidegger, Steven P Callahan, Juliana Freire, and Cláudio T Silva. 2008. Viscom-
plete: Automating suggestions for visualization pipelines. Visualization and Computer Graphics, IEEE
Transactions on 14, 6 (2008), 1691–1698.

Robert Kosara, Silvia Miksch, and Helwig Hauser. 2001. Semantic Depth of Field. In IEEE Sympo-
sium on Information Visualization 2001 (INFOVIS’01), San Diego, CA, USA, October 22-23, 2001.,
Keith Andrews, Steven F. Roth, and Pak Chung Wong (Eds.). IEEE Computer Society, 97–104.
DOI:http://dx.doi.org/10.1109/INFVIS.2001.963286

Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. 2008. Sampling cube: a framework for
statistical olap over sampling data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang
(Ed.). ACM, 779–790. DOI:http://dx.doi.org/10.1145/1376616.1376695

Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time Visual Querying of Big Data. Comput.
Graph. Forum 32, 3 (2013), 421–430. DOI:http://dx.doi.org/10.1111/cgf.12129

Miron Livny, Raghu Ramakrishnan, Kevin Beyer, Guangshun Chen, Donko Donjerkovic, Shilpa Lawande,
Jussi Myllymaki, and Kent Wenger. 1997a. DEVise: integrated querying and visual exploration of large
datasets. In ACM SIGMOD Record, Vol. 26. ACM, 301–312.

Miron Livny, Raghu Ramakrishnan, Kevin S. Beyer, Guangshun Chen, Donko Donjerkovic, Shilpa
Lawande, Jussi Myllymaki, and R. Kent Wenger. 1997b. DEVise: Integrated Querying and Visualization
of Large Datasets. In SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Manage-
ment of Data, May 13-15, 1997, Tucson, Arizona, USA., Joan Peckham (Ed.). ACM Press, 301–312.
DOI:http://dx.doi.org/10.1145/253260.253335

Jock Mackinlay. 1986. Automating the design of graphical presentations of relational information. ACM
Transactions on Graphics (TOG) 5, 2 (1986), 110–141.

Allen D Malony, David H Hammerslag, and David J Jablonowski. 1992. Traceview: A trace visualization
tool. Springer.

Nancy H McDonald and Michael Stonebraker. 1975. CUPID-The Friendly Query Language.. In ACM Pacific.
127–131.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and
Theo Vassilakis. 2010. Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB
Endowment 3, 1-2 (2010), 330–339.

Charles Joseph Minard. 1812. Carte figurative des pertes successives en hommes de l’arm ee qu’Annibal con-
duisit d’Espagne en italie en traversant les Gaules (selon Polybe). Carte figurative des pertes successives
en hommes de l’arm ee franc aise dans la campagne de Russie 1813 (1812).

C Olsten, Michael Stonebraker, Alexander Aiken, and Joseph M Hellerstein. 1998. VIQING: Visual interac-
tive querying. In Visual Languages, 1998. Proceedings. 1998 IEEE Symposium on. IEEE, 162–169.

Chris Olston and Jock D. Mackinlay. 2002. Visualizing Data with Bounded Uncertainty. In 2002
IEEE Symposium on Information Visualization (InfoVis 2002), 27 October - 1 November 2002,
Boston, MA, USA, Pak Chung Wong and Keith Andrews (Eds.). IEEE Computer Society, 37–40.
DOI:http://dx.doi.org/10.1109/INFVIS.2002.1173145

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 P. Godfrey et al.

Eric D Petajan, Yves D Jean, Dan Lieuwen, and Vinod Anupam. 1997. DataSpace: An automated visu-
alization system for large databases. In Electronic Imaging’97. International Society for Optics and
Photonics, 89–98.

J Priestley. 1765. A chart of biography, London. British Library, London:. I (1765).
Ramana Rao and Stuart K Card. 1994. The table lens: merging graphical and symbolic representations

in an interactive focus+ context visualization for tabular information. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 318–322.

Steven F Roth, Peter Lucas, Jeffrey A Senn, Cristina C Gomberg, Michael B Burks, Philip J Stroffolino, AJ
Kolojechick, and Carolyn Dunmire. 1996. Visage: a user interface environment for exploring informa-
tion. In Information Visualization’96, Proceedings IEEE Symposium on. IEEE, 3–12.

Steven F Roth and Joe Mattis. 1991. Automating the presentation of information. In Artificial Intelligence
Applications, 1991. Proceedings., Seventh IEEE Conference on, Vol. 1. IEEE, 90–97.

Jibonananda Sanyal, Song Zhang, Gargi Bhattacharya, Philip Amburn, and Robert J. Moorhead. 2009. A
User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets. IEEE Trans.
Vis. Comput. Graph. 15, 6 (2009), 1209–1218. DOI:http://dx.doi.org/10.1109/TVCG.2009.114

Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative interaction design for
data visualization. In Proceedings of the 27th annual ACM symposium on User interface software and
technology. ACM, 669–678.

Ben Shneiderman. 1996. The Eyes Have It: A Task by Data Type Taxonomy for Information Visual-
izations. In Visual Languages/Human-Centric Computing Languages and Environments. 336–343.
DOI:http://dx.doi.org/10.1109/VL.1996.545307

Ben Shneiderman. 2008. Extreme visualization: squeezing a billion records into a million pixels. In Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of data. ACM, 3–12.

John Snow and BW Richardson. 1965. Snow on Cholera: Being a Reprint of Two Papers by John Snow, MD,
Together with a Biographical Memoir by BW Richardson, and an Introduction by Wade Hampton Frost,
MD. Hafner.

Michael Spenke, Christian Beilken, and Thomas Berlage. 1996. FOCUS: the interactive table for product
comparison and selection. In Proceedings of the 9th annual ACM symposium on User interface software
and technology. ACM, 41–50.

Anselm Spoerri. 1993. InfoCrystal: A visual tool for information retrieval & management. In Proceedings of
the second international conference on Information and knowledge management. ACM, 11–20.

Thomas C Sprenger, Markus H Gross, Daniel Bielser, and T Strasser. 1998. IVORY-An Object-Oriented
Framework for Physics-Based Information Visualization in Java. In Information Visualization, 1998.
Proceedings. IEEE Symposium on. IEEE, 79–86.

Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query, analysis, and visualization
of multidimensional relational databases. Visualization and Computer Graphics, IEEE Transactions on
8, 1 (2002), 52–65.

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, and Jiang Wu. 1993. Tioga: Providing
data management support for scientific visualization applications. In VLDB, Vol. 93. Citeseer, 25–38.

Alexander Streit, Binh Pham, and Ross Brown. 2008. A Spreadsheet Approach to Facilitate Visu-
alization of Uncertainty in Information. IEEE Trans. Vis. Comput. Graph. 14, 1 (2008), 61–72.
DOI:http://dx.doi.org/10.1109/TVCG.2007.70426

Edward Tufte. 1990. Envisioning Information. Graphics Press, Cheshire, CT, USA.
Craig Upson, Thomas A Faulhaber Jr, David Kamins, David Laidlaw, David Schlegel, Jefrey Vroom, Robert

Gurwitz, and Andries Van Dam. 1989. The application visualization system: A computational environ-
ment for scientific visualization. Computer Graphics and Applications, IEEE 9, 4 (1989), 30–42.

Matthew O Ward. 1994. Xmdvtool: Integrating multiple methods for visualizing multivariate data. In Pro-
ceedings of the Conference on Visualization’94. IEEE Computer Society Press, 326–333.

Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. 2011. An analytic data engine for visualization
in tableau. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data.
ACM, 1185–1194.

Richard Michael Grantham Wesley and Pawel Terlecki. 2014. Leveraging compression in the tableau data
engine. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data.
ACM, 563–573.

Craig M. Wittenbrink, Alex Pang, and Suresh K. Lodha. 1996. Glyphs for Visualizing Un-
certainty in Vector Fields. IEEE Trans. Vis. Comput. Graph. 2, 3 (1996), 266–279.
DOI:http://dx.doi.org/10.1109/2945.537309

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Interactive Visualization of Large Data Sets 39:19

Harry KT Wong, Ivy Kuo, and others. 1982. GUIDE: Graphical User Interface for Database Exploration.. In
VLDB. 22–32.

Pak Chung Wong, Beth Hetzler, Christian Posse, Mark Whiting, Susan Havre, Nick Cramer, Anuj Shah,
Mudita Singhal, Alan Turner, and Jim Thomas. 2004. In-spire infovis 2004 contest entry. In Information
Visualization, IEEE Symposium on. IEEE, r2–r2.

Allison Woodruff, Chris Olston, Alexander Aiken, Michael Chu, Vuk Ercegovac, Mark Lin, Mybrid Spald-
ing, and Michael Stonebraker. 2001. DataSplash: A direct manipulation environment for programming
semantic zoom visualizations of tabular data. Journal of Visual Languages & Computing 12, 5 (2001),
551–571.

Eugene Wu, Leilani Battle, and Samuel R. Madden. 2014. The Case for Data Visualization Management
Systems [Vision Paper]. Proceedings of the VLDB Endowment (2014).

Moshé M Zloof. 1975. Query by example. In Proceedings of the May 19-22, 1975, national computer conference
and exposition. ACM, 431–438.

Received TBA; revised TBA; accepted TBA
APPENDIX
A Selection of Domain-Specific Visualization Systems
As mentioned in Section 1, we are primarily interested in tools which are not

domain-specific and aimed to visualize relational databases. However, over the years
a great number of tools for data visualization was designed and many of them were
intended to support different types of scientific research. We list them here for com-
pleteness.

(1) DAVID [Dennis Jr et al. 2003] - a web-accessible program integrating functional
genomic annotations with intuitive graphical summaries

(2) IVORY - a platform-independent framework for visualization [Sprenger et al. 1998]
in physics

(3) SDMS [Herot 1980] - a spatial data management system which presented the ge-
ography and weather prediction information

(4) Vis5D [Hibbard et al. 1990] - a system for interactive visualization of data sets
produced by numerical weather prediction

(5) GeoBoost [Eick et al. 2007] - a thin client visualization framework which focuses
on geospatial visualization and uses Scalable Vector Graphics

(6) Lyberworld [Hemmje et al. 1994] - a visualization interface supporting full-text
retrievalm and IN-SPIRE [Wong et al. 2004] - designed for visualizing document
collections

(7) AVS Explorer [Upson et al. 1989] - a system for developing interactive scientific
visualization applications with a minimum of programming effort

(8) ParaGraph [Bailey et al. 1990] - a graph editor supporting parallel programming
environments

(9) LinkWinds [Jacobson et al. 1994] - an interactive scientific data analysis and vi-
sualization system applying a data-linking paradigm resulting in a system which
functions much like a graphical spreadsheet

(10) VisPortal [Bethel et al. 2003] - a system for grid-based visualization services and
focused on distributed visualization algorithms).

(11) GUIDE [Wong et al. 1982] - a graphical user interface for database exploration
which offered a graphics interface to the user used to present a database schema
in a for of a network of entities and relationships where queries were formulated
and represented graphically

(12) E-R [Cattell 1980] - a user interface to a data base designed for casual interactive
use in which data displayed to the user was based upon entities participating in
relationships, rather than upon relations alone as in the relational data model

(13) QBE (Query by Example) [Zloof 1975] - designed for users having no computer or
mathematical background.

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 P. Godfrey et al.

Other tools which did not fit into our survey due to the fact that they were not
designed for visualization of data bases but we considered worth of mentioning are:

(14) CUPID [McDonald and Stonebraker 1975] - a friendly query language designed to
support non-programmer integration with relational databases

(15) Traceview [Malony et al. 1992] - a system for visualization and trace files manipu-
lation

(16) Khoros [Konstantinides and Rasure 1994] - a data flow visual language allowing
to create block diagrams integrating software development environment for infor-
mation processing and visualization

(17) XmdvTool [Ward 1994] - a software package for interactive visual exploration of
multivariate data sets

(18) Table Lens [Rao and Card 1994] and FOCUS [Spenke et al. 1996] - visualization
systems providing table displays that present data in a relational table view, using
simple graphics in the cells to communicate quantitative values

(19) Narcissus [Hendley et al. 1995] - a tool for visualization leading users to form an
intuitive understanding of the structure and behaviour of their domain allowing
them to manipulate objects within their system

(20) VR-VIBE [Benford et al. 1995] - a virtual reality application intended to support
the co-operative analysis of document stores

(21) XGobi [Buja et al. 1996] - a tool providing predefined visualizations intended for
exploring high multidimensional data.

(22) ILOG Discovery [Baudel 2004] - a program designed as an information visualiza-
tion editor allowing browsing the visualization design space of data sets

(23) VisComplete [Koop et al. 2008] - a tool for computing correspondences between
existing pipeline subgraphs from the database, and use these to predict sets of
likely pipeline additions to a given partial pipeline. By presenting these sub-graphs
in an interface users could use suggested completions when creating visualizations

(24) Protovis [Bostock and Heer 2009] - an embedded domain-specific language for con-
structing visualizations by composing simple graphical marks such as bars, lines
and labels

(25) Quadrigram [Satyanarayan et al. 2014] - a data visualization web-based service
launched in 2012 and based on a visual programming language.

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2010.

