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Abstract

The Bhattacharyya coefficient is a widely used statistical measure in various application

areas of mathematics, such as computer science, which measures the similarity of two nor-

malized distributions. In this report, we extend the measure by defining an n-distribution

Bhattacharyya coefficient, which measures the overlap of n normalized distributions instead

of just two. To affirm appropriateness of the measure, we provide useful properties, such as

boundedness and properties along its boundaries with proofs, and supply illustrative exam-

ples in 1-dimension to demonstrate clearly the effect of the measure in various instances.
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Chapter 1

Introduction

The Bhattacharyya distance was first introduced by Anil Kumar Bhattacharyya as a measure

to calculate the similarity between two distributions [3]. It has appeared in various fields

from classical statistics [12] to numerous application areas in artificial intelligence, such as

speech recognition [13], texture segmentation [10], colour and texture matching [11, 6], fea-

ture extraction, image segmentation [1, 9], and action recognition [5].

Many statisticians use the Bhattacharyya measure over others for its simplicity, since

they are easier to evaluate than the exact average probability of error [7]. In addition,

this measure has several useful mathematical properties that not all distribution comparison

methods have. For example, the Bhattacharyya coefficient makes use of the summed unity

structure of distributions, unlike Lp-based match measures, it is bounded below by zero and

above by one [4], where zero indicates no overlap and one indicates a perfect match between

the two distributions, and the bounded nature of the Bhattacharyya coefficient makes it

robust to small outliers.

Kailath compared the Bhattacharyya distance with (Kullback-Leibler) divergence in [8],

and observed that the Bhattacharyya yields either better or equivalent results in all its tests.

In [2], various similarity measures: Bhattacharyya, Euclidean, Kullback-Leibler, and Fisher

are studied, analyzed, and compared to examine the effect of each measure when used in

image discrimination. The authors concluded that the Bhattacharyya distance is the most

effective among the ones studied. In [6], a study compared how different approaches measure

the similarity of image textures that are represented using distributions, the Bhattacharyya

coefficient generally outperformed the approaches that were considered.

In this report, we extend the usefulness of the Bhattacharyya coefficient for computing
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the similarity between two distributions to n-distributions, where n is a positive integer, by

defining the n-distribution Bhattacharyya coefficient, examining its properties, and visual-

izing its effects when applied to distributions of various types. We will begin by reviewing

some mathematical concepts in Chapter 2 that are needed to thoroughly understand the

formulation and proof of the n-distribution Bhattacharyya coefficient. In Chapter 3, we will

define the n-distribution Bhattacharyya coefficient and examine its properties. In Chapter

4, we will observe the effect of the Bhattacharyya coefficient when applied to various com-

binations of distributions by looking at concrete examples. Finally, we will close the report

with some concluding remarks of the n-distribution Bhattacharyya coefficient in Chapter 5.
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Chapter 2

Mathematical Background

In this chapter, we review some mathematical terminology, theorems, and claims that will

be used in the next chapter to prove the boundedness of an n-distribution Bhattacharyya

coefficient.

Definition 1. A real-valued function f is said to be concave over (a, b) if, for every

x, y ∈ (a, b) and 0 ≤ λ ≤ 1, the following inequality holds:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

The definition of a convex function is used more frequently, which states that −f is concave

if and only if f is convex. However, in this paper, the definition of a concave function has a

more practical use. Thus, the term concave is formally defined and will be used in subsequent

chapters.

Claim 1. Suppose f and g are non-decreasing real-valued positive concave functions.

Then its product f · g is also concave.

Proof. f and g are positive concave functions on (a, b) for x, y ∈ (a, b) and 0 ≤ λ ≤ 1 implies

f(λx+ (1− λ)y)g(λx+ (1− λ)y) ≥ [λf(x) + (1− λ)f(y)] [λg(x) + (1− λ)g(y)] .

By expanding the R.H.S. and adding −[λ(f · g)(x) + (1 − λ)(f · g)(y)] to both sides of the

inequality, we get

⇔ (f ·g)(λx+(1−λ)y)− [λ(f ·g)(x)+(1−λ)(f ·g)(y)] ≥ λ2(f ·g)(x)+λ(1−λ) [f(x) · g(y)]

+ λ(1− λ) [f(y) · g(x)] + (1− λ)2(f · g)(y)− [λ(f · g)(x) + (1− λ)(f · g)(y)].
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By collecting like-terms on the R.H.S. of the inequality, we further derive

⇔ (f · g)(λx+ (1− λ)y)− [λ(f · g)(x) + (1− λ)(f · g)(y)]

≥ [λ(λ− 1)][(f · g)(x)− f(x) · g(y)− f(y) · g(x) + (f · g)(y)].

Next, we can factor the R.H.S. of the inequality to achieve a more concise expression

⇔ (f ·g)(λx+(1−λ)y)−[λ(f ·g)(x)+(1−λ)(f ·g)(y)] ≥ [λ(λ− 1)][f(x)− f(y)][g(x)− g(y)].

Since f and g are non-decreasing functions (i.e. f(x)− f(y), g(x)− g(y) ≤ 0 ∀ x < y), the

product of their differences is non-negative. Together with the fact that 0 ≤ λ ≤ 1, we can

further abridge the R.H.S. of the inequality

⇒ (f · g)(λx+ (1− λ)y)− [λ(f · g)(x) + (1− λ)(f · g)(y)] ≥ 0.

By rearranging the inequality, we obtain an inequality that satisfies the definition of a concave

function

⇔ (f · g)(λx+ (1− λ)y) ≥ λ(f · g)(x) + (1− λ)(f · g)(y).

The concavity of the product of two concave functions will be a necessity to prove the bound-

edness of the Bhattacharyya coefficient for n-distributions in Chapter 3.

A Jensen’s inequality, named after a Danish mathematician Johan Jensen, relates the

convex function of an integral to the integral of the convex function. Loosely speaking, the

Jensen’s inequality states that the average of a convex function is greater than or equal

to the function of the average. As mentioned earlier, since concave functions will be more

convenient to use in this paper, we state the Jensen’s inequality formally with the reversed

inequality along with concave functions below.

Theorem 1. [Jensen’s Inequality] If f is a concave function, and
∑I

i=1 pi = 1 ∀ pi ≥ 0,

then
I∑

i=1

pif(xi) ≤ f

(
I∑

i=1

pixi

)
.

Proof. We begin the proof of the Jensen’s inequality by extracting the first term of the series
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inside the function

f

(
I∑

i=1

pixi

)
= f

(
p1x1 +

I∑
i=2

pixi

)
.

By multiplying the second term by
∑I

i=2 pi/
∑I

i=2 pi, we get

f

(
I∑

i=1

pixi

)
= f

(
p1x1 +

[
I∑

i=2

pi

][∑I
i=2 pixi∑I
i=2 pi

])
.

By setting λ = p1 = p1∑I
i=1 pi

, we have 1 − λ = 1 − p1∑I
i=1 pi

=
∑I

i=1 pi−p1∑I
i=1 pi

=
∑I

i=2 pi∑I
i=1 pi

=
∑I

i=2 pi.

We can apply the definition of a concave function using these substitutions such that

f

(
I∑

i=1

pixi

)
≥ p1f(x1) +

I∑
i=2

pif

(∑I
i=2 pixi∑I
i=2 pi

)
.

Likewise, we can extract p2x2 from the summation inside the latter function to get

f

(
I∑

i=1

pixi

)
≥ p1f(x1) +

I∑
i=2

pif

(
p2x2∑I
i=2 pi

+

∑I
i=3 pixi∑I
i=2 pi

)
.

Multiplying the second term inside the latter function by
∑I

i=3 pi/
∑I

i=3 pi and rearranging the

order of the terms gives us

f

(
I∑

i=1

pixi

)
≥ p1f(x1) +

I∑
i=2

pif

(
p2∑I
i=2 pi

x2 +

∑I
i=3 pi∑I
i=2 pi

∑I
i=3 pixi∑I
i=3 pi

)
.

By setting λ = p2∑I
i=2 pi

, we obtain 1−λ = 1− p2∑I
i=2 pi

=
∑I

i=2 pi−p2∑I
i=2 pi

=
∑I

i=3 pi∑I
i=2 pi

. Again, using the

definition of concave functions,

f

(
I∑

i=1

pixi

)
≥ p1f(x1) +

I∑
i=2

pi

[
p2∑I
i=2 pi

f(x2) +

∑I
i=3 pi∑I
i=2 pi

f

(∑I
i=3 pixi∑I
i=3 pi

)]
.

By cancelling the summation that appears in front of the square parenthesis, we obtain

f

(
I∑

i=1

pixi

)
≥ p1f(x1) + p2f(x2) +

I∑
i=3

pif

(∑I
i=3 pixi∑I
i=3 pi

)
.

We can continue extracting a term inside the series, set it to λ, then use the definition of

concave functions to obtain a linear combination of functions f(xi) with a coefficient of pi

for every i = 1, . . . , I.
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The Jensen’s inequality of concave functions will be used in the next chapter to prove the

boundedness of the n-distribution Bhattacharyya coefficient.
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Chapter 3

n-distribution Bhattacharyya

Coefficient

In this chapter, we define the n-distribution Bhattacharyya coefficient for n normalized

distributions, and state useful properties followed by a proof for each one.

3.1 Definition of the n-distribution Bhattacharyya Co-

efficient

The Bhattacharyya coefficient introduced by Bhattacharyya is a statistical measure that

evaluates the overlap between two normalized probability distributions [3]. Formally speak-

ing, for two normalized discrete distributions f and g (i.e.
∑

k f(xk) = 1 and
∑

k g(xk) = 1),

the Bhattacharyya coefficient is defined as:

B(f, g) =
∑
k

√
f(xk)g(xk).1

The Bhattacharyya coefficient is not to be confused with the Bhattacharyya distance, which

is defined as:

dB(f, g) = − lnB(f, g),

whereB(f, g) denotes the Bhattacharyya coefficient. The Bhattacharyya coefficient is bounded

above and below by 0 and 1, respectively, while its distance is not bounded above. That

is, 0 ≤ B(f, g) ≤ 1 and 0 ≤ dB(f, g) ≤ ∞ [8]. In this chapter, we extend the commonly

1In this paper, we use discrete distributions f(xk) and g(xk) where
∑

k f(xk) = 1,
∑

k g(xk) = 1. However,
the Bhattacharyya coefficient definition holds for two continuous functions f and g, which is defined as
B(f, g) =

∫ √
f(x)g(x)dx such that

∫
f(x)dx = 1 and

∫
g(x)dx = 1.
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used Bhattacharyya coefficient for a pair of distributions to a Bhattacharyya coefficient for

n-distributions, and demonstrate the boundedness through an analogous proof of the base

case.

Definition 2. Suppose f1, . . . , fn are real-valued functions such that
∑

k fi(xk) = 1 and

0 ≤ fi(xk) ≤ 1 ∀ i ∈ Z+. The n-distribution Bhattacharyya coefficient is defined as

B(f1, . . . , fn) =
∑
k

n

√√√√ n∏
i=1

fi(xk).

3.2 Properties of the n-distribution Bhattacharyya Dis-

tribution

In this section, properties of the n-distribution Bhattacharyya coefficient is established.

Specifically, the bounds of the coefficient will be examined. A proof of each property will

be provided, which will show that each property is a direct extension of the Bhattacharyya

coefficient in the case of two distributions.

Claim 2. 0 ≤ B(f1, . . . , fn) ≤ 1 for ∀ fi such that
∑

k fi(xk) = 1 and 0 ≤ fi(xk) ≤ 1.

Proof. Lower-bound: 0 ≤ B(f1, . . . , fn)

Since fi ≥ 0 ∀ xk, the product of fi is non-negative, and its n-th root also remains non-

negative:
n
√
f1(xk) · . . . · fn(xk) ≥ 0 ∀ xk, fi.

Furthermore, the sum of non-negative values yield a non-negative value:

B(f1, . . . , fn) =
∑
k

n
√
f1(xk) · . . . · fn(xk) ≥ 0.

Thus, the n-distribution Bhattacharyya coefficient is non-negative.

Upper-bound: B(f1, . . . , fn) ≤ 1
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We will prove the claim via proof by induction. We begin the proof for the base case (n = 2):

B(f1, f2) =
∑
k

√
f1(xk)f2(xk).

By multiplying the product under the square root by f2(xk)/f2(xk) and simplifying, we get

B(f1, f2) =
∑
k

f2(xk)

√
f1(xk)

f2(xk)
.

Since f(x) =
√
x is a concave function,

∑
k f2(xk) = 1 and f2(xk) > 0 ∀ xk, we can apply

the Jensen’s inequality (Theorem 1) to obtain

B(f1, f2) ≤
√∑

k

f2(xk)
f1(xk)

f2(xk)
.

We can simplify the equation by cancelling the common term f2(xk) under the root to obtain

the inequality

B(f1, f2) ≤
√∑

k

f1(xk).

Since
∑

k f1(xk) = 1 by construction,

B(f1, f2) ≤ 1,

which proves the base case of the Bhattacharyya coefficient.

In the inductive case, we suppose the claim is true for n− 1. That is,

B(f1, . . . , fn−1) =
∑
k

n−1
√
f1(xk) · . . . · fn−1(xk) ≤ 1.

We implement a similar series of steps to prove the upper bound of the Bhattacharyya

coefficient for n-distributions:

B(f1, . . . , fn) =
∑
k

n
√
f1(xk) · . . . · fn−1(xk)fn(xk).
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By multiplying the product under the nth-root by
[
fn(xk)
fn(xk)

]n−1

then simplifying, we have

B(f1, . . . , fn) =
∑
k

fn(xk) n

√
f1(xk) · . . . · fn−1(xk)

[fn(xk)]n−1 .

The equation can be rewritten in the following form

B(f1, . . . , fn) =
∑
k

fn(xk)

{
[f1(xk) · . . . · fn−1(xk)]

1
n−1

fn(xk)

}n−1
n

.

Since f(x) = xn−1 and g(x) = x1/n ∀ n ∈ Z+ are non-decreasing positive concave functions,

by Claim 1, its product (f · g)(x) = x(n − 1)/n is also concave. Together with the given

condition,
∑

k fn(xk) = 1 and fn(xk) ≥ 0 ∀ xk, we apply the Jensen’s inequality to obtain

B(f1, . . . , fn) ≤

{∑
k

fn(xk)
[f1(xk) · . . . · fn−1(xk)]

1
n−1

fn(xk)

}n−1
n

.

Now, we can simplify the equation by cancelling the common term fn(xk) in the numerator

and in the denominator and combining the exponents such that

B(f1, . . . , fn) ≤

[∑
k

n−1
√
f1(xk) · . . . · fn−1(xk)

]n−1
n

.

Next, by inductive hypothesis, we know that the term inside the parenthesis is less than or

equal to 1. Thus,

B(f1, . . . , fn) ≤ [1]
n−1
n = 1.

Therefore, we can conclude that the upper-bound of the Bhattacharrya coefficient for calcu-

lating the overlap of n-distributions is 1.

Next, we examine the meaning of these values when applied to measure the overlap of

n distributions. The simplest way to determine what each bound refers to would be to

consider the two most extreme cases: n distributions with no overlap and n distributions

with perfect overlap. We will explore these two cases in the next two remarks.

Remark 1. For any pair of real-valued functions fi, fj ∈ {f1, . . . , fn} that are orthog-

onal, the n-distribution Bhattacharyya coefficient containing the orthogonal functions is
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equal to 0. That is, if fi ∩ fj = ∅ then B(f1, . . . , fn) = 0.

Proof. By the definition of an n-distribution Bhattacharyya coefficient, we have

B(f1, . . . , fn) =
∑
k

 n

√√√√ n∏
i=1

fi(xk)

.

Expanding the product yields

B(f1, . . . , fn) = n
√
f1(x1) · . . . · fn(x1) + · · ·+ n

√
f1(xk) · . . . · fn(xk).

Since fi and fj do not overlap, we have fi(xk) · fj(xk) = 0 ∀ xk (i.e. the product of any two

non-overlapping functions is 0). Then the product under each nth root is zero:

B(f1, . . . , fn) =
n
√

0 + · · ·+ n
√

0.

The zero under each nth root remains zero, and the sum of these terms yield zero:

B(f1, . . . , fn) = 0.

Therefore, the n-distribution Bhattacharyya coefficient is 0 if fi ∩ fj = ∅ for any i, j ∈
{1, . . . , n}.

Remark 2. If all functions are the same, then the n-distribution Bhattacharyya coeffi-

cient is equal to 1.

Proof. By the definition of an n-distribution Bhattacharyya coefficient, we have

B(f1, . . . , fn) =
∑
k

{
n
√
f1(xk) · . . . · fn(xk)

}
.

Since fi are the same ∀ 1 ≤ i ≤ n (i.e. f1 = . . . = fn), the product under the root can be

rewritten into a single term with an exponent:

B(f1, . . . , fn) =
∑
k

{
n

√
[f1(xk)]n

}
.

Using the properties of exponents, we can cancel the exponent n and the n-th root to obtain

B(f1, . . . , fn) =
∑
k

f1(xk).
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By construction, the sum of all k values of a function f1 is 1:

B(f1, . . . , fn) = 1.

Thus, the n-distribution Bhattacharyya coefficient of n distributions that are the same is

1.
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Chapter 4

Illustrative Examples

In this chapter, we provide illustrative examples of the n-dimensional Bhattacharyya coef-

ficient. We begin with examples of two distributions with perfect overlap, no overlap, and

some overlap. To observe how the value of the n-distribution Bhattacharyya coefficient is

affected with n-distributions, examples containing more than two distributions will follow.

In Figure 4.1a, it can be seen that taking the root of the product of two identical functions

in its respective bins yield a distribution that is the same as the original function. Ergo,

the bins sum to one by construction. On the contrary, the product of two non-overlapping

distributions (as in Figure 4.1b) is zero at each bin, x, yielding a cumulative sum of zero.

Hence, the Bhattacharyya coefficient of two non-overlapping distribution is 0 and two iden-

tical distributions is 1 as outlined in Remark 1 and Remark 2, respectively.

In Figure 4.2, we illustrate how the value of the Bhattacharyya coefficient is affected

in areas with overlap for two distributions. In regions where there is overlap, namely bins

1 ≤ x ≤ 3 and 7 ≤ x ≤ 9, the square root of the products are greater than zero, which

contributes to the cumulative sum of the Bhattacharyya coefficient. However, the product

of the non-overlapping regions, 4 ≤ x ≤ 6, equal zero. This prevents the sum from accumu-

lating to its maximum value of 1.

In Figure 4.3a, Figure 4.3b, and Figure 4.4, we demonstrate the effect of comparing

3 distributions using the n-distribution Bhattacharyya coefficient. Figure 4.3a depicts the

importance of overlap in all distributions to obtain a Bhattacharyya coefficient greater than

zero. That is, although distribution f (blue) overlap distributions g (red) and h (black),

since there is no overlap between g and h, the product of the three distributions is zero

in all its bins x. This causes the n-distribution Bhattacharyya coefficient to remain at
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a value of zero as outlined in Remark 1. However, if there is some overlap between the

distributions (as in Figure 4.3b), then the overlapping regions contribute to the cumulative

sum yielding a Bhattacharyya coefficient value that is greater than zero. In Figure 4.4, we

illustrate explicitly that the measure is not limited to unimodal distributions (a curve with

one maximum), but can be applied to multi-modal distributions (distributions with multiple

maxima). Again, it is only the regions where there is overlap, namely 2 ≤ x ≤ 3 and x = 7

in Figure 4.4, that contribute to the sum in the n-distribution Bhattacharyya coefficient.

x f(x) g(x)
√
f(x)g(x)

0 0.0050 0.0050 0.0050
1 0.0200 0.0200 0.0200
2 0.0250 0.0250 0.0250
3 0.0500 0.0500 0.0500
4 0.2 0.2 0.2
5 0.4 0.4 0.4
6 0.2 0.2 0.2
7 0.05 0.05 0.05
8 0.0250 0.0250 0.0250
9 0.02 0.02 0.02
10 0.005 0.005 0.005∑

x 1 1 1

(a) Two distributions with perfect overlap.

x f(x) g(x)
√
f(x)g(x)

0 0 0 0
1 0.01 0 0
2 0.04 0 0
3 0.25 0 0
4 0.4 0 0
5 0.25 0 0
6 0.05 0 0
7 0 0 0
8 0 0.15 0
9 0 0.7 0
10 0 0.15 0∑

x 1 1 0

(b) Two distributions with no overlap.

Figure 4.1: Bhattacharyya coefficient illustration for two distributions.
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x f(x) g(x)
√
f(x)g(x)

0 0 0 0
1 0.075 0.05 0.0612
2 0.35 0.23 0.2837
3 0.075 0.05 0.0612
4 0 0.085 0
5 0 0.17 0
6 0 0.085 0
7 0.075 0.05 0.0612
8 0.35 0.23 0.2837
9 0.075 0.05 0.0612
10 0 0.0 0∑

x 1 1 0.8124

Figure 4.2: Two non-unimodal distributions with some overlap.
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x f(x) g(x) h(x) 3
√
f(x)g(x)h(x)

0 0 0 0 0
1 0 0 0 0
2 0.01 0.15 0 0
3 0.04 0.7 0 0
4 0.25 0.15 0 0
5 0.4 0 0 0
6 0.25 0 0.15 0
7 0.05 0 0.7 0
8 0 0 0.15 0
9 0 0 0 0
10 0 0 0 0∑

x 1 1 1 0

(a) Three distributions with no overlap.

x f(x) g(x) h(x) 3
√
f(x)g(x)h(x)

0 0 0 0 0
1 0 0 0 0
2 0.01 0 0 0
3 0.04 0.15 0 0
4 0.25 0.7 0 0
5 0.4 0.15 0.15 0.2080
6 0.25 0 0.7 0
7 0.05 0 0.15 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0∑

x 1 1 1 0.2080

(b) Three distributions with some overlap.

Figure 4.3: Bhattacharyya coefficient illustration for three distributions.
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x f(x) g(x) h(x) 3
√
f(x)g(x)h(x)

0 0 0 0 0
1 0.075 0.05 0 0
2 0.35 0.23 0.01 0.0930
3 0.075 0.05 0.04 0.0531
4 0 0.085 0.25 0
5 0 0.17 0.4 0
6 0 0.085 0.25 0
7 0.075 0.05 0.05 0.0572
8 0.35 0.23 0 0
9 0.075 0.05 0 0
10 0 0 0 0∑

x 1 1 1 0.2034

Figure 4.4: Three non-unimodal distributions with some overlap.
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Chapter 5

Conclusion

In this report, we extended the widely used Bhattacharyya coefficient, which compares two

normalized distributions, to n normalized distributions. Similar to the Bhattacharyya co-

efficient of two distributions, the n-distribution Bhattacharyya coefficient is bounded by 0

and 1. The n-distribution Bhattacharyya coefficient is more sensitive to overlaps. That is, if

there are any pairs of non-overlapping distributions, then the n-distribution Bhattacharyya

coefficient will have a value of zero. Similar to the Bhattacharyya coefficient for two distri-

butions, more overlap amongst the distributions yield a Bhattacharyya value closer to 1, and

a perfect overlap between the distributions yield a value of exactly 1. The measure is not

limited to unimodal distributions, but can be applied to multi-modal distributions, provided

that the distributions are normalized.
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