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Abstract

Glia cells are increasingly suspected of having an information processing role in the

nervous system, however, it is not clear what their precise role could be. Based on the

intracellular Ca2+ wave mechanics of astrocytes, we derive a capability of astrocytes to

encode information probabilistically, and we present their effect on neural networks as

Bayesian inference over synapse parametrization, analogous to Markov Chain Monte

Carlo (MCMC) sampling. The proposed framework suggests a Bayesian nature at the

cellular level in the neocortex. We also make an argument that astrocytes have a central

role in learning for a new behavior, and shaping neural networks for this new behavior.



1 Introduction

Glia cells are increasingly suspected of having an information processing role in the ner-

vous system (Perea et al., 2014; Clarke and Barres, 2013). However, it is not clear what

their precise computational role could be. There have been some particularly telling

findings in the past several years in terms of behavior and astrocytes, which are the

principal type of glia in the neocortex. Han et al. (2013) demonstrated that engrafting

human astrocyte progenitor cells in neonatal mice, improves learning and memory. Lee

et al. (2014) showed that selectively disabling astrocyte communication without affect-

ing neurons, prevents mice from paying particular attention to only novel object in their

environment. In terms of biology, findings have accumulated in the last decade about

the bi-directional relationship of astrocytes with neural synapses, prompting the devel-

opment of the tripartite synapse perspective (Volterra et al., 2002; Araque et al., 1999).

Clarke and Barres (2013) explain how astrocytes ”powerfully control every stage of

synapse formation, maturation and elimination and that they ”can no longer be thought

of as passive support cells”.

The change in perspective on astrocytes can be intuitively shared when one consid-

ers the updated physical image of astrocytes. Old imaging techniques did not capture

the finer arborization of astrocytes and revealed only about 15% of their cell volume, in

star-like shapes which gave them their name (Haber and Murai, 2005). New imaging

techniques show that what was thought to be a star-like cell, is actually a much larger

meshed ball, engulfing millions of synapses in discreet micro-domains, each under the

control of a single astrocyte.

Perea et al. (2014) define three aspects required for an information processing role,
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and elaborate how astrocytes satisfy all of them: they receive incoming information,

integrate and code information in a way that is not a side-effect of neural processing,

and transmit the results to other cells. The fact that astrocytes form a bi-directional

feedback loop with neural networks, and that neural networks have a known information

processing function, also suggests that astrocyte participate in that function.

Based on the intracellular Ca2+ wave mechanics of astrocytes, we derive a capa-

bility of astrocytes to encode information probabilistically, and we present their effect

on neural networks as Bayesian inference over synapse parametrization, analogous to

Markov Chain Monte Carlo (MCMC) sampling. The proposed framework suggests a

Bayesian nature at the cellular level in the neocortex. We also make an argument that as-

trocytes have a central role in learning for a new behavior, and shaping neural networks

for this new behavior.

Our framework is conjectural because it is based on previous findings and theoret-

ical derivations. However, we believe that there is enough support by now to raise at-

tention, and that the possible implications warrant further verification and improvement

by others. By following this framework we developed a model for Bayesian neural net-

works which has unique advantages for incremental learning and scalability (Dimkovski

and An, 2015).

In section 2 we discuss an idea that astrocytes provide ongoing brain rebuilding

based on experience. In section 3 we discuss how wave dynamics can encode mem-

ory and probability density functions, and present the idea of astrocytes as Bayesian

inference agents. Section 4 reviews some related models, and section 5 ends with a

conclusion.
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2 Shaping Neural Networks For New Experience

In order for astrocytes to have a central role in learning and to shape neural networks

based on this role, the following relationships should exist: impairing astrocytes has

to impair learning without affecting recognition of existing knowledge; developmental

and evolutionary rise of astrocytes has to translate into better learning capacity which

cannot be attributed to other improvements such as better neurons; and astrocytes need

to be able to affect neural networks and the biochemical and genetic processes which

are know to be related to learning.

To begin with, glia create the neurons in all stages of life. During prenatal neuroge-

nesis, radial glia create the scaffolding over which neurons are positioned into columns

and layers (Ma et al., 2005). Radial glia are also the progenitor cells for cortical neurons

and astrocytes during this period. In adulthood, radial glia transform into astrocyte-like

neural stem cells that provide adult neurogenesis (Corty and Freeman, 2013). Seri et al.

(2001) identifies the neural stem cells more closely to astrocytes adult forms, and sug-

gest that astrocytes could also provide adult neurogenesis in the neocortex.

In addition to creating the neurons, glia also induce the creation of synapses and

their removal from the network (Allen et al., 2012; Corty and Freeman, 2013; Hay-

don, 2006). In perinatal development, radial glia initiate synapses by forming transient

neuron-glia synapses which result in neuron-neuron synapses later. Adult astrocytes

can remodel the neuropil in the hippocampus in a matter of minutes (Haber and Mu-

rai, 2005). As mentioned earlier, astrocytes partition the neuropil into functional is-

lands, called micro-domains, with an overlap of less than 5% (Nedergaard et al., 2003a).

Nakae et al. (2014) found through visual inspection that neurons also had a tendency to
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be under the domain of a unique glia cell. In summary, neural networks in the neocortex

can be seen as a three-dimensional array of discrete domains (Haber and Murai, 2005)

which are shaped and reshaped by astrocytes.

Astrocytes are not just passive neural network builders, because they form a feed-

back loop with the tripartite synapses under their micro-domains. For example, the

glutamate released by the presynaptic action potential also affects metabotropic glu-

tamate receptors on the astrocyte membrane which wraps the synapse, and through a

chain chemical reaction causes puffs of Ca2+ released from internal cellular stores.

These puffs can accumulate into Ca2+ waves across the whole astrocytes and even into

neighboring astrocytes through gap junctions. The Ca2+ waves, in turn, can trigger

release of neurotransmitters from inside the astrocyte into the synapse, affecting both

pre- and post-synaptic receptors (Wade et al., 2011). Other feedback of Ca2+ waves

include effects on spike-timing-dependent plasticity (ref), regulation of gene expres-

sion over months or years (Thul et al., 2009), and secretion of thrombospondins which

induce neurons to form synapses (Barres, 2008). Therefore, through the astrocyte, ac-

tivity of one synapse can considerably affect many remote synapses of the same or other

neurons.

The communication that happens across the tripartite synapse is not merely a side

effect of information processing in neural networks, because the information flow in-

side the astrocyte has considerably different spatial and temporal characteristics. While

neurons communicate in a point-to-point manner, with a specific peer, astrocyte com-

munication is of a broadcast nature. In addition, neural communication is on a scale of

milliseconds, where as intracellular astrocyte communication is on a scale of minutes,
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in some cases in excess of 15 minutes (Araque et al., 2001). The effect of astrocytes in

the tripartite synapse is also of a longer temporal scale compared to neural synapse ef-

fects. For example, astrocytes cause ”a slow inward current (SIC), which has a rise time

of 60 ms and a decay time of 600 ms, and is thus very different from the classical exci-

tatory postsynaptic current (EPSC) (6.4 ms and 10 ms rise and decay time respectively)

(Wade et al., 2011).

Various findings suggest that the unique information processing of astrocytes is re-

lated specifically to learning. Lee et al. (2014) found that using a toxin, which selec-

tively disables astrocyte communication without affecting neurons, prevents mice from

spending extra time with a novel object in its environment as they would normally,

without affecting their behavior with familiar objects. Miranda et al. (2011) found that

experimental hampering of the calcium cellular mechanisms, crucial to glia, does not

affect memory retrieval, only memory formation. Another revealing finding is that the

effect of marijuana on memory is through astrocytes, not neurons (Han et al., 2012).

Mller and Best (1989) showed that injection of immature astrocytes into the visual cor-

tex of adult cats in vivo reopens the window of ocular dominance plasticity. Markham

and Greenough (2005) found that ”increased astrocytic volume can be inferred to arise

in association with learning-specific synaptogenesis, and not merely constitute a re-

sponse to a general increase in neural activity. A suggestion that glia’s role is not in

recognition of known knowledge is the fact that such recognition happens on the order

of hundreds of milliseconds (Thorpe et al., 1996), which is too fast for the glia dynam-

ics. Han et al. (2013) engrafted human glia progenitor cells in neonatal mice, which

later developed in hominid glia in the mature mouse. A hominid astrocyte is consid-
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erably larger and more complex than murine astrocyte, and covers 2 millions synapses

in its territorial domain, compared to the 20,000 to 120,000 synapses of a murine as-

trocyte. In addition hominid astrocytes communicate faster. Mice with hominid glia

showed improved learning and memory, assessed by Barnes maze navigation, object-

location memory, and both contextual and tone fear conditioning.

The learning function of astrocytes has been related specifically to long-term mem-

ory. Orr et al. (2015) found that tampering with a certain receptor on astrocytes affected

only long-term memory formation, while other functions remained unaffected. Chen

et al. (2012) also show that disabling astrocytes prevents only long-term memory for-

mation. As discussed above, it is astrocyte-like cells, if not astrocytes themselves, that

enable adult neurogenesis. The two places that are widely acknowledged to host adult

neurogenesis are the subgranular zone and the subventricular zone (Grabel, 2012), and

in both the newly produced neurons are implicated in long-term memory formation

(Sultan et al., 2011).

Glia have been associated with less stereotypical and more challenging behavior. In

their study of C. Elegans, Oikonomou and Shaham (2011) find it ”...striking that only C.

Elegans head muscles form partnerships with glia. These muscles mediate fine motor

behaviors that are less stereotypical than the undulations produced by body wall mus-

cles, perhaps explaining the need for glial companionship.” Hartline (2011) notes that

between the evolutionary branches of some of the earliest taxa to develop glia, or even

between stages of their metamorphosis, loss of glia is related to less active lifestyle. For

example, urochordates have glia in the roaming (larva) stage but lose it in the seden-

tary adult phase. The author does point that the evidence is not equivocal. Bacaj et al.
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(2008) found that glia-ablated C.Elegans fails to adjust its behavior and migrate to its

cultivation temperature, and it does not do chemotaxis or long-range avoidance, even

though its sensory and basic movement capability remains normal. Chemotaxis and

long-range avoidance require the ability to adjust behavior depending on whether the

situation is improving. Markham and Greenough (2005) note that astrocytes ensheath

synapses more in response to a complex environment. Evolutionary, the ratio of as-

trocytes to neurons increases progressively with a perceived capacity for intelligence.

The exact ratios vary from brain region to region and are difficult to estimate, but some

example figures show it increases from about 0.05 in leeches, 0.2 in frogs, 0.4 in rats,

1.2 in cats, to 1.5 in humans (Nedergaard et al., 2003b).

The above findings support the requisite relationship we identified at the begin-

ning of the section: astrocyte create and change neural networks, impairing astrocytes

impairs learning for new experience without affecting behavior based on previous ex-

perience or genetic inheritance, and addition of glia (evolutionary, engrafting, or de-

velopmental) results in improved adaptability. Astrocytes appear to provide ongoing

brain rebuilding based on experience, continuing the work of their perinatal progeni-

tors (such as radial glia) which initially build the neocortex. In other words, astrocytes

appear to continuously shape neural networks for newly learned behavior. A similar

proposal was also made by Markham and Greenough (2005), where based on histologi-

cal studies they ”speculate that astrocytic changes might be necessary to induce, but not

to maintain, adaptive changes in the brains wiring diagram in response to experience.
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3 Ca2+ Waves, Synapses, and Bayesian inference

In order for astrocytes to learn within their micro-domains, the crucial Ca2+ wave dy-

namics inside the astrocytes has to be related to ability to encode and process infor-

mation. De Pitt et al. (2009) and Wade et al. (2011) present studies on such ability by

combining various dynamical system models of neurons, Ca2+ waves, and synapses.

Using their composite models, they describe information encoding capability in the

Ca2+ wave mechanics in terms of bifurcations, amplitude and frequency modulation,

and oscillatory properties. For example, Wade et al. (2011) show that activity from one

synapse can induce plasticity at other remote synapses on the astrocyte. These studies,

however, simulate a few units and few synapses due to their complexity, and are not

very informative about macro computational properties.

There are some intuitive examples in physics which link wave mechanics to infor-

mation encoding. Eddi et al. (2011) show one such example with a bouncing droplet

coupled to a vibrating fluid surface. When the vibrating amplitude becomes comparable

to gravity, the droplet can bounce indefinitely. If the vibrating amplitude approaches the

Faraday instability threshold the droplet couples to a pilot” wave and starts moving with

it. With every bounce, the droplet causes ripples, which interfere with ripples from pre-

vious activity and create a path memory. At the point of next contact, the path memory

in turn reads out” the droplets next movement. The authors point out the interpretation

in terms of information encoding: ”The dual nature ... is contained in the path memory

dynamics: the wave nature lies in the coding while the particle nature lies in the reading.

Such a memory functionality, based on wave mechanics with a coupled point pro-

cess, has been found also in other domains. In a study of crack propagation in physical
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medium, Goldman et al. (2010) note how the crack tip progression can be dominated by

memory from superimposed elastic waves it caused in the past, reflected from bound-

aries and inhomogeneous zones.

If a parallel is drawn with astrocytes, then a tripartite synapse can be described

as coupled point process to the Ca2+ wave dynamics inside the astrocyte. In such a

perspective, the Ca2+ waves can be seen as coding information based on perturbations

from connected synapses, while Ca2+ wave effect on the synapse can be seen as a read-

out of the coded information. The longer time frame and cumulative nature of Ca2+

waves allows for many synapse interaction to accumulate in the memory it represents.

The above perspectives for information coding and decoding with wave mechanics,

provide valuable intuition. However, they are based fully on deterministic wave mod-

eling, which is done through simulation of differential equations for minute physical

properties. Seeking a more practical approach to modeling computation, we turn to a

probabilistic interpretation of wave dynamics. A well-studied example of that nature is

the Copenhagen interpretation of quantum mechanics, where Schroedingers wave equa-

tion is interpreted probabilistically, by relating it to the concept of a probability current,

derived from fluid mechanics.

In fluid mechanics the concept of current j is described by the continuity equation:

∂ρ

∂t
= −∇ · j, (1)

which is characteristic when there is some physical quantity Q which moves contin-

uously and is conserved (Kroemer, 1994). Known types of Q include dissolved ions,

which is the case of Ca2+ ions inside the astrocyte. ρ is the density of Q, i.e. the

quantity in a unit volume, t is the time of change, j is the current (sometime called flux)
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which a vector field which tells how much Q passed through a unit area in the cross-

section perpendicular to j in a unit time, and ∇ is the divergence of j. In summary, j

describes how density changes in a unit volume.

The probability of finding a Ca2+ ion in a specific location is proportional to its

density ρ in that location. In addition, probability is also conserved because its integral

is always 1. Therefore, a probability current can be defined in the same form as Eq.(1),

as follows:

∂P

∂t
=
α(∂ρ)

∂t
= −α(∇ · jρ) = −∇ · jP , (2)

since divergence is a linear operator. α is the proportionality constant, and jP is the

probability current.

Given the probability current we can get the probability by integrating across a

cross-section and time (Kroemer, 1994). Therefore, the probability PA that a Ca2+ ion

inside the astrocyte affects a specific surface on the astrocyte membrane ∆S during ∆t

is:

PA =

∫
∆t

[∫
∆S

jP · dS
]
dt. (3)

Eq.(3) above explains how changes in density of Ca2+ ions, caused by activity of

the tripartite synapses, can translate into a probability density function PA. PA repre-

sents wave memory encoded by the astrocyte due to historical activity in its associated

neural network. Because a tripartite synapse interface within ∆S enacts the informa-

tion reading of wave memory, a synapse is in effect sampled from PA. Therefore, if

the neural network in the astrocyte micro-domain is parametrized by a set of synapses

s = {s1, s2, . . . }, and the data processed by this neural network is D, then P (s|D) ≡ PA.

In summary, the processing of data D builds PA over time, which then parametrizes the
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current neural network as P (s|D).

In order to use Eq.(3) in that form we need to be able to get the probability current

jP of the Ca2+ waves. This can theoretically be accomplished with any mathemati-

cal model for ∂Ca2+/∂t, because Ca2+ is proportional to its density ρ, and using a

derivation similar to Eq.(2) we can get, with some other proportionality constant β:

∂Ca2+

∂t
= −β(∇ · jP ). (4)

Doing inverse divergence to get jP from Eq.(4) is not trivial. We use the ∂Ca2+/∂t

models only borrow support for conditional independence of the tripartite synapses,

which then lets us frame a more practical framework. In particular, Wade et al. (2011)

use a ∂Ca2+/∂t model which describes the change of Ca2+ levels inside an astrocyte

and around the interface to a single tripartite synapse si, and describes how individual

puffs of Ca2+, around the synapse interface, remain mostly self-contained, and how

their intra-cellular propagation effect is caused by cascade activation of puffs in neigh-

boring areas. Therefore, we use Eq.(3) and Eq.(4) as the foundation for a conditional

probability distribution P (si|s−i,D) of a single synapse given the state of all other

synapses and the processed data.

The order in which synapses are updated is determined by how the Ca2+ wave

interacts with the astrocyte membrane on the inside. The update order can be described

as stochastic, since at worst it is pseudorandom due to the chaotic interaction patterns of

the wave and the membrane, or it could be random due to randomness in the biological

processes that underpin it. For simplicity, we can assume a single synapse updating at

one time, by considering an arbitrary level of precision in measuring the update time.

This view can be extended to blocks of synapses updating simultaneously.
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The effect of the astrocyte on its tripartite synapses can now be described as contin-

ually updating them one by one in a stochastic order, by sampling the parametrization

of each synapse si from P (si|s−i,D) during each update. Since each update conditions

on the current state of all other synapses, the states of all synapses are continually in-

terpolated across the astrocyte. This update process is equivalent to Gibbs sampling

(Gelman, 2014), which is a Bayesian inference method which guarantees that the sam-

pled synapse states, each from its conditional distribution P (si|s−i,D), will all together

asymptotically converge to the joint distribution P (s|D), regardless of the initial states

of the synapses. At the core of this Bayesian inference is the relationship:

P (s|D) ∝ P (s)P (D|s), (5)

where the prior and posterior are based to the astrocyte and the likelihood in the neural

network.

A biologically plausible framework must describe how continually streaming data

from the environment are incrementally processed, i.e. it must not require the explicit

storage of all the data seen. The wave memory encoding discussed earlier integrates

previous data into the Ca2+ current j, i.e. at time t − 1, j(t−1)represents the effect of

all D(t−1) = {D1, D2, . . . , Dt−1}, and can be thought of a surrogate sufficient statistics

for them. The difference between P (t)
A and P (t−1)

A as per Eq.(3) should be describable

using only Dt. Therefore, any model implementing the proposed glia framework needs

a Bayesian inference setup where only Dt is used for the likelihood. In the case of

Gibbs sampling this means we would need a conditional probability distribution of

the form P (si|s−i, Dt) instead of P (si|s−i,D). Guhaniyogi et al. (2014) show how

standard Gibbs sampling, which requires all the previous data, can be modified for
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incremental use by integrating sufficient statistics ξ(t−1) from previous data D(t−1) into

P (si|s−i, Dt, ξ
(t−1)) . In such cases, an empirical Bayesian relationship can then be

expressed as:

P (si|s−i, Dt, ξ
(t−1)) ∝ P (si|s−i, ξ(t−1))P (Dt|s). (6)

This equation implies several points: that the astrocyte encodes internally an empirical

prior for the neural network parametrization, learned from previous data; that the like-

lihood needed for inference is contributed by the neural network activity P (Dt|s) over

the tripartite synapses into the astrocyte; and that the result of the Bayesian inference

acts back on the neural network over the tripartite synapse as parametrization samples

from the posterior.

In Gibbs sampling implementations, the prior and the likelihood are not explicit

because they are normally subsumed through conjugate relationships into the poste-

rior which is directly sampled. In our implementation of this glia framework we used

feed-forward neural networks with sigmoidal McCullochPitts neurons, whose likeli-

hood function does not offer obvious conjugate setup needed for Gibbs sampling. In-

stead, we extended Metropolis-Hastings (Gelman, 2014), which is a more general form

of Gibbs sampling, to an incremental form.

Our Incremental Metropolis-Hastings (IMH) gives an incremental MCMC which

recursively uses the previous posterior as a new prior through kernel density estima-

tions, and only the last data Dt. IMH is a standalone Bayesian inference method, pub-

lished in a separate paper (Dimkovski and An, 2015) where we do not talk about glia,

but presents only computational properties and performance results on machine learn-

ing datasets. Similarly, the glia framework we propose here does not depend on IMH as
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it could be implemented in other ways, and in various proportions between practicality

and biological fidelity. For example, using more realistic spiking neurons might extend

work such as (Rao, 2004; Deneve, 2005) to further develop the framework.

4 Related Work

All the models we are aware of are deterministic and without Bayesian aspects. Some

models do not present astrocytes as encoding information. Porto-Pazos et al. (2011)

add to each neuron one astrocyte unit which activates when the neurons connection are

highly active and then causes additional and gradual increase of the neurons connection

weights over a longer period (4-8 iterations), or if the astrocyte is not active it decreases

the weights gradually. In effect, this model equates astrocytes with long-term poten-

tiation (LTP) and depression (LTD) of a transient type (without permanent changes).

Ikuta et al. (2011) similarly add to each neuron one astrocyte unit which activates when

the neuron is highly active, and spreads an impulse throughout the network stimulating

neurons additionally, in a form of broadcast LTP/LTD, also transient, acting on remote

neurons in the network.

We believe that a simple and transient LTP/LTD role for astrocytes is overly simpli-

fied, and that any LTP/LTD related to astrocytes, especially late phase type (permanent),

is an outward, local, and partial manifestation of the long-term memory encoding done

by astrocytes. LTP/LTD was defined from a neuron-only perspective, before the role

of astrocytes was being considered. Wallace and Bluff (1995) discusses shortcomings

of a neuron-centric LTP, and discusses, in terms of biochemistry, how astrocytes can
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broaden the idea of LTP for multiple and longer time scales, and selective action on

different neurons.

Models which consider astrocytes as encoding information, approach the problem

through the internal wave dynamics of astrocytes. Reid and Barrett-Baxendale (2008)

propose that information is encoded through Ca2+ wave propagation and interference

patterns triggered by neural activity, and that it could act in return on the neural net-

work to change the post-synaptic potential and refractory period, and add new synapses.

However a formal complete model is left as future work.

5 Conclusion

Tenenbaum et al. (2011) note how Bayesian inference quickly becomes a suspect for

explaining how the brain works, when we consider how it learns and generalizes too

fast and beyond what only the latest relevant data allow for, and they point to the need

for some ”abstract background knowledge” which must be present at all time. The

challenges for Bayesian brain theories are in explaining how the involved probability

distributions are learned, stored, and utilized. Existing theories often use single-point

approximations to probability distributions (such as MAP), which is a problem when

learning with recent data only. The principal challenge however is explaining the low-

level physical foundation. Existing theories mostly address this question on higher

conceptual levels, such as the computational and algorithmic Marr’s (1982) levels. Few

theories tackle the question on the physical level in terms of cellular processes. Tenen-

baum et al. (2011) note that uncovering a physical basis of Bayesian inference in the
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brain remains an open challenge.

Our Bayesian brain framework is rooted as low as the intracellular Ca2+ waves in

astrocytes and the biochemistry of tripartite synapses, and it models probability dis-

tributions holistically through MCMC samples, not though single-point estimates. The

framework proposes how Bayesian priors can be encoded at the cellular level, and serve

as the inductive bias which continually biases neural networks towards a background

knowledge based on long-term memory. Such biasing can facilitate detection of novelty,

when the immediate stimulus deviates from the background knowledge. A key point

is that the background knowledge can be updated through Bayesian inference, which

suggests that astrocytes enable an organism to prosper in challenging and changing en-

vironments, by providing brain rebuilding into adulthood based on experience. We also

show that the proposed framework can be abstracted in forms which are practical for

machine learning, which do not require complicated biophysical modeling.
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