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Abstract—High utility sequential pattern mining has emerged
as an important topic in data mining. Although several pre-
liminary works have been conducted on this topic, the existing
studies mainly focus on mining high utility sequential patterns
(HUSPs) in static databases and do not consider the streaming
data. Mining HUSPs over data streams is very desirable for many
applications. However, addressing this topic is not an easy task.
First, streaming data come continuously in high speed and the
mining result should be instantly available when users request
it. Second, we need to overcome the problem of combinatorial
explosion of a large search space. Third, pruning search space for
HUSP mining is difficult because the downward closure property
does not hold for the utility of sequences. In this paper, we propose
a new framework for mining high utility sequential patterns over
data streams, which has not been explored previously. A novel
data structure named HUSP-Tree is proposed to maintain the
essential information for mining HUSPs. HUSP-Tree can be easily
updated when new data arrive and old data expire in a data
stream. An efficient and single-pass algorithm named HUSP-
Stream is proposed to generate HUSPs from HUSP-Tree. When
data arrive at or leave from a sliding window, HUSP-Stream
incrementally updates HUSP-Tree online to find HUSPs based
on previous mining results. HUSP-Stream uses a new utility
estimation model to more effectively prune the search space.
Experimental results on real and synthetic datasets show that
our algorithm outperforms the state-of-the-art algorithms and
serves as an efficient solution to the new problem of mining high
utility sequential patterns over data streams.

I. INTRODUCTION

Even though frequent sequential pattern mining plays an
important role in many data mining applications [13], in the
traditional sequential pattern mining the number of occurrences
of an item inside a transaction (e.g., quantity) is ignored in the
problem setting, so is the importance (e.g., unit price/profit)
of an item in the databases. Thus, not only some infrequent
patterns that bring high profits to the business may be missed,
but also a large number of frequent patterns having low selling
profits are discovered. Motivated by these limitations, high
utility sequential pattern (HUSP) mining has emerged as a
novel research topic in data mining recently [2], [3], [16], [19].

In HUSP mining, each item has a weight (e.g., price/profit) and
can appear more than once in any transaction (e.g., purchase
quantity), and the goal is to find sequences whose total utility
in the database is no less than a user-specified minimum utility
threshold.

On the other hand, in recent years, many applications such
as customer transactions in retail business, sensor networks
and users web click streams in web applications generate huge
volumes of data as streams [11]. Streaming data is considered
as one of the main sources of big data. A significant part of
such data is volatile, which means it needs to be analyzed in
real time as it arrives. Mining big data streams faces three main
challenges [11]: volume, velocity and volatility. Although tradi-
tional batch oriented systems such as MapReduce (i.e.,Hadoop)
are able to scale-out and process very large volumes of data in
parallel, they may suffer from the significant latency problem.
Data stream mining is a research field to study methods for
extracting knowledge from high-velocity and volatile data.
Although a few studies have been proposed for HUSP mining
[2], [3], [16], [19], existing studies consider mainly static
databases. In this paper, we focus on finding HUSPs from
high-velocity and evolving data streams.

As an example, in a retail dataset, each customer has a
sequence of shopping transactions. In this dataset, a pattern
like {(Cereal,Milk)} is a frequent pattern, but its profit
is very low. However, the pattern {(Necklace,Ring)} is
much less frequent than {(Cereal,Milk)} but it often brings
much more profit. These profitable patterns address several
important questions in business area decisions such as how to
maximize revenue or minimize marketing or inventory costs.
Moreover, in reality, when a customer makes a new transaction,
the transaction should be appended to her purchasing history
sequence. Also at a time interval (such as one hour), there
may be many active customers who update their purchasing
sequences simultaneously. The effect of these transactions
should be reflected to the mining results. Therefore, real-time
additions, deletions and modifications of the transactions and
mining results are needed in the real world applications.



Although mining HUSPs over high-velocity data streams
is very desirable in many real-life applications, addressing this
topic is not an easy task due to the following challenges.
First, keeping all the data records in memory (even on disk)
is infeasible and real-time processing of each new incoming
record is required. On the other hand, once a data record is
removed, it is prohibitively costly to backtrack over previously
data records. Hence, how to efficiently discover HUSPs over
data streams by reading data records only once using limited
computing and storage capabilities is a challenging problem.
Second, the downward closure property[19] does not hold for
the utility of sequences. That is, the utility of a sequence
may be higher than, equal to, or lower than that of its
super/sub-sequences[3], [16], [19]. Thus, search space pruning
techniques that rely on the downward closure property cannot
be directly used for mining high utility sequential patterns.
Third, mining HUSPs over a data stream of sequences need to
overcome the large search space problem due to combinatorial
explosion of sequences. Since items with different quantities
and unit profits can occur simultaneously in any data record
of data streams, the search space is much larger and the
problem is much more challenging than mining HUSPs over
static databases. Fourth, comparing to mining HUSPs from
a static database, mining HUSPs over dynamic data streams
has far more information to track and far greater complexity
to manage. However, if an incorrect approach for tracking
information is used, it may result in some HUSPs being
pruned. Thus, how to effectively track the information of
HUSPs without missing any HUSP is a challenging problem.

In this paper, we address all of the above deficiencies and
challenges by proposing a new framework for high utility
sequential pattern mining over evolving data streams. This
problem has not been explored so far. The major contributions
of this work are summarized as follows. (1)We incorporate
the concept of stream mining into HUSP mining and formally
define the new problem of mining high utility sequential
patterns over data streams. (2) We propose two efficient data
structures named ItemUtilLists (Item Utility Lists) and HUSP-
Tree (High Utility Sequential Pattern Tree) for maintaining the
essential information of high utility sequential patterns over a
data stream. To the best of our knowledge, the ItemUtilLists
structure is the first vertical data representation for HUSP min-
ing over data streams that can be used to efficiently calculate
the utility of sequences. (3) We also propose a novel over-
estimate utility model, called Sequence-Suffix Utility (SFU)
model. We prove that SFU of a sequence is an upper bound of
the utilities of some of its super-sequences, which can be used
to effectively prune the search space in finding HUSPs. (4)
We propose a new one-pass algorithm called HUSP-Stream
(High Utility Sequential Pattern Mining over evolving Data
Streams) for efficiently constructing and updating ItemUtilLists
and HUSP-Tree by reading a transaction in the data stream
only once. (5)The effectiveness and efficiency of the proposed
algorithm are evaluated extensively on real and synthetic
datasets.

The remaining of the paper is organized as follows. In
Section II, we discuss related work. Section III provides
definitions and a problem statement. Section IV presents the
proposed algorithms and data structures. Experimental results
are shown in Section V. We conclude the paper in Section VI.

II. RELATED WORK

Mining sequential patterns in sequence databases was first
introduced by Agrawal et al [1]. A sequence is called se-
quential pattern or frequent sequence if its frequency in the
sequence database is no less than a user-specified support
threshold [1]. Sequential pattern mining has played an im-
portant role in data mining and many algorithms have been
proposed, e.g., GSP [17], SPAM [5] and PrefixSpan [14].
These algorithms can be generally categorized as using a
horizontal database (e.g., GSP) or a vertical representation
of the database (e.g., SPAM). A vertical representation has
the advantage of calculating frequencies of patterns without
performing costly database scans. Algorithms using vertical
representations perform better on datasets with dense or long
sequences than the ones using the horizontal format. Although
sequential pattern mining algorithms have been applied to
solve various real-world problems [9], they treat all items as
having the same importance/utility and assume that an item
appears at most once at a time point, which is not the case for
many applications.

High utility pattern (HUP) mining was proposed to address
this limitation, which finds patterns (itemsets or sequences)
whose utility is no less than a minimum utility threshold.
The utility of a pattern is defined in a way to consider both
the degree of importance of an item and its internal quantity
inside a transaction. Most of HUP mining algorithms (e.g.,
a 2-phase algorithm in [12], IHUP [4], UP-Growth [18]) find
high utility itemsets (HUIs) from a transaction database, where
the sequential ordering of itemsets is not considered. To con-
sider the sequential information, high utility sequential pattern
(HUSP) mining has been studied very recently. To the best
of our knowledge, only four studies (i.e., [2], [3], [16], [19])
have been conducted. The concept of HUSP mining was first
proposed by Ahmed et al [2], who defined an over-estimated
sequence utility measure, SWU , which has the downward
closure property, and proposed the UL and US algorithms for
mining HUSPs which use SWU to prune the search space.
UL is a level-wise candidate generation-and-testing algorithm
and hence involves mutiple scans of the database and generates
a large number of high-SWU candidate sequences. US uses a
pattern growth method inspired by PrefixSpan [14] to generate
all sequences whose SWU satisfies the utility threshold, and
then scan the database again to compute the exact utilities of
high-SWU sequences to find HUSPs. Shie et al. [16] proposed
a framework for mining HUSPs in a mobile environment. Their
algorithm can only handle sequences with a single item in each
sequence element. Ahmed et al. proposed efficient algorithms
for mining high utility access sequences from web log data
[3], which also only considered single-item sequences. Most
recently, Yin et al. [19] proposed the USpan algorithm for
mining HUSPs. They used a lexicographic tree to extract the
complete set of high utility itemset sequences and designed
mechanisms for expanding the tree with two pruning strategies.
However, one of the pruning strategies needs to be used after
candidate generation, which is not efficient. In addition, all of
the HUSP mining methods were designed for static datasets,
not for data streams.

Due to the widespread existence of data streams, stream
mining has become one of the most important and challenging
topics in data mining. Since a data stream is an unbounded,
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S1
{(a,2)(b,3)(c,2)} {(b,1)(c,1)(d,1)} {(c,3)(d,1)} {(b,1)(c,3)(d,2)} …

S2
{(b,4)} {(a,4)(b,5)(c,1)} …

S3
{(a,2)(b,5)(e,2)} …

SW1

SW2

Item a b c d e
Profit 2 3 1 4 3

(b) Profit Table

(a) A Data Stream of Itemset-Sequences

SID TID

Fig. 1. An example of a data stream of itemset-squences

fast, and dynamically-changing flow of data, a stream mining
algorithm is often required to process each data record only
once, and only the most recent or relevant data can be stored in
memory. Incremental learning from new data is also required
to provide fast response to the changes in data. Studies
[7], [10], [6], [16] have been conducted to mine frequent
sequential patterns over data streams. For example, Ho et
al. proposed IncSPAM [10] to find sequential patterns over
a data stream of itemset-sequences. Rassi et al. proposed the
SPEED algorithm [6] for mining maximal sequential patterns
over streaming data. Chang et al. proposed SeqStream [7] for
mining closed sequential patterns over data streams. However,
all these methods are for finding frequent sequential patterns
and some useful infrequent patterns with high utility may be
missed. So far, no study has been conducted to learn high
utility sequential patterns from data streams, which is more
challenging than finding frequent sequences due to the fact
that the sequence utility does not satisfy the downward closure
property.

In this paper, we will propose a framework for mining
high utility sequential patterns over data streams. As surveyed
above, no study was conducted to learn high utility sequential
patterns from data streams, which is more challenging than
finding frequent sequences over data streams and mining
HUSPs in static databases.

III. PROBLEM STATEMENT

Let I∗ = {I1, I2, · · · , IN} be a set of items. An itemset is
a set of distinct items. An itemset-sequence S (or sequence in
short) is an ordered list of itemsets 〈X1,X2, · · · ,XZ〉, where
Z is the size of S. The length of S is defined as

∑Z
i=1 |Xi|. An

L-sequence is a sequence of length L. A sequence database
consists of a set of sequences {S1, S2, ..., SK}, in which each
sequence Sr has a unique sequence identifier r called SID and
consists of an ordered list of transactions 〈Td1 , Td2 , ..., Tdn

〉.
A transaction Td in the sequence Sr is also denoted as Sd

r .

Definition 1: (Data stream) A data stream of itemset-
sequences (or data stream in short) DS = 〈T1, T2, ..., TM 〉
is an ordered list of transactions that arrive continuously in
a time order. Each transaction Ti ∈ DS (1≤i≤M) belongs to
a sequence of transactions. A data stream can thus also be
considered as a set of dynamically-changing sequences.

Figure 1 shows a data stream DS =
〈S1

1 , S2
1 , S3

2 , S4
1 , S5

2 , S6
3 , S7

1〉 with 7 transactions, each
belonging to one of three sequences: S1, S2 and S3.

Following, we define transaction-sensitive sliding window
which not only considers new sequences, also a new element
(e.g., item/itemset) can belong to an existing sequence.

Definition 2: (Transaction-sensitive sliding window)
Given a user-specified window size w and a data stream
DS = 〈T1, T2, ..., TM 〉, a transaction-sensitive sliding
window SW captures the w most recent transactions in
DS. When a new transaction arrives, the oldest one is
removed from SW . The i-th window over DS is defined as
SWi = 〈Ti, Ti+1, ..., Ti+w−1〉.

According to the definition, transactions in a sliding
window can belong to different sequences. Thus, a sliding
window is actually a sequence database that changes over
time. For example, in Figure 1, if the window size w is
set to 5, the first and the second windows over DS are
SW1 = 〈S1

1 , S2
1 , S3

2 , S4
1 , S5

2 > (which has 2 sequences)
and SW2 = 〈S2

1 , S3
2 , S4

1 , S5
2 , S6

3〉 (which has 3 sequences),
respectively.

Definition 3: (External utility and internal utility) Each
item I ∈ I∗ is associated with a positive number p(I), called
its external utility, representing, e.g., the unit profit of I . Also,
an item I in transaction Td has a positive number q(I, Td),
called its internal utility, representing, e.g., the quantity of I
in Td.

Figure 1 gives the external utility (e.g., profit) of each item
in DS in the profit table. The internal utility (e.g., quantity)
of an item in a transaction is shown in the transaction. For
example, q(e, T6) = 2.

Definition 4: (Utility of an item in a transaction) The
utility of an item I in the transaction Td of the sequence Sr

is defined as u(I, Sd
r ) = p(I) × q(I, Sd

r ).

Definition 5: (Utility of an itemset in a transaction) Given
itemset X ⊆ Td, the utility of X in the transaction Td of the
sequence Sr is defined as u(X,Sd

r ) =
∑

I∈X

u(I, Sd
r ).

Definition 6: (Transaction utility) The transaction utility
of transaction Sd

r ∈ DS is denoted as TU(Sd
r ) and computed

as su(Sd
r , Sd

r ).

For example, u(b, S1
1) = p(b)× q(b, S1

1) = 3× 3 = 9, and
u({bc}, S1

1) = u(b, S1
1) + u(c, S1

1) = 9 + 2 = 11. Therefore,
Transaction utility of S1

1 is TU(S1
1) = 2×2+3×3+1×2 = 15.

Definition 7: (Occurrence of a sequence α in a sequence
Sr) Given a sequence Sr = 〈Y1, Y2, ..., Yn〉 and a sequence
α = 〈X1,X2, ...,XZ〉 where Yi and Xi are itemsets, α occurs
in Sr (or α is a subsequence of Sr, denoted as α � β) iff there
exist integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that X1 ⊆
Ye1 ,X2 ⊆ Ye2 , ...,XZ ⊆ YeZ

. The ordered list of transactions
〈Ye1 , Ye2 , ..., YeZ

〉 is called an occurrence of α in Sr. α may
have multiple occurrences in Sr. The set of all occurrences of
α in Sr is denoted as OccSet(α, Sr).

For example, in Figure 1, the set of all occurrences of the
sequence 〈{ab}{c}〉 in S1 in SW1 is OccSet(〈{ab}{c}〉, S1),
is {〈S1

1 , S2
1〉, 〈S1

1 , S4
1〉}.

Definition 8: (Utility of a sequence α in a sequence
Sr) Let õ = 〈Te1 , Te2 , ..., TeZ

〉 be an occurrence of α =
〈X1,X2, ...,XZ〉 in the sequence Sr. The utility of α w.r.t. õ is



TABLE I. SUMMARY OF NOTATIONS

Notation Description
u(X, Sd

r ) Utility of item/itemset X in transaction Td of Sr

TU(Sd
r ) Utility of transaction Td of sequence Sr

α � β α is a subsequence of β, or α occurs in β
OccSet(α, Sr) Set of all the occurrences of α in sequence Sr

su(α, Sr) Utility of a sequence α in sequence Sr

α ⊕ I Itemset-extended of sequence α and item I
α ⊗ I Sequence-extended of sequence α and itemset {I}
TSWU(α, SWi) Sequence weighted utility of sequence α in SWi

suffix(Sr, α) Suffix of sequence Sr w.r.t sequence α
SFU(α, SWi) Sequence-suffix utility of sequence α in SWi

defined as su(α, õ) =
Z∑

i=1

u(Xi, Tei
). The utility of α in Sr is

defined as su(α, Sr) = max{su(α, õ)|∀õ ∈ OccSet(α, Sr)}.
That is, the maximum utility of sequence α among all its
occurrences in Sr is used as its utility in Sr.

Definition 9: (Utility of a sequence in a sliding window)
The utility of a sequence α in the i-th sliding window SWi

over DS is defined as su(α, SWi) =
∑

Sr∈SWi

su(α, Sr).

For example, let α = 〈{ab}{c}〉. In SW1 of Figure 1,
OccSet(α, S1) = {〈S1

1 , S2
1〉, 〈S1

1 , S4
1〉}. The utility of α in

S1 is su(α, S1) = max{su(α, 〈S1
1 , S2

1〉), su(α, 〈S1
1 , S4

1〉)} =
max{14, 16} = 16. The utility of α in SW1 is
su(〈{ab}{c}〉, SW1) = su(α, S1)+ su(α, S2) = 16+0 = 16.

Definition 10: (High utility sequential pattern (HUSP)) A
sequence α is called a high utility sequential pattern (HUSP)
in a sliding window SWi iff su(α, SWi) is no less than a
user-specified minimum utility threshold δ.

Problem statement. Given a minimum utility threshold δ,
the problem of mining high utility sequential patterns over a
data stream DS of transactions is to mine the complete set
of itemset-sequences whose utility is no less than δ from the
current transaction-sensitive sliding window over DS.

For convenience, Table I summarizes the concepts and
notations we define in this paper.

IV. HUSP-STREAM ALGORITHM

In this section we propose a single-pass algorithm named
HUSP-Stream (High Utility Sequential Pattern mining over
evolving data Stream) for incrementally mining the complete
set of HUSPs in the current window SWi of a data stream
based on the previous mining results for SWi−1. We propose a
vertical representation of the dataset called ItemUtilLists (Item
Utility Lists) and a tree-based data structure, called HUSP-Tree
(High Utility Sequential Pattern Tree), to model the essential
information of HUSPs in the current window.

The overview of HUSP-Stream is presented in Algorithm
1. The algorithm includes three main phases: (1) Initialization
phase, (2) update phase and (3) HUSP mining phase. The
initialization phase applies when the input transaction belongs
to the first sliding window. In the initialization phase (lines
1-5), the ItemUtilLists structure is constructed for storing the
utility information for every item in the input transaction Si

r.
When there are w transactions in the first window, HUSP-
Tree is constructed for the first window. If there are already
w transactions in the window when the new transaction Si

r
arrives, Si

r is added to the window and the oldest transaction in

Algorithm 1 HUSP-Stream
Input: a new transaction Si

r , window size w, minimum utility threshold δ, ItemUtilLists,
HUSP-Tree
Output: ItemUtilLists, HUSP-Tree, HUSPs
1: if i ≤ w (when Si

r is a transaction in the first window) then
2: ∀ item ∈ Si

r , put(r, i, u(item, Si
r)) to ItemUtilLists(item)

3: if i = w then
4: Construct HUSP-Tree using ItemUtilLists and δ
5: else
6: Update ItemUtilLists and HUSP-Tree using Si

r , w and δ
7: if the user requests to get HUSPs for the current window then
8: Return all the HUSPs by traversing HUSP-Tree once
9: return ItemUtilLists, HUSP − Tree, HUSPs if requested

S1
S2

T1
T5

4
8

{a}
S1
S1
S2
S2

T1
T2
T3
T5

9
3
12
15

{b}
S1
S1
S1
S2

T1
T2
T4
T5

2
1
3
1

{c}
S1
S1

T2
T3

4
4

{d}

SIDs TIDs Util

Fig. 2. ItemUtilLists for items in SW1 in Figure 1

the window is removed. This is done by incrementally updating
the ItemUtilLists and HUSP-Tree structures on line 6, which is
the update phase of the algorithm. After the updating phase, if
the user requests to find HUSPs from the new window, HUSP-
Stream returns all the HUSPs to the user by traversing HUSP-
Tree once.

A. Initialization phase

In this phase, HUSP-Stream reads the transactions in the
first sliding window one by one to construct ItemUtilLists and
HUSP-Tree. Below we first introduce these two structures and
then explain how to construct them in the initialization phase.

1) ItemUtilLists: The first component of the proposed
algorithm is an effective representation of items to restrict the
number of candidates and to reduce the processing time and
memory usage. ItemUtilLists is a vertical representation of the
transactions in the sliding window. The ItemUtilLists of an
item I consists of several tuples. Each tuple stores the utility
of item I in the transaction Su

v (i.e., transaction Tu in sequence
Sv) that contains I . Each tuple has three fields: SID, TID
and Util. Fields SID and TID store the identifiers of Sv

and Tu, respectively. Field Util stores the utility of I in Su
v

(Definition 4). Figure 2 shows ItemUtilLists for the first sliding
window SW1 in Figure 1.

2) HUSP-Tree Structure: A HUSP-Tree is a lexicographic
tree where each non-root node represents a sequence of item-
sets. Figure 3 shows part of the HUSP-Tree for the first window
SW1 in Figure 1, where the root is empty. Each node at the
first level under the root represents a sequence of length 1, a
node on the second level represents a 2-sequence, and all the
child nodes of a parent are listed in alphabetic order of their
represented sequences. There are two types of child nodes for
a parent: I-node and S-node, which are defined as follows.

Definition 11: (Itemset-extended node (I-node)) Given a
parent node p representing a sequence α, an I-node is a child
node of p which represents a sequence generated by adding
an item I into the last itemset of α (denoted as α ⊕ I).

Definition 12: (Sequence-extended node (S-node)) Given
a parent node p representing a sequence α, an S-node is a



Fig. 3. An Example of HUSP-Tree for SW1 in Figure 1

child node of p which represents a sequence generated by
adding a 1-Itemset {I} after the last itemset of α (denoted
as α ⊗ I).

For example, in Figure 3, the node for sequence 〈{abc}〉
is an I-node, while the node for 〈{ab}{c}〉 is an S-node. Their
parents are {ab}.

In data stream mining, the size of the tree can be very
large since the number of possible patterns is exponential in
the number of items. To avoid generating such a tree, we need
to design strategies to prune the tree so that only the nodes
representing potential HUSPs (to be defined later) are gener-
ated. These strategies will be presented later in this section.
Moreover, we need to store summarized information regarding
potential HUSPs to prune the tree during tree construction and
updating, and identify HUSPs from these patterns. Hence, we
design each non-root node of a HUSP-Tree to have a field,
called SeqUtilList, for storing the needed information about
the sequence represented by the node.

Definition 13: (Sequence Utility List) The sequence utility
list (SeqUtilList) of a sequence α in sliding window SWi is
a list of 3-value tuples, where each tuple 〈SID, TID,Util〉
represents an occurrence of α in the sequences of SWi and
the utility of α with respect to the occurrence. The SID in a
tuple is the ID of a sequence in which α occurs, TID is the
ID of the last transaction in the occurrence of α, and Util is
the utility of α with respect to the occurrence. The tuples in a
SeqUtilList are ranked first by SID and then by TID. The
SeqUtilList of α is denoted as SeqUtilList(α).

For example, in Figure 1, if α = 〈{a}{c}〉, α has two
occurrences in SW1, which are 〈T1, T2〉 and 〈T1, T4〉, the
SeqUtilList of α in SW1 is {〈S1, T2, (4 + 1)〉, 〈S1, T4, (4 +
3)〉} = {〈S1, T2, 5〉, 〈S1, T4, 7〉}.

3) HUSP-Tree Nodes Construction : The first level of
the tree under the root is constructed by using the items in
ItemUtilLists as nodes. The SeqUtilList of these nodes is the
ItemUtilLists of the items. Given a non-root node, its child
nodes are generated using I-Step and S-Step, which generate
I-nodes and S-nodes respectively. The processes of I-Step and
S-Step are described below.

Given a node N representing sequence α, I-Step generates
all the I-nodes of N (Definition 11). We define I-Set of α
as the set of items occurring in the sliding window (i.e., in
ItemUtilLists) that are ranked alphabetically after the last item
in α. In I-Step, given an item I in the I-Set of α, for each
tuple Tp = 〈s, t, u〉 in SeqUtilList(α), if there is a tuple

Tp′ = 〈s′, t′, u′〉 in ItemUtilLists(I) such that s = s′ and
t = t′, then add a new tuple 〈s, t, (u+u′)〉 to SeqUtilList(β),
where β = α⊕I , and SeqUtilList(β) was initialized to empty
before the I-Step. An I-node representing β is added as a child
node of N if SeqUtilList(β) is not empty.

For example, if α = 〈{a}〉 and I = b. To construct
SeqUtilList of β = α ⊕ I = 〈{ab}〉, we find the tuples
for common transactions from SeqUtilList(〈{a}〉) =
{〈S1, T1, 4〉, 〈S2, T5, 8〉} and ItemUtilLists(b) =
{〈S1, T1, 9〉, 〈S1, T2, 3〉, 〈S2, T3, 12〉, 〈S2, T5, 15〉}, which
are the ones containing 〈S1, T1〉 and 〈S2, T5〉. Hence,
SeqUtilList(〈{ab}〉) is {〈S1, T1, (4 + 9)〉, 〈S2, T5, (8 +
15)〉} = {〈S1, T1, 13〉, 〈S2, T5, 23〉}.

S-Step generates all the S-nodes for a non-root node. Given
a node N for sequence α, the S-Set of α contains all the items
that occur in the sliding window. The S-Step checks each item
I in the S-Set to generate the S-nodes of N as follows. Let β
be α ⊗ I (i.e., a sequence by adding itemset {I} to the end
of α). First, SeqUtilList(β) is initialized to empty. For each
tuple Tp = 〈s, t, u〉 in SeqUtilList(α), if there is a tuple
Tp′ = 〈s′, t′, u′〉 in ItemUtilLists(I) such that s = s′ and
t < t′ (i.e., t′ occurs after t), then a new tuple 〈s, t′, (u + u′)〉
is added to SeqUtilList(β). If SeqUtilList(β) is not empty,
an S-node is created under the node N to represent β.

For example, if α = 〈{ab}〉 and I = d. To con-
struct SeqUtilList of β = α ⊗ I = 〈{ab}{d}〉, we
need to find the tuples that satisfy the above conditions
from SeqUtilList(〈{ab}〉) = {〈S1, T1, 13〉, 〈S2, T5, 23〉}
and ItemUtilLists(d) = {〈S1, T2, 4〉, 〈S1, T3, 4〉}. The tu-
ple 〈S1, T1, 13〉 in SeqUtilList(〈{ab}〉) and two tuples
〈S1, T2, 4〉 and 〈S1, T3, 4〉 in ItemUtilLists(d) satisfy the con-
ditions. Hence, SeqUtilList(〈{ab}{d}〉) is {〈S1, T2, (13 +
4)〉, 〈S1, T3, (13 + 4)〉} = {〈S1, T2, 17〉,
〈S1, T3, 17〉}.

4) Pruning Strategies: In HUSP mining, the downward
closure property does not hold for the sequence utility. Hence,
the search space cannot be pruned as it is done in traditional se-
quential pattern mining. To effectively prune the search space,
the concept of Sequence-Weighted Utility (SWU) was proposed
in [2] to serve as an over-estimate of the true utility of a
sequence, which has the downward closure property. However,
this property has never been integrated into streaming environ-
ment. Below we incorporate SWU model into our proposed
framework and propose a new model called Transaction based
Sequence-Weighted Utility (TSWU) to effectively prune the
search space.

Definition 14: The Transaction based Sequence-Weighted
Utility (TSWU) of a sequence α in the i-th transaction-
sensitive window SWi, defined and denoted as follow:
TSWU(α, SWi) =

∑

S∈SWi∧α�S

∑

T∈S

TU(T ), where TU(T) is

the utility of transaction T .

For example, in SW1 in Figure 1, there are two sequences
S1 and S2 contain the sequence 〈{b}{c}〉. The TSWU of
〈{b}{c}〉 in SW1 is TSWU(〈{b}{c}〉, SWi)= (15+8+7) +
(12+24) = 66.

Since it uses the utilities of all the transactions of all
the sequences containing α in SWi, TSWU of a sequence



is higher than the utility of α (i.e., Definition 9). That is,
TSWU(α, SWi) ≥ su(α, SWi). The theorem below states
that TSWU has the downward closure property over sliding
window.

Theorem 1: Given a sliding window SWi and two se-
quences α and β such that α � β, TSWU(α, SWi) ≥
TSWU(β, SWi).

Proof: Let DSα be the set of sequences containing α in
SWi and DSβ be the set of sequences containing β in SWi.
Since α � β, β cannot be present in any sequence where α
does not exist. Therefore, DSβ ⊆ DSα. Thus, according to
Definition 14 TSWU(α, SWi) ≥ TSWU(β, SWi).

Since TSWU has the downward closure property, we can
use it to prune the HUSP-Tree.

Pruning Strategy 1 (Pruning by TSWU): Let α be the
sequence represented by a node N in the HUSP-Tree and δ be
the minimum utility threshold. If TSWU(α, SWi) < δ, there
is no need to expand node N . This is because the sequence β
represented by a child node is always a super-sequence of the
sequence represented by the parent node. Hence su(β, SWi) ≤
TSWU(β, SWi) ≤ TSWU(α, SWi) < δ, meaning β cannot
be a HUSP.

Below we propose a novel concept called Sequence-Suffix
Utility (SFU), and then develop a new pruning strategy based
on SFU.

Definition 15: (First occurrence of a sequence α in the
sequence Sr) Let õ = 〈Te1 , Te2 , ..., TeZ

〉 be an occurrence of a
sequence α in the sequence Sr. õ is called the first occurrence
of α in Sr if the last transaction in õ (i.e., TeZ

) occurs before
the last transaction of all the occurrences in OccSet(α, Sr).

For example, in Figure 1, the sequence 〈{a}{c}〉 has two
occurrences 〈T1, T2〉 and 〈T1, T4〉 in S1 for SW1. 〈T1, T2〉 is
the first occurrence because T2 occurs earlier than T4.

Definition 16: (Suffix of a sequence Sr w.r.t. a sequence
α) Given sequence õ = 〈Te1 , Te2 , ..., TeZ

〉 as the first oc-
currence of α in Sr. The suffix of Sr w.r.t. α (denoted as
suffix(Sr, α)) is the list of all the transactions in Sr after
the last transaction in õ (i.e., after TeZ

).

Definition 17: (Sequence-Suffix utility of sequence α in
sequence Sr) Given a sequence α � Sr, the sequence-
suffix utility of α in Sr is defined as follows: SFU(α, Sr) =
su(α, Sr) +

∑

T∈suffix(Sr,α)

TU(T ).

In other words, the sequence-suffix utility of a sequence in
Sr is the utility of α in Sr plus the sum of the utilities of the
transactions in the suffix of Sr with respect to α.

Note that for any non-root node N in the HUSP-Tree,
SFU(α, Sr) can be computed easily using the information in
the SeqUtilList of N. According to Definition 8, su(α, Sr) =

max
õ∈OccSet(α,Sr)

{su(α, õ)} which can be obtained using the

highest Util value among all the tuples with Sr as its SID.
The TID field of the first tuple stores the TID of the last
transaction in α’s first occurrences in Sr. With this TID
value, we can easily get the TIDs of all the transactions
in suffix(Sr, α), and obtain their TU values (which were
pre-computed and stored when a transaction was scanned to

build ItemUtilLists). For example, the sequence-suffix utility
of α = 〈{a}{c}〉 in S1 in Figure 1 is calculated as follow.
According to SeqUtilList(α) = {〈S1, T2, 5〉, 〈S1, T4, 7〉},
su(α, S1) = max{5, 7} = 7 and suffix(S1, α) = {T4}.
Hence, SFU(α, S1) = 7 + TU(T4) = 7 + 7 = 14.

Definition 18: (SFU of a sequence in a sliding window)
The SFU of a sequence α in the i-th window SWi, denoted
as SFU(α, SWi), is defined as follows: SFU(α, SWi) =∑

S∈SWi

SFU(α, S).

The sequence-suffix utility value of α in a sliding window
SWi is an upper bound of the true utility of α in SWi. That
is, su(α, SWi) ≤ SFU(α, SWi).

Theorem 2: Given pattern α and sliding window SWi and
item I , SFU(α, SWi) is an upper bound on:

1) the utility of pattern β = α ⊗ I . That is, su(β, SWi) ≤
SFU(α, SWi).

2) the utility of any β′s offspring θ (i.e., any sequence
prefixed with β). That is, su(θ, SWi) ≤ SFU(α, SWi).

Proof: Let β = α ⊗ I and S ∈ SWi. According to
Definition 8, the utility of β can be rewritten as:

su(β, S) = max
õ∈OccSet(β,S)

{su(α, õ) + u(I, õ)}

Assume that I occurs in transaction Ti ∈ ö where ö
is the occurrence with the maximum utility of β. We have
su(β, S) ≤ max

õ∈OccSet(β,S)
{su(α, õ) + TU(Ti)}.

Since all occurrences of I are in suffix(S, α), TU(Ti) ≤∑

T∈suffix(S,α)

TU(T ). Therefore:

su(β, S) ≤ max
õ∈OccSet(β,S)

{su(α, õ) +
∑

T∈suffix(S,α)

TU(T )}

The second part is independent of õ. Thus,
su(β, S) ≤ max

õ∈OccSet(β,S)
{su(α, õ)}+

∑

T∈suffix(S,α)

TU(T ) =

SFU(α, S).

Below we prove that utility of any offspring of β is less
than SFU(α, S). Assume that θ = α⊗I� ...� ...�IS where
IS is the last itemset in θ and � ∈ {⊗,⊕}. Let õ1 be the
occurrence with maximum utility of θ in S. The utility of θ
can be rewritten as follows:

su(θ, õ1) = su(α, õ1) +
∑

i∈θ∧i∈suffix(S,α)

u(i, õ1)

Note that all items in θ which are not in α occur in
suffix(S, α). We know that su(α, õ1) ≤ su(α, S). Hence:

su(θ, õ1) ≤ su(α, S) +
∑

i∈θ∧T∈õ1∧T∈suffix(S,α)

u(i, T )

Since the utility of each item in a transaction is no more
than the utility of the transaction, su(θ, õ1) ≤ su(α, S) +∑

i∈T∧T∈suffix(S,α)

TU(T ) = SFU(α, S).

The conclusion can be easily extended from S to SWi.

Pruning Strategy 2 (Pruning by SFU): Let α be the
sequence represented by a node N in the HUSP-Tree and δ



Algorithm 2 TreeGrowth
Input: ND(α): node representing sequence α
Output: HUSP-Tree
1: if TSWU(α, SWi) < δ then
2: remove node ND(α)
3: else
4: I Set ← items in ItemUtilLists whose TSWU >= δ and whose id

ranks lexicographically after the last item in the last itemset of α
5: for each item γ ∈ I Set do
6: Compute SeqUtilList(α ⊕ γ) using the I-Step
7: if SeqUtilList(α ⊕ γ) is not empty then
8: Create I-node ND(α ⊕ γ) as child of ND(α)
9: Call Algorithm 2 (ND(α ⊕ γ))

10: if SFU(α, SWi) ≥ δ then
11: S Set ← items in ItemUtilLists whose TSWU >= δ
12: for each item γ ∈ S Set do
13: Compute SeqUtilList(α ⊗ γ) using the S-Step
14: if SeqUtilList(α ⊗ γ) is not empty then
15: Create S-node ND(α ⊗ γ) as child of ND(α)
16: Call Algorithm 2 (ND(α ⊗ γ))

be the minimum utility threshold. If SFU(α, SWi) < δ, there
is no need to generate S-nodes from N. This is because the
utility of α ⊗ I and that of any α ⊗ I’s offspring is no more
than SFU(α, SWi), which is less than δ.

The pruning using SFU becomes more effective than
TSWU when the length of the pattern increases. That is, it
may prune more low utility patterns at each deeper level of the
HUSP-Tree. This is due to the fact that overestimation using
SFU decreases as the length of the pattern increases. In other
words, given a sequence α, to extend it using I-step or S-step
and items in sequence S, the items are added from the end of
first occurrence of α in S. And those items in S within the first
occurrence are unable to form a new extension of α. However,
for a sequence β formed by an itemset or sequence extension,
the utilities of those items are added to TSWU(β). For
example in Table 1 SFU(〈{a}{b}{c}〉}, S1) = 10 + 14 = 24
and TSWU(〈{a}{b}{c}〉}, S1) = 15 + 8 + 7 + 14 = 44.

Using the proposed pruning strategies, our tree construction
process will generate only the nodes that represent potential
HUSPs, defined as follows.

Definition 19: (Potential High Utility Sequential Pattern
(i.e., PHUSP)) A sequence α is called PHUSP in sliding
window SWi iff: (i) If the node representing α is an I-node
and TSWU(α, SWi) ≥ δ (ii) If the node representing α is
an S-node and SFU(α, SWi) ≥ δ.

5) HUSP-Tree Construction Algorithm: The complete tree
construction process is as follows. The algorithm first generates
the child nodes of the root as described in Section IV-A3. Then
for each child node, the TreeGrowth algorithm (see Algorithm
2) is called to generate its I-nodes and S-nodes using the
two pruning strategies and the I-Step and S-Step described in
Section IV-A3. TreeGrowth is a recursive function and it gen-
erates all potential HUSPs in a depth-first manner. Given the
input node ND(α), it first checks whether TSWU(α) < δ.
If yes, the node is pruned. Otherwise, it generates the I-nodes
from ND(α) using the I-Step (Lines 4-8) and recursively calls
Algorithm 2 with each I-node. Then, the algorithm checks
whether SFU(α) satisfies the threshold δ. If yes, it generates
the S-nodes of ND(α) using the S-Step (Lines 11-15) and
recursively calls the Algorithm 2 with each S-node.

B. Update Phase

When a new transaction Su
v arrives, if the current window

SWi is full, the oldest transaction Sd
c expires. In this scenario,

the algorithm needs to incrementally update ItemUtilLists and
HUSP-Tree to find the HUSPs in SWi+1. This process involves
four types of updates: (i) inserting new sequences, (ii) deleting
existing sequences, (iii) appending new items/itemsets to the
existing sequences and (iv) dropping items/itemsets from the
existing sequences.

Let H+ be the complete set of HUSPs in the current sliding
window SWi, H− be the complete set of HUSPs after a
transaction removed from or added to SWi, D+ represents the
window after transaction Su

v is added to SWi, D− represents
the window after Sd

c is removed from SWi and S be a pattern
found in SWi. The following lemmas state how utility of S
changes when a transaction is added to or removed from the
window.

Lemma 1: Given sequence S, after Su
v is added to the

window, one of the following cases is held:

(1) If S � Sv and S ∈ H+, then S ∈ H− and
su(S,D+) ≥ su(S, SWi).

(2) If S � Sv and S ∈ H+, then su(S,D+) ≥
su(S, SWi).

(3) If S � Sv and S ∈ H+, then S ∈ H− and
su(S,D+) = su(S, SWi).

(4) If S � Sv and S ∈ H+, then S ∈ H− and
su(S,D+) = su(S, SWi).

Proof: Let S′
v be sequence Sv before transaction Su

v is
appended to and OSetSWi

be the set of occurrences of S in
SWi and OSetD+ be the set of occurrences of S in D+.
Below, we prove each case separately:

(1) Since S ∈ H+, according to Definition 10,
su(S, SWi) ≥ δ. Also, S � Sv hence OSetSWi

⊆ OSetD+ .
In this case there is o′ ∈ OSetD+ where o′ ∈ OSetSWi

.
If su(S, o′) > su(S, S′

v) then su(S,D+) > su(S, SWi).
Otherwise, su(S,D+) = su(S, SWi). In both cases, since
su(S, SWi) ≥ δ then su(S,D+) ≥ δ and S ∈ H−.

(2) Since S � Sv hence OSetSWi
⊆ OSetD+ . In this

case there is o′ ∈ OSetD+ where o′ ∈ OSetSWi
. Also,

S ∈ H+, according to Definition 10, su(S, SWi) < δ.
If su(S, o′) > su(S, S′

v) then su(S,D+) > su(S, SWi).
Otherwise, su(S,D+) = su(S, SWi).

(3) Since S � Sv hence OSetSWi
= OSetSWi+1 . In this

case su(S,OSetSWi
) = su(S,OSetSWi+1) . Also, S ∈ H ,

according to Definition 10, su(S, SWi) ≥ δ. Since the utility
of S is the same, S ∈ H−.

(4) Since S � Sv hence OSetSWi
= OSetD+ . In this

case su(S,OSetSWi
) = su(S,OSetD+) . Also, S ∈ H+,

according to Definition 10, su(S, SWi) < δ. Consequently,
su(S,D+) < δ so S ∈ H−.

Lemma 2: Given sequence S, sequence S′
c before Sd

c is
removed from Sc, one of the following cases is held:

(1) If S � S′
c and S ∈ H+, then su(S,D−) ≤

su(S, SWi).



(2) If S � S′
c and S ∈ H+, then S ∈ H− su(S,D−) ≤

su(S, SWi).

(3) If S � S′
c and S ∈ H+, then S ∈ H− and

su(S,D−) = su(S, SWi).

(4) If S � S′
c and S ∈ H+, then S ∈ H− and

su(S,D−) = su(S, SWi).

Proof:

Let OSetSWi
be the set of occurrences of S in SWi and

OSetD− be the set of occurrences of S in D−:

(1) Since S ∈ H+, according to Definition 10,
su(S, SWi) ≥ δ. Also, since S � S′

c and Sc � S′
c,

hence OSetD− ⊆ OSetSWi
. In this case there is o′ ∈

OSetSWi
where o′ ∈ OSetD− . If su(S, o′) > su(S, Sc)

then su(S,D−) < su(S, SW ). Otherwise, su(S, SD−) =
su(S, SWi).

(2) Since S � S′
c and Sc � S′

c, hence OSetD− ⊆
OSetSWi

. In this case there is o′ ∈ OSetSWi
where

o′ ∈ OSetD− . Also, S ∈ H , according to Definition 10,
su(S, SWi) < δ. If su(S, o′) > su(S, Sc) then su(S,D−) <
su(S, SWi). Otherwise, su(S,D−) = su(S, SWi). In both
cases, S ∈ H−.

(3) Since S � S′
c hence OSetD− = OSetSWi

. In this
case su(S,OSetSWi

) = su(S,OSetD−) . Also, S ∈ H+,
according to Definition 10, su(S, SWi) ≥ δ. Since the utility
of S is the same, S ∈ H−.

(4) Since S � S′
c hence OSetSWi

= OSetD− . In this
case su(S,OSetSWi

) = su(S,OSetD−) . Also, S ∈ H+,
according to Definition 10, su(S, SWi) < δ. Consequently,
su(S,D−) < δ so S ∈ H+.

Below we propose an efficient approach to update itemU-
tilLists and HUSP-Tree based on Lemma 1 and Lemma 2.

The first step is to update ItemUtilLists. For each item γ in
the oldest transaction Sd

c , the algorithm removes each tuple Tp

whose SID and TID are c and d from ItemUtilLists(γ).
Then, the addition operation is invoked, which is per-
formed as follows. For each item γ in the new transaction
Su

v , the algorithm inserts new tuple 〈Sv, Tu, u(γ, Su
v )〉 to

ItemUtilLists(γ).

After updating ItemUtilLists of items, the algorithm uses
the updated ItemUtilLists to update the TSWU value of items.
The promising items (i.e., the items whose TSWU is no
less than the utility threshold) are collected into an ordered
set pSet. For each item γ in pSet, if ND(γ) is already
under the root and its SeqUtilList has not been updated,
the algorithm replaces the old SeqUtilList by the updated
ItemUtilLists of item γ. If ND(γ) has not been created under
the root, the algorithm creates it under the root. Then, for
each child node ND(α) under the root, the algorithm calls
the procedure UpdateTree(ND(α)) to update the sub-tree of
ND(α), which is performed as follows. For each child node
ND(β) where β is α⊕γ or α⊗γ and γ ∈ pSet, the algorithm
checks whether ND(β) is already in the current HUSP-Tree. If
ND(β) is not in the HUSP-Tree, the algorithm constructs β’s
SeqUtilList using I-Step or S-Step and creates ND(β) under
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Fig. 4. The updated (i) ItemUtilLists and (ii) SeqUtilList({ab}) after
removing T1 from and adding T6 to the window

ND(α). If ND(β) is already in the HUSP-Tree, the algorithm
incrementally updates the tuples in SeqUtilList(β) related to the
new and oldest transactions as follows. Given the oldest trans-
action Sd

c and the newest transaction Su
v , according to Lemma

1 and Lemma 2, the SeqUtilList(β) should be updated if it
has a tuple whose SID is either Sc or Sv. These tuples (not all
the tuples in SeqUtilList(β)) are reconstructed by applying I-
Step (if β is α⊕γ) or S-Step ( if β is α⊗γ) on SeqUtilList(α)
and itemUtilLists(γ). Then the algorithm updates TSWU of
β based on the updated SeqUtilList(β). If TSWU of β is
less than the utility threshold, the algorithm removes ND(β)
and the sub-tree under ND(β). Otherwise, if β is α ⊕ γ, the
algorithm calls the procedure UpdateTree(ND(β)) to update
the sub-tree of ND(β). If β is α⊗γ, the SFU of β is updated
using the updated SeqUtilList(β). If SFU of β is less than
the threshold, node ND(β) and its subtree are removed from
the tree; otherwise, it recursively calls UpdateTree(ND(β)).

Example 1 Figure 4 shows the updated ItemUtilLists
and SeqUtilList({ab}) when T1 is removed from and T6 is
added to the window. Note that we do not reconstruct the
whole SeqUtilList({ab}). Since T1 belongs to S1, we only
need to update/remove the first tuple and also add a new tuple
for the new sequence S3. The other tuples are not updated.
In this figure, since {ab} is not in S1 any more but exists in
S3, SeqUtilList({ab}) is updated as SeqUtilList({ab}) =
{〈S2, T5, 23〉, 〈S3, T6, 19〉}.

Since a tuple in ItemUtilLists can be accessed di-
rectly and the number of tuples needed to be updated in
ItemUtilLists is Loldest +Lnew, where Loldest is the length
of the transaction to be removed and Lnew is the length of
the new transaction added to the sliding window, the average
time complexity for updating ItemUtilLists is O(Lavg),
where Lavg is the average length of transactions in the data
stream. The average time complexity for updating HUSP-Tree
is O(NumPot × NumOccAffavg) where NumPot is the
number of potential high utility patterns in the new sliding
window, and NumOccAffavg is the average number of
occurrences of a potential high utility pattern in the sequences
affected by the removal of the oldest transaction and the
addition of the new transaction.

C. HUSP Mining Phase

HUSP mining phase is straight forward. After performing
the update phase, HUSP-Tree maintains the information of
the sequences in the current window. When users request



TABLE II. DETAILS OF PARAMETER SETTING

Dataset #Seq #Trans #Items w
BMS 77K 120K 3340 60K
DS1 100K 800K 1000 400K

ChainStore 400K 1000K 46,086 500K

the mining results, the algorithm performs the mining phase
by traversing the HUSP-Tree once. For each traversed node
ND(α), the algorithm uses the SeqUtilList of ND(α) to
calculate the utility of α in the current window. If the utility of
α is no less than the minimum utility threshold, the algorithm
outputs α as a HUSP. After traversing the tree, all the HUSPs
are outputted. Note that this HUSP mining phase can be
combined with the update phase. During HUSP-Tree update,
the utility of the sequence represented by each node can be
computed. If the utility is no less than the threshold, the
sequence can be outputted as a HUSP during the update phase.

V. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed method. The experiments were conducted on an Intel(R)
Core(TM) i7 2.80 GHz computer with 16 GB of RAM.
Both synthetic and real datasets are used in the experiments.
Chainstore is a real-life dataset acquired from [15], which
already contains internal and external utilities. In order to use
this dataset as a sequential dataset, we grouped transactions
in different sizes so that each group represents a sequence of
transactions. BMS is obtained from SPMF [8] which contains
sequences of clickstream data from an e-retailer. A synthetic
dataset DS1:T3I2N1KD100K was generated from the IBM
data generator [1]. We follow previous studies [2] to generate
internal and external utility of items for BMS and DS1. Table II
shows characteristics of the datasets and parameter settings in
the experiments. The w column of Table II shows the default
window size for each dataset.

We use the following measures to evaluate the performance
of the algorithms: (1) Number of potential high utility se-
quential patterns (#PHUSP ): the total number of potential
HUSPs produced by the algorithm in all sliding windows. (2)
Total execution time (sec.): the total execution time of the
algorithms. (3) Sliding Time (sec.): the average execution time
of the algorithms to update data structures when a transaction
arrives to or leaves from the window. (4) Memory Usage (MB):
the average memory consumption per window.

To the best of our knowledge, no study has been proposed
for mining high utility sequential patterns over evolving data
streams. Hence, we compare our method with USpan [19],
which is the current best algorithm for mining high utility
sequential patterns in static databases. Since the datasets used
in the experiments are quite large and the window slides a
large number of times, USpan runs very slow. To reduce the
execution time of USpan, we modified USpan so that we run
it per set of transactions (i.e., per batch). This approach is
called USpan Batch. We set the size of each batch to 0.01%
of whole transactions in data set. Moreover, in order to see
the effect of using SFU to prune the tree in comparison
to the other pruning strategy, TSWU , we implemented a
basic version of HUSP-Stream in the experiments, called
HUSP TSWU which applies the TSWU pruning strategy
for pruning I-nodes and S-nodes.
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Fig. 5. Execution time and sliding time (shown in logarithmic scale) on
different datasets
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Fig. 6. Number of PHUSPs on different datasets

A. Time Efficiency of HUSP-Stream

Figure 5(a), Figure 5(b) and Figure 5(c) show the total
execution time of the algorithms on each of the three datasets
with different minimum utility threshold. As it is shown in
the figure, HUSP-Stream is much faster than USpan Batch.
For example, HUSP-Stream runs 5 times faster on the BMS
dataset and more than 10 times faster than USpan Batch on
DS1. Besides, it can be observed that HUSP-Stream is very
scalable. Even under the low threshold, it can perform well. A
reason is that USpan Batch re-run the whole mining process,
while HUSP-Stream performs incremental mining on each new
window by efficiently updating its data structures.

Then we evaluate the average window sliding time of
the algorithms under different minimum utility thresholds.
Figure 5(d), Figure 5(e) and Figure 5(f) show the average
window sliding time of the algorithms on BMS, DS1 and
ChainStore respectively. For the dataset BMS, the average
window sliding time of our algorithm is below 1 second, which
is 100 times faster than that of USpan Batch. For the largest
dataset ChainStore, when the threshold is set to 0.04%, HUSP-
Stream only spends 1.1 second, while USpan Batch sends
more that 260 seconds. In this case, HUSP-Stream is 200 times
faster than the USpan Batch.

B. Number of Potential HUSPs

In this section, we evaluate the algorithms in terms of
the number of potential HUSPs (PHUSPs) produced by the
algorithms. Figure 6 shows the results under different util-
ity thresholds. For consistency across datasets, the minimum
threshold is shown as a percentage of the total utility of all
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Fig. 7. Memory Usage of the algorithms

the sequences in a dataset. As shown in Figure 6, HUSP-
Stream produces much fewer PHUSPs than USpan Batch. For
example, on BMS, when the threshold is 0.02%, the number
of PHUSPs generated by USpan Batch is 10 times more than
that generated by HUSP-Stream. On the larger data sets, i.e.,
DS1 and ChainStore, the number of PHUSPs grows quickly
when the threshold decreases. For example, on DS1, when
the threshold is 0.06%, the number of PHUSPs produced
by USpan Batch is 14 times larger than that generated by
HUSP-Stream. The main reason why our approach produces
much fewer candidates is that HUSP-Stream incrementally
updates HUSP-Tree by reusing the previous mining results.
Hence it avoids regenerating a large number of intermediate
PHUSPs during the mining process. Another reason is that
our pruning strategies are more effective than the ones used in
USpan Batch.

C. Memory Usage

We also evaluate the memory usage of the algorithms
under different utility thresholds. The results are shown in
Figure 7, which indicate our approach consumes less memory
than USpan Batch. For example, for the dataset DS1, when
the threshold is 0.06%, the memory consumption of HUSP-
Stream is around 300 MB, while that of USpan Batch is
over 4,000 MB. A reason is that USpan Batch produces
too many PHUSPs during the mining process, which causes
USpan Batch to have more tree nodes than HUSP-Stream.

D. Effectiveness of SFU Pruning

In this section, we evaluate the use of SFU (in comparison
to the use of only TSWU ) for pruning the tree. To show
effectiveness of the proposed pruning strategy, HUSP-Stream
is compared to its basic version, HUSP TSWU, which only
applies the TSWU pruning strategy for pruning I-nodes and
S-nodes.

Figure 8(a), Figure 8(b) and Figure 8(c) illustrate the run
time, the number of PHUSPs generated by the two meth-
ods, and their memory usage under different utility threshold
values. These figures show that our new pruning strategy is
more effective than using only TSWU in all three performance
measures. Moreover, these figures show that the differences
between the two pruning methods in the number of PHUSPs,
run time and memory usage increase in general when the utility
threshold decreases. These results indicate that our proposed
SFU is much more effective than TSWU in pruning.

E. Performance Evaluation with Window Size Variation

Below we evaluate the performance of the algorithms
under different window sizes. In this experiment, the minimum
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Fig. 9. Evaluation of HUSP-Stream under different window sizes

utility threshold is set to 0.03%,0.09%, 0.04% for the datasets
BMS, DS1 and ChainStore, respectively. The results are shown
in Figure 9. In Figure 9(a), each bar shows the memory
consumption of HUSP-Stream on a data set under a window
size. For example, the most left bar is the memory consumption
of HUSP-Stream on BMS when the window size is set to
20,000 transactions. From Figure 9(a), we can observe that the
memory consumption of HUSP-Stream increases very slowly
with increasing window sizes. Figure 9(b) shows the execution
time of HUSP-Stream under different window sizes. We can
see that HUSP-Stream is also scalable in time with increasing
window sizes.

F. Scalability

To further evaluate the scalability of HUSP-Stream, we
generate a number of subsets of the BMS, DS1 and ChainStore
datasets. The size of a subset ranges from 50% to 100%
transactions of the dataset it is generated from. Figure 10
illustrates how the run time and memory usage of HUSP-
Stream for producing HUSPs vary with different dataset sizes.
We observe that the run time increases (almost) linearly
when the number of transactions increases. This indicates that
HUSP-Stream scales well with the size of dataset.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for min-
ing high utility sequential patterns over data a stream. We
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proposed a novel algorithm named HUSP-Stream to discover
high utility sequential patterns in a transaction-sensitive sliding
window over an itemset-sequence stream. Two data structures
named ItemUtilLists and HUSP-Tree (High Utility Sequential
Pattern Tree) are proposed to maintain the essential informa-
tion of potential high utility sequences over data streams. When
data arrive at or leave from the sliding window, HUSP-Stream
incrementally updates HUSP-Tree and ItemUtilLists online to
find high utility sequential patterns based on previous mining
results. We also defined a new over-estimated sequence utility
measure named Suffix Utility (SFU), and used it to effectively
prune the HUSP-Tree. Both real and synthetic datasets are used
to show the performance of HUSP-Stream. In the experiments,
we compared HUSP-Stream with USpan [19], a state-of-the-
art algorithm for mining high utility sequential patterns in
static databases. Extensive experimental results show that our
approach substantially outperforms USpan and serves as an
efficient solution to the new problem of mining high utility
sequential patterns over data streams.
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