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Abstract

This project contributes to the application of computerized stereo
vision in the medical domain. A dataset that is representative of medi-
cal surgery has been obtained that contains twenty-five left-right stereo
image pairs along with dense groundtruth disparity maps. Further-
more, a representative set of four state-of-the-art stereo algorithms are
run on the datasets and resulting disparity maps are presented. These
results are qualitatively and quantitatively analyzed and performance
of each stereo algorithm is compared. Key performance issues for each
algorithm and for each scene are pointed out and suggestion for future
improvements to the stereo algorithms are made. Finally, suggestions
and plans for future work are presented.
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1 Introduction

1.1 Motivation

The term “computer vision” is straightforward enough for most people to

realize what it encompasses: to give vision to computers. However, many still

wonder what applications this field has. Indeed, the possible applications of

computer vision are vast and one that quickly comes to mind is the medical

domain. Along these lines, one interesting and ambitious goal is the realization

of a robot surgical assistant. For this robot assistant to work usefully it will be

advantageous for it to perceive the world’s 3D structure from acquired imagery,

analogous to human capabilities.

Intensive research in computer vision has yielded a range of stereo vision

algorithms that are capable of reconstructing the 3D layout of a scene from

binocular imagery [4]. In relatively benign conditions (e.g., laboratory set-ups

with simple lighting, surface reflectances and surface layout), some algorithms

are able to provide 3D estimates with a high degree of precision and accuracy

[18]. Performance in the presence of less controlled, real-world conditions

yields much less reliable performance [22]. Further, it is found that algorithm

performance can be scenario and application dependent [29].

In the light of the above observations, it becomes important to evaluate

stereo vision algorithms on image data that is representative of any specific

application domain of interest. Correspondingly, there has been much research

evaluating the performance of different stereo algorithms in different scenarios

[18, 11, 2, 9, 27]. There has not, however, been a systematic study evaluat-
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ing the performance of current state-of-the-art stereo algorithms on medical

imagery. Further, nor has there emerged a database of stereo imagery with as-

sociated groundtruth disparity that is representative of medical applications.

Significantly, without such a database, quantitative evaluation of stereo vision

algorithms in the medical domain is not a possibility.

The research project documented in this report responds to both of the

shortcomings mentioned in the previous paragraph. A representative set of

medically relevant images along with associated groundtruth disparity mea-

surements are attained in a lab environment. Furthermore, the performance

of four of the most widely used stereo algorithms (i.e. Normalized Cross Cor-

relation (NCC) [4], Adaptive Coarse-to-Fine NCC (CTF) [20], Semi-Global

Block Matching (SGM) [10] and Graph Cuts [3]) [18] have been qualitatively

and quantitatively evaluated on the database.

1.2 Related Research

There has been some previous work on recovery of groundtruth and evalu-

ation/use of stereo algorithms or other computer vision tools to recover 3D

representations of a surgical scene or even model a specific organ. How-

ever, it appears that no previous work has presented a database with dense

groundtruth disparity of real-world medical imagery nor has there appeared

a detailed quantitative empirical comparison of computer vision stereo algo-

rithms on such data. Nevertheless, the remainder of this section provides a

summary of the most relevant previous research.

Some previous research only performs qualitative evaluation on their pro-
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posed algorithms or other algorithms they are comparing against. For exam-

ple, one investigation uses the Normalized Cross Correlation (NCC) algorithm

while enforcing strict matching criteria to achieve reconstruction of the 3D

scene using stereo images in invasive surgery [1]. The proposed approach in-

troduces three constraints on matching points (which are the matched patch

should resemble the expected spatial structure within some error range, match

confidence must exceed some specified value and identical left-to-right and

right-to-left matching), which limit the number of qualifying match points to

potentially a very small number. The presented results are only compared

with two other contemporary algorithms [16, 25] but this comparison is only

done qualitatively. Furthermore, the research does not attempt to acquire or

even mention quantitative analysis with groundtruth.

Several research efforts perform quantitative evaluation on phantoms and

only on handpicked points from sparse groundtruth (e.g., provided by a CT

scan). For example, in one such effort a GPU based method was used for 3D

reconstruction for intraoperative navigation [16]. The research uses a video

based stereo algorithm called Hybrid Recursive Matching modified to support

sub-pixel matching and to run on a GPU. However, for dense quantitative anal-

ysis, this research only uses virtual (i.e., computer graphics generated) image

sequences with known groundtruth. This research also performs quantitative

analysis on images obtained from a phantom, but limited to sparse groundtruth

points acquired by CT (only 20 points are provided). Another effort uses a

factorization method to reconstruct 3D points from 2D endoscopic images [30].

Using this approach the authors were able to show better results compared to
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more conventional methods. Full dense evaluation was only done on synthetic

data. Similar to the previous approach, real data evaluation was done only

against sparse groundtruth provided by a CT scanner with matching points.

Other research also presented a method to match stereo images using an ini-

tial sparse set of 3D matched feature points that subsequently are propagated

throughout the scene to create a semi-dense disparity map [25]. However,

the sparse groundtruth for phantom-based evaluation was obtained using a

CT scanner and the evaluation on a real data set was performed qualitatively

only. Therefore, no real world groundtruth acquisition or complete-dense 3D

recovery is used. In still other research, the NCC match measure between

stereo images from calibrated stereo endoscopic cameras was used to recover

reasonable disparity maps [24]. This was done using both stereo and temporal

correspondences. The evaluation of the algorithm was done using groundtruth

obtained by a CT scan of a phantom. The real data evaluation was done

only qualitatively on an in vivo stereoscopic sequence. Moreover, no other

match measures or matching algorithms were evaluated or discussed. Other

research was able to recover liver structure and motion using calibrated rigid

laparoscopic cameras [23]. However, this approach used handpicked stereo

correspondence points, as it was found that established automated methods

failed in this scenario. Nevertheless, the results obtained with this experiment

only contains the 3D reconstruction of selected points of interest (which were

manually selected) and no comparison to dense groundtruth is presented.

There has been some research that has looked at alternative approaches

in 3D recovery for medical application. For example, one research effort pro-
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poses Time of Flight (ToF) sensors and measurement on a single endoscope

to acquire real-time per pixel distance information [14]. The recovered 3D

groundtruth is impressive. This approach would require installation of a ToF

sensor in the operation, including near infrared illumination. This has a cost

($7000) and may not be allowed in all circumstances since the actual endo-

scope optics need to be altered. Furthermore, no evaluation of any multiview

stereo algorithms is provided. In another example, traditional SFM (structure

from motion) methods with some pre-processing and constraints to deal with

missing data and outliers were used to produce 3D reconstructions from tem-

poral sequences of single 2D endoscopic images [12]. Some of the groundtruth

acquisition methods used in this research for data evaluation is similar to the

method used in the work described in the present project (i.e. using a stereo

camera and a light projector). However, there was no groundtruth acquisition

done on real internal organs and only “leave-n-image-out cross-validation” was

used to evaluate consistency of the proposed method. Further, no evaluation

against other 3D reconstruction algorithms was performed.

Finally, a group of research efforts have considered the particular applica-

tion of 3D registration of a model organ to disparity-based 3D surface esti-

mates. This research mostly performs its evaluations based on the correctness

of the registration itself. For example, in one such effort a tracking algorithm

using images from a stereo endoscopic system was proposed [13]. Stereo match-

ing was done using the zero-mean sum of squared differences [15]. Using this

technique, the authors were able to recover the coherent motion of the heart.

The acquired results are not quantitatively compared with groundtruth, but
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the acquired disparity is used to register the medical images and further cal-

culate the heart rate frequency. Furthermore, in other research, a multiple

step method is employed to add timed 3D information to augmented reality

to assist possible robot surgeons [5]. This approach uses a timed model of

a heart obtained by CT or MRI scans. Then a 3D reconstructed operation

surface using a correlation-based stereo algorithm [7] is registered with seg-

ments in the CT/MRI model. Finally, the location of coronary arteries is

super-imposed on the recovered 3D structure. Unfortunately, there is no doc-

umented evaluation of the proposed method. Yet another study considered

a dynamic programming optimization based stereo algorithm to calculate 3D

disparity using calibrated stereo images [28]. Subsequently, another method

is proposed to match the dense disparity maps to a 3D model of the surface

of interest. However, the results were once again only qualitatively evaluated

using registration accuracy from in vivo animal and patient data.

Overall, previous research suggests the potential applicability of computer

stereo vision to medical surgery. However, it is limited by the lack of a represen-

tative database of groundtruthed imagery and consideration of a representative

range of contemporary algorithms. As can be seen from previous research, no

single effort, nor all previous work combined duplicates the dense groundtruth

acquisition and coupled evaluation of the suite of stereo algorithms performed

in this project.
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1.3 Contributions

The significant contributions of this project to the state-of-the-art in com-

puter vision are twofold. First, a significant and apparently unique database

of stereo imagery with groundtruth relevant to medical surgical scenarios has

been constructed. This database contains interesting and plausible scenes of

actual organs and anatomical models. Second, and perhaps more significantly,

the performance of a representative set of contemporary computer vision stereo

algorithms has been evaluated on this dataset. These results are further an-

alyzed to determine the deficiencies and strengths of each algorithm and also

to propose new possible enhancements to tailor each algorithm to medical

scenarios.

1.4 Outline

This report unfolds in the following fashion. This first section has motivated

the study of the application of computer stereo vision to the medical domain

and reviewed previous research. The second section explains the data acquisi-

tion methodology and the resulting image database. Section three documents

the algorithms that were evaluated on the database. Following the database

and algorithm documentation, the results of the empirical evaluation are pre-

sented. Finally, a summary is provided.
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2 Data Acquisition

2.1 Methodology

Key to the recovery of our 3D groundtruth is the initial recovery of disparity

maps for the acquired stereo image pairs. Here, a well known structured light

approach [17] is employed, which has been used previously for groundtruth

acquisition in other situations. In comparison to approaches that make use of

laser scanned objects that are subsequently acquired in visible images, the use

of structured lighting more readily provides visible imagery and groundtruth

3D information in common coordinate frames.

To enable groundtruth construction, binocular images are acquired for each

scene. Groundtruth disparity is constructed for the images as follows. In

addition to ambient illumination, separate images are acquired with structured

lighting. The particular structured lighting that is used consists of binary

(black/white) striped patterns projected by an LCD projector onto the scene.

To distinguish N image positions, it is necessary to project log2 N patterns, i.e.,

in such a manner a unique grey code is assigned to each pixel by concatenating

binary values corresponding to whether the pixel is illuminated or not by each

pattern.

With grey codes assigned to left and right images, disparity can be com-

puted redundantly. First, left-to-right and right-to-left disparity can be com-

puted through simple search for the unique match in the other image (with

allowances made for nearly identical matches that can occur in practice). Sec-

ond, disparity can be computed relative to each image/illumination combina-
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tion (analogous to traditional structured lighting, but without requiring sep-

arate illumination calibration, as illumination projection matrices are deter-

mined from the pixel/illumination correspondences). Overall, 2N+2 disparity

maps result: N in relating each illumination to the left camera, N in relating

each illumination to the right camera, 1 left-to-right camera correspondence

and 1 right-to-left camera correspondence. Measurements at each pixel are

combined using a robust approach to reject loci that do not yield consistent

results and thus ensure high quality groundtruth. The result is a dense map of

disparity with single pixel precision referenced to either camera view (left or

right). Further details of this approach are well documented elsewhere, e.g.,

[17] and references therein.

The system was initially installed and working from a tower server ma-

chine along with an optical bench and multiple light projectors. Therefore

this system was bulky and not portable, as shown in Figure 1. As part of

this project it was necessary to make the system portable so image and data

acquisition could be done in actual hospital environments. A considerable en-

gineering effort ensued to reduce the system to comprise merely a calibrated

pair of machine vision cameras and a single projector (both mounted on their

own tripods) for control from a laptop computer. The whole system of image

and groundtruth acquisition has been implemented as a single, self-contained

program in our lab using C++ and OpenCV libraries. The final system setup

that was used to acquire imagery and groundtruth in our lab and also outside

of the lab is presented in Figure 2.

The stereo images are acquired with a 6 CM baseline and at a resolution
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Figure 1: Original Stereo and Groundtruth Acquisition System.

Figure 2: Modified and Portable Stereo and Groundtruth Acquisition System.
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of 1024×768 pixels. 75 degree horizontal field of view lenses were used to rep-

resent the wide angle view usually used in medical surgery imagery. The time

required to acquire a left-right stereo pair with groundtruth is approximately

90 seconds.

It is interesting to note that because the field of view of the camera and

the light projector are not exactly the same, some points that are mutually

visible to the cameras are occluded from the projector’s view and hence do

not produce groundtruth disparity. Significantly, our industry partner (MDA)

has recently constructed a small, ultra-portable system that puts the camera

and the projector in almost the same field of view. Furthermore, this new

technology could potentially result in higher resolution imagery (up to 1600×

1200) and is also faster in acquiring groundtruth. Our control software has

been upgraded to work with this system; it has been evaluated and tested in

the York Vision Lab and is ready to be used in the next stages of this project.

2.2 Datasets

The image database was acquired in two different settings. First, laboratory

images were acquired at York. Second, images were acquired at the Hospital

for Sick Children, Toronto (SickKids). All scenes in the acquired database

were captured as a pair of calibrated binocular (left-right) images in 8 bit

monochrome at 1024 × 768 spatial resolution. Associated with each pair is a

pixel precision groundtruth disparity map, recovered according to the method-

ology described in Section 2.1. (Note that while projected light patterns were

used to construct the groundtruth, the left-right database images are acquired

12



without light patterns.)

2.2.1 Lab Dataset

The lab images were acquired in the Vision Lab at York University using

meat products acquired from a butcher shop. Meat products, indeed indi-

vidual organs, were selected to construct the scenes as their shapes, surface

reflectances and textures would be reasonably representative of what would

be encountered in actual surgical scenarios. Organs acquired included lungs,

heart, liver, kidneys and intestines.

The organs were arrayed in the following fashion. First, they were assem-

bled into an anatomical model of the chest and abdomen region of a mammal;

see top row of Figure 3. This set-up was selected to mimic what might be im-

aged during an actual surgery. Second, the heart, lungs, liver and kidneys were

imaged separately. The heart was imaged both open and closed to reveal both

its fine interior detail and smooth exterior. Individual organs were imaged

to facilitate understanding of how the evaluated algorithms would perform on

surgery focused on a particular organ. Thus, six different arrangements were

considered (anatomical model, heart open, heart closed, lungs, liver and kid-

neys). In addition to the meat product organs, images of a liver phantom also

were acquired, as they are often employed in conjunction with medical imaging

studies.

All scenes were captured at three different distances (33 cm, 41 cm and 48

cm). Distance was measured from the stereo camera baseline to the nearest

point in the viewed scene. The employed distances were selected to be rep-
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resentative of possible placements of a camera in an actual operating room.

Overall, 21 scenes were captured (6 organ arrangements, plus the phantom, all

viewed at 3 distances) as specified in Table 1. Ambient overhead illumination

in the lab was the only light source, beyond the light pattern projector, which

was employed only during groundtruth acquisition. Figure 3 shows the dataset

for the anatomical model at 33 cm. All datasets are shown in Appendix A.

Table 1: Lab Dataset

Case # Description Distance
1 Full Anatomical Model 33 cm
2 Full Anatomical Model 41 cm
3 Full Anatomical Model 48 cm
4 Heart Closed 33 cm
5 Heart Closed 41 cm
6 Heart Closed 48 cm
7 Heart Open 33 cm
8 Heart Open 41 cm
9 Heart Open 48 cm
10 Kidney 33 cm
11 Kidney 41 cm
12 Kidney 48 cm
13 Liver 33 cm
14 Liver 41 cm
15 Liver 48 cm
16 Lungs 33 cm
17 Lungs 41 cm
18 Lungs 48 cm
19 Phantom Liver 48 cm
20 Phantom Liver 48 cm
21 Phantom Liver 48 cm
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Figure 3: Anatomical Model at 33 cm Acquired in the Vision Lab at York
University. The top row shows left and right camera views, the second row
shows the left-based groundtruth disparity, with darker intensities depicting
closer distances.

2.2.2 Hospital Dataset

Images of ex vivo porcine samples were acquired at SickKids hospital. In all

cases, the samples were made available after the animal had been sacrificed for

unrelated experiments. The datasets acquired consisted of a front anatomical

view of the abdominal region, a back anatomical view of the abdominal region,

a front view of the heart and lungs and a back view of the heart and lungs.

Therefore, in total 4 datasets were acquired. All these datasets were acquired

from a baseline to subject distance of 41 cm.

Figure 4 shows the dataset for the front anatomical model at 41 cm. All

the datasets are shown in Appendix A.
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Figure 4: Anatomical Model of Abdominal Region at 41 cm Acquired in the
Toronto SickKids Hospital. The top row shows left and right camera views, the
second row shows the left-based groundtruth disparity, with darker intensities
depicting closer distances.

2.2.3 Discussion

Visual inspection of both the lab and hospital portions of the acquired database

shows that the the quality of the binocular images and groundtruth are of high

quality. The binocular image pairs are in focus, with good dynamic range and

the objects of interest are well framed. These observations hold across the

range of viewing distances considered. The resulting groundtruth is quiet dense

with good visual presentation of depth variation. In preliminary studies, the

expected pixel precision of the disparity groundtruth was verified by having a

human operator visually select corresponding left-right points sampled across
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the images. Significantly, the depth variations are captured consistently across

the range of viewing distances considered. More specifically, for lungs and

livers the continuous surfaces are apparent in the groundtruth. In contrast, in

the cases of heart open and intestines frequent and sometimes sudden depth

variations are easily apparent and distinguishable with the naked eye. Further,

the amount of occluded areas is kept to a minimum, with the current occluded

areas being unavoidable (as explained in the Methodology section).

The quality of the groundtruth also seems to remain acceptable with dif-

ferent textures. For example, in the heart closed case an excessive amount

of fat is apparent, which has a very bright surface that has been known to

cause issues in other groundtruth acquisitions (e.g., because the image of the

surface without the projector operating already is so bright that when the

pattern is projected it is not readily discernible). However, here the recovered

groundtruth remains smooth and acceptable even in the presence of the high

reflectivity of the surface.

3 Stereo Algorithms

As discussed above, through years of research in computer science, there have

been many stereo algorithms developed and there have been many papers

comparing these algorithms in different scenarios. Standard taxonomies char-

acterize these algorithms as either local or global in operation and thereby

complexity, which ultimately impacts their speed and accuracy [18].

It was important for this project to consider a representative set of different
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stereo algorithms. Correspondingly, a classic local block-matching algorithm

[4] is considered and contrasted with a standard (arguably the best [26]) global

matcher, graph cuts [3]. Still, this bimodal taxonomy does not reasonably cap-

ture other useful algorithmic instantiations. In particular, two additional con-

siderations that have played a significant role in the design of stereo matchers

that should be captured include the combination of local and global matching

and the use of multiresolution and coarse-to-fine processing. Correspondingly,

two more exemplars are included. First, the semiglobal stereo matcher is con-

sidered [10]. As its name suggests, this matcher can be seen as a blend of local

and global approaches. Second, a coarse-to-fine matcher is considered [20].

As with all coarse-to-fine matchers, this algorithm makes use of initial coarse

spatial resolution matching to guide subsequent finer resolution refinement;

additionally, it makes use of adaptive windowing to ameliorate poor resolution

of 3D boundaries, a standard shortcoming of multiresolution matching. In

summary, four algorithms have been considered, as summarized in Table 2.

Table 2: Stereo Algorithms Evaluated
Algorithm Description
NCC dense block matching [18]
CFT coarse-to-fine adaptive block matching [19]
SGM semiglobal matching [10]
GC graph cuts stereo [3]

The current study does not investigate the performance of different point-

wise and area-based match metrics, as considerable previous investigations

have concluded that real data requires normalization or rank-based measure-

ments to get reliable results [11, 2]. Thus, all 4 algorithms rely on normalized
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cross-correlation as their match measure computed over a 5×5 window, except

NCC, which relies on 9 × 9 windows to obtain adequate match aggregation.

4 Empirical evaluation

4.1 Evaluation Methodology

Disparity recovered by the stereo algorithms is qualitatively and quantitatively

compared to the groundtruth disparity. Here, evaluation is in terms of dispar-

ity (the spatial coordinate difference between matched binocular points), as it

is the measurement that is recovered directly by stereo algorithms.

Qualitative evaluation comes in terms of two complementary visualiza-

tions. First, the recovered disparity maps will be presented; see Figure 5.

This visualization allows for direct comparison between the recovered and

groundtruth disparities. Second, difference maps between the recovered dis-

parity and groundtruth will be displayed; see Figure 6. Difference maps help to

isolate which portions of the acquired imagery are challenging the algorithms

and thereby guide refinement efforts.

Quantification of performance will come in terms of three complementary

measures. First, cumulative error distributions are calculated; see Figure 7.

These statistics capture the proportion of points that lie within incremental

error tolerances and thus are important in comparing algorithms according

to the precision at which they can provide reliable estimates. Second, box

plots will be used as a non-parametric way to characterize errors; see Figure 8.

These plots allow for algorithms to be compared in terms of their overall error
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distributions. Third, density plots will be used to characterize the proportion

of points where valid estimates are returned; see Figure 9. Consideration of

density is an important complement to the other statistics, as consideration of

accuracy alone can become biased to algorithms that recover too few points to

be of practical use. The full sets of qualitative visualizations and quantitative

graphs for all datasets are shown in Appendix A.

Figure 5: Left-Right Image Pair, the Left Based Groundtruth and the Dispar-
ity Results of 4 Algorithms on the Lab Full Anatomical 33 cm Data Set.

In addition to producing quantitative plots for the anatomical model, in-

dividual organs and phantom at the 3 considered viewing distances, the data

is also presented in 11 collapsed forms. These include 7 sets of graphs for
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Figure 6: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Anatomical 33 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 7: Cumulative Error Graph of Lab Anatomical 33 cm Data Set. The
abscissa is the absolute pixel disparity error between the recovered disparity
and the groundtruth disparity. The ordinate is the proportion of image points
within each absolute disparity error.

Figure 8: Box Plot of Lab Anatomical 33 cm Data Set. The ordinate is
the absolute pixel disparity error between the recovered disparity and the
groundtruth disparity. The bottom and top of the boxes show the 25th and
75th percentiles (resp.) and the red line shows the 50th percentile of image
points in terms of absolute disparity error. The whiskers extend to the 10th
and 90th percentiles below and above, respectively.
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Figure 9: Density Plot of Lab Anatomical 33 cm Data Set. The abscissa is
the proportion of image points where the stereo algorithm recovered a valid
disparity value.

results collapsed across the 3 distances (i.e. one set for each of anatomical

model, heart closed, heart open, kidney, liver, lungs and the phantom), 3 sets

of graphs collapsed across organs excluding the phantom (i.e. one set for each

camera baseline to subject distance of 33 cm, 41 cm and 48 cm) and a final

graph collapsed across all the data sets excluding the phantom. The phantom

data is not collapsed with the real organ data as it is not actual animal tissue.

These results are presented in Appendix B.

4.2 Results

Figures 10-18 and 77 show results for the anatomical model captured at York.

As can be seen from the overall results (Figure 77), SGM has the best perfor-

mance in this scene followed closely by CTF and NCC. However, in terms of

estimation density, CTF is the best in all 3 distances and SGM is one of the
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worst. The full anatomical model consists of the intestine area, which has a

non-specular surface that is rich in texture and is also mostly smooth. As can

be seen from the disparity maps (Figures 10, 13, 16) and also the difference

maps (Figures 11, 14, 17), all the algorithms perform well in this area at all

three distances. Even GC, which has a poor overall performance, performs

well in the intestine area. On the other hand, it is seen from the difference

maps (Figures 11, 14, 17) that all the algorithms have issues with the middle

area of the model. This area is where the liver is placed. The liver has a

very highly specular surface and it also has a very weakly textured surface.

These two properties together have resulted in poor performance of all three

algorithms in this area. In particular, by looking at the anatomical model 33

cm results (Figures 10, 11) it is seen that even though SGM has a very strong

performance overall, it has a poor performance in the liver area. The lungs

area in the full anatomical model seems to have mediocre to good results with

patches of disparity errors spread across the area. It is seen from the difference

maps (Figures 11, 14, 17) that the only algorithm that performs particularly

poorly in the lungs area is the GC algorithm. Finally, by looking at the box

plots (Figures 12, 15, 18), it can be seen that all the algorithms perform bet-

ter at a further baseline to subject distance. This result can be attributed to

the fact that disparity scales inversely with distance; so, larger disparities and

larger errors are present at closer distances.

Figures 19-27 and 78 show results for the heart closed captured at York.

As can be seen from the overall results (Figure 78), the performance of all

the algorithms is somewhat comparable in this scene. Nevertheless, SGM
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still has the strongest performance at all 3 distances and GC has the worst

performance. However, the estimation density of SGM is particularly low at

all 3 distances compared to the other algorithms. By looking at the difference

maps for the heart closed case at all 3 distances (Figures 20, 23, 26), it can

be seen that all the algorithms have problems in the bottom area of the heart.

By looking at the left and right images (Figures 19, 22, 25) it is seen that

this area is the most specularly reflective area of the heart. In fact, it can be

seen that the left and right images look differently in that area of the heart

because of different reflection of light. The difference maps (Figures 20, 23,

26) show that in other areas of the heart the algorithms perform much better,

even in the fatty regions near the top. The fat area has a rich texture and

despite being bright, does not appear to be very specular; therefore, it does

not seem to be a particular problem area for any of the algorithms. Finally,

it is interesting that the performance of the algorithms does not differ much

between the three distances for this scene.

Figures 28-36 and 79 show results for the heart open captured at York.

As can be seen from the overall results (Figure 79) and also individually at

each distance (Figures 30, 33, 36), once again SGM has the best performance

in this scene. All the other 3 algorithms also perform strongly and have very

similar performance. This is particularly interesting for GC, which so far has

not performed up to par with CTF or even NCC. The SGM algorithm once

again has the poorest estimation density among all the algorithms followed

closely by NCC. Heart open has a mostly non-specular surface and also has

a non-smooth surface. It is also very rich in texture (because of the exposed
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arteries). This all has resulted in strong performance by all algorithms in this

scene. By looking at the difference maps (Figures 29, 32, 35) it is seen that no

particular problem areas exist in this scene. Finally, the performance of the

algorithms do improve slightly as the baseline to subject distance increases,

but not by much.

Figures 37-45 and 80 show results for the kidney captured at York. As

can be seen from the overall results (Figure 80) and also for each of the three

distances (Figures 39, 42, 45), all the algorithms perform very poorly at all

three distances. SGM still has the best performance, but the difference is

small. However, SGM once again has the worst estimation density followed

closely by NCC. As can be seen from the actual images of the scene (Figures

37, 40, 43), the kidney has a highly specular surface. Moreover, the surface

area of the kidney is very weakly textured. These two properties of the surface

make it very difficult for any of the algorithms to perform well. It can be seen

from the error plots (Figures 39, 42, 45) that the performance of the algorithms

improve as the baseline to subject distance increases. However, as previously

mentioned, this improvement is only because disparity scales inversely with

distance; so, larger disparities and larger errors are present at closer distances.

In general, if one looks at the difference maps for all three distances (Figures

38, 41, 44) it is seen that the algorithms have problems with the entire kidney

area.

Figures 46-54 and 81 show results for the liver captured at York. Similar

to the kidney, all the algorithms perform poorly in the liver case, except for

SGM (Figure 81). However, the relatively strong performance of SGM comes
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at the expense of very low estimation density across all three distances. The

low density is shown not only in the density plot, but also the disparity maps

(Figures 46, 49, 52) where the loci of unresolved disparities are indicated with

white pixels. The areas where specular reflections are dominant can be seen in

the raw left and right images (Figures 46, 49, 52); reference to the difference

maps (Figures 47, 50, 53) shows that these areas are exactly those where the

algorithms have most difficulties. For example, at the 33 cm distance (Figure

46), it is seen that the light is mostly reflected in the upper, left area of the

liver. In the difference map (Figure 47) it is also seen this is the area where the

bulk of the error is, while the lower-right area of the liver seems to be better

estimated. Just like the kidney, the liver also has a very weakly textured

surface, which adds to the difficulties, as the algorithms have little pattern

structure on which to base a correct match. Finally, the performance of the

algorithms improves once again as the baseline to subject distance increases.

This improvement can again be attributed to the fact that at closer distances

the disparity and its error are magnified.

Figures 55-63 and 82 show results for the lungs captured at York. It can

be seen from the overall results (Figure 82) that SGM has the best perfor-

mance followed by CTF. SGM also has the best performance at all the three

distances as well, followed by CTF (Figures 57, 60, 63). The lungs surface

is not as specular as the kidney or liver. Also, the lungs surface is mostly

well textured. These physical properties of the lungs result in very good over-

all performance by all three algorithms for this organ. SGM once again has

the poorest estimation density results (Figure 82), but the difference with the
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other algorithms in this scene is slight. The one exception for the lung surface

is the 48 cm distance, where the performance of the algorithms as well as the

estimation density (especially for SGM) drops off (Figure 63). By looking at

the actual images in the 48 cm distance (Figure 61), it is seen that there is

actually more light specularly reflected off the surface of the lungs than the

other 2 distances. By looking at the difference maps (Figure 62), it is seen

that around the area where the light is specularly reflected (i.e. right side of

the lungs) the errors are most concentrated. This state of affairs is especially

noticeable in the NCC and SGM difference maps.

Figures 64-72 and 83 show results for the phantom liver captured at York.

Here, it is seen that the overall results (Figure 83) indicate that SGM still has

by far the best performance in this scene. This is also true for each distance

(Figures 66, 69, 72). However, as consistently seen, SGM has the poorest

estimation density followed closely by NCC. In general, all the algorithms have

below average performance on the phantom. These results can be attributed

to the fact that the phantom liver seems to have a very specularly reflective

surface. In fact, if one looks at the left and right images in each case (Figures

64, 67, 70) the light specularly reflected off of the phantom is very evident.

By looking at the difference maps (Figures 65, 68, 71) it can be seen that

the problem areas arise in exactly the places where the light is most strongly

specularly reflected. For example, in the 33 cm scene (Figure 64), it is seen

that the upper portion of the phantom liver specularly reflects much light. By

looking at the corresponding difference maps (Figure 65) it is seen that this is

where the algorithms produced the most estimation error. Finally, the overall
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performance of the algorithms seems to improve as the baseline to subject

distance increases.

Figures 73-76 show results for the anatomical model and heart/lungs cap-

tured at the SickKids hospital. Owing to an error in calibration at the time of

data acquisition at SickKids, these are only evaluated qualitatively. Neverthe-

less, it can be seen that like the lab datasets, in all hospital datasets both SGM

and CTF seem to have the best performance. However, in the full anatomi-

cal model (both front and back) (Figures 73, 74), the SGM disparity results

seems to have an inordinate number of drop outs (i.e. low estimation density),

which could be attributed to the high specular reflectivity of the model, as

consistent with the observations in the lab datasets. Furthermore, as can be

seen from the left and right images on back and front views of heart and lung

model (Figures 75, 76), the scene is much less specuarly reflective than the

full anatomical model and has much more texture as well. These properties

combine to result in improved performance and improved estimation density

of all the algorithms in the heart and lung model, which is consistent with

what was seen in the lab dataset results.

4.3 Discussion

As can be seen from the results collapsed across both organ and distance

(Figure 87), SGM has the best overall performance followed by CTF. NCC

and GC have the worst performance in these overall results.

NCC is the most basic algorithm evaluated in this project. The overall

performance of NCC is also either the worst or the second worst in all datasets.
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Despite its simplicity NCC also provided poor disparity density in all cases

as well. NCC performs particularly poorly in the kidney and liver datasets.

NCC generally fails in resolving 3D boundaries and this problem is particularly

noticeable in the kidney at 33 cm, 41 cm and 48 cm (Figures 37-45). NCC

does show some promising results in the full anatomical model case (Figures

10-18 and 77). As has been shown previously, NCC is capable in resolving

medium-sized fairly textured objects [22].

The CTF algorithm evaluated here uses adaptive windowing for matching

in the vicinity of 3D object boundaries. It has also been implemented to run

in real-time [20, 19]. The disparity results produced by the CTF algorithm

is shown to be very dense. Overall, CTF performs well in most cases. In

particular, CTF is a strong performer in the full anatomical model at all three

distances (Figures 12, 15, 18). The baseline to subject distance seems to

have small effects on CTF and CTF performs to almost the same level at all

three distances. However, CTF has some problem resolving low texture and

specularly reflective areas. For example, CTF performs particularly poorly for

the kidney and liver cases (Figures 80, 81) where the objects of interest have

low texture and very specularly reflective surfaces. Notably, however, CTF is

not alone in showing these limitations and all the algorithms perform poorly

in these scenarios.

The SGM algorithm is another strong performer. The results produced

by SGM are among the best in all cases. In particular, SGM is strong in

the kidney and liver cases (Figures 80, 81) compared to the other algorithms.

This observation suggests that SGM is a strong candidate to be used in cases
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where high specular reflectivity is expected. However, the disparity estima-

tion density is low for SGM and it is among the lowest in most cases. SGM

has especially low density for kidney and liver, which suggests that the SGM

algorithm only returns high confidence matches. Of course, in real medical

scenarios high estimation density is important, but it is arguable that accu-

racy is more important than estimation density. That is, it is better to have

no information about the disparity of a location than have wrong information.

Therefore, the lower density higher accuracy approach of SGM is more desir-

able than low accuracy and high density results. This result, along with the

fact that the algorithm has very low complexity and some real time implemen-

tations have appeared [6, 8], make SGM a very good algorithm choice to be

further investigated/improved for medical stereo.

The GC algorithm is a global optimizer and it has been claimed by some to

be the best general purpose performer [18, 4, 26]. However, in this evaluation

GC is one of the worst performer in all the scenarios. It is evident that GC is

hurt by its attempt to over-smooth. Alternatively, setting the GC parameters

to smooth less yielded even worse results in preliminary evaluations. This state

of affairs is particularly noticeable in the full anatomical model (Figures 10-18

and 77) where GC has poor performance. It is important to note that the

optimization of the GC parameters is utterly important for each individual

scene. This need for careful tuning, along with the fact that no real time

implementation of GC exists, make GC the least desirable algorithm. It should

be noted, however, that GC produced one of the best estimation densities in

all cases, and the best overall average density of all the evaluated algorithms
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(Figure 87).

It is evident that the kidney and liver datasets are the most problematic.

All four algorithms fail to perform at a reasonable level in both these cases

across all distances (Figures 80, 81). Looking at the left and right images for

kidney (Figures 37, 40, 43) and liver (Figures 46, 49, 52) at all 3 distances

it is obvious that both have very high specularly reflective surfaces and all

stereo algorithms are known to have issues with such surfaces. Unfortunately,

high specular reflectivity is expected in almost all medical imaging scenarios.

Therefore, it is important that this issue is addresses by either a new algorithm

or modification to existing algorithms. Interestingly, the estimation density

also suffers the most in the kidney and liver cases. This is again most likely

attributed to the high specular reflectivity of the surface in these scenarios,

which limits the ability of the algorithms to establish any matches at all.

Moreover, these surfaces also have weak texture; therefore, little information

is available to define correct matches.

On the other hand, all algorithms perform well in the heart closed, heart

open and lungs scenarios (Figures 78, 79, 82). These datasets consist of highly

textured scenes with presence of lots of fat. This confirms that stereo algo-

rithms perform better in high textured scenarios, as the local pattern structure

defines correct matches. It also suggests that the algorithms have little prob-

lem in the presence of fat which obviously is promising as fat is expected in

most medical scenarios.

The performance of the algorithms in the full anatomical model (Figure

77) is some where in the middle. This is expected as the performance suffers
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in some organs (i.e., highly specular reflective surfaces such as the liver) and

is good in other areas (i.e., low specularly reflective, high texture areas such

as intestines). Looking at the difference maps for the anatomical model at all

3 distances (Figures 11, 14, 17) confirms these observations, as it is apparent

that the intestine area has low error, while the liver and heart areas have

higher errors.

By looking at the plots collapsed across the organs for all 3 distances (Fig-

ures 84-86), it is seen that the relative performance of the algorithms compared

to each other remains mostly the same between difference baseline to subject

distances of the same scene. However, it is evident that all the algorithms

generally perform better at a further baseline to subject distance. As noted

previously, this result can be attributed to the fact that disparity scales in-

versely with distance; so, larger disparities and larger errors are present at

closer distances. In real medical scenarios the algorithms need to cover ad-

equately all relevant distances; therefore, this issue needs to be addressed in

any new algorithm or improvements to current algorithms.

From the above discussion, it can be suggested that the first thing that

needs to be addressed in future work is better and denser disparity estima-

tion in the presence of highly specular reflective surfaces. This problem, as

magnified in the kidney and liver cases, is likely a contributor to below ideal

performance of all algorithms on all datasets. Second, while most medical

scenarios involve reasonably textured scenes, the possibility of low textured

scene (such as the liver) is present and therefore needs to be addressed as well.

Finally, to be of any practical use in real medical surgery scenarios, any al-
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gorithm modifications proposed need to produce accurate disparity across the

entire range of representative distances.

5 Summary

In summary, this report has helped advance the field of computer vision in

application to medical surgery. This advance has been achieved by acquiring a

database of stereo image pairs and 3D (disparity) groundtruth, representative

of medical surgery, and further evaluating a representative range of stereo

algorithms with respect to the acquired imagery. The representative imagery

and associated groundtruth were obtained in the York Vision Lab and during

visits to SickKids hospital. The stereo algorithms tested (NCC, CTF, SGM

and GC) were evaluated both qualitatively and quantitatively on the acquired

database.

In general, the results suggest that computer stereo vision technology has

potential for application to medical scenarios; however, advances are required

to realize this potential. More specifically, the results indicate that SGM and

CTF generally outperform both NCC and GC. Indeed, in the presence of well

textured, relatively matte surfaces all the algorithms recover estimates that

are in reasonable agreement with groundtruth. However, the performance of

all the algorithms was subpar in areas of specular reflection on all datasets.

Furthermore, all algorithms generally performed better at a further camera

baseline to subject distance. Finally, as seen in previous evaluations (e.g.,

[18]), algorithms performed better in scenes with rich texture as opposed to
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those containing little surface detail. It can be concluded that current stereo

algorithms are insufficient to deal with circumstances and properties that are

common in surgical scenes. Significantly, however, this reported research has

been able to narrow down the potential shortcomings of extant algorithms;

and thereby provides a good starting point for further enhancement of these

algorithms to better handle stereo medical imagery. For example, recent ad-

vancements in stereo video processing have shown promise in recovery of sur-

face shape in the presence of specular reflections [21] and should be considered

for incorporation into future developments of stereo for surgery.
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Appendices

A Datasets and Stereo Algorithm Results

Figure 10: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Full Anatomical 33 cm Data Set.
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Figure 11: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Anatomical 33 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 12: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Full Anatomical 33 cm Data Set.
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Figure 13: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Full Anatomical 41 cm Data Set.
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Figure 14: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Anatomical 41 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 15: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Full Anatomical 41 cm Data Set.
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Figure 16: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Full Anatomical 48 cm Data Set.
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Figure 17: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Anatomical 48 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 18: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Full Anatomical 48 cm Data Set.
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Figure 19: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Closed 33 cm Data Set.
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Figure 20: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Closed 33 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 21: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Closed 33 cm Data Set.
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Figure 22: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Closed 41 cm Data Set.
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Figure 23: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Closed 41 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 24: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Closed 41 cm Data Set.
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Figure 25: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Closed 48 cm Data Set.
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Figure 26: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Closed 48 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 27: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Closed 48 cm Data Set.
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Figure 28: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Open 33 cm Data Set.
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Figure 29: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Open 33 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 30: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Open 33 cm Data Set.
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Figure 31: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Open 41 cm Data Set.
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Figure 32: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Open 41 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 33: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Open 41 cm Data Set.
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Figure 34: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Heart Open 48 cm Data Set.
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Figure 35: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Heart Open 48 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 36: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Open 48 cm Data Set.
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Figure 37: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Kidney 33 cm Data Set.
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Figure 38: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Kidney 33 cm. Data
Set, as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 39: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Kidney 33 cm Data Set.

69



Figure 40: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Kidney 41 cm Data Set.
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Figure 41: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Kidney 41 cm. Data
Set, as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 42: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Kidney 41 cm Data Set.
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Figure 43: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Kidney 48 cm Data Set.
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Figure 44: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Kidney 48 cm. Data
Set, as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 45: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Kidney 48 cm Data Set.
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Figure 46: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Liver 33 cm Data Set.

76



Figure 47: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Liver 33 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 48: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Liver 33 cm Data Set.
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Figure 49: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Liver 41 cm Data Set.
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Figure 50: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Liver 41 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.

80



Figure 51: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Liver 41 cm Data Set.

81



Figure 52: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Liver 48 cm Data Set.
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Figure 53: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Liver 48 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 54: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Liver 48 cm Data Set.
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Figure 55: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Lungs 33 cm Data Set.
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Figure 56: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Lungs 33 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 57: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Lungs 33 cm Data Set.
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Figure 58: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Lungs 41 cm Data Set.
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Figure 59: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Lungs 41 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 60: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Lungs 41 cm Data Set.
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Figure 61: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Lungs 48 cm Data Set.
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Figure 62: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Lungs 48 cm. Data Set,
as Restricted to the Region of Interest. The top image is the ground truth
disparity. The second row is the NCC disparity and difference map. The third
row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 63: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Lungs 48 cm Data Set.
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Figure 64: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Phantom Liver 33 cm Data Set.
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Figure 65: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Phantom Liver 33 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 66: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Phantom Liver 33 cm Data Set.
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Figure 67: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Phantom Liver 41 cm Data Set.
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Figure 68: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Phantom Liver 41 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 69: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Phantom Liver 41 cm Data Set.
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Figure 70: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Lab Phantom Liver 48 cm Data Set.
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Figure 71: Absolute Difference Map Between the Groundtruth and Disparity
Recovered by each of the Four Algorithms for the Lab Phantom Liver 48 cm.
Data Set, as Restricted to the Region of Interest. The top image is the ground
truth disparity. The second row is the NCC disparity and difference map. The
third row is the CTF disparity and difference map. The fourth row is the SGM
disparity and difference map. The fifth row is the GC disparity and difference
map. In difference maps, brighter intensity corresponds to smaller error.
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Figure 72: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Phantom Liver 48 cm Data Set.
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Figure 73: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Hospital Anatomical Front View 41 cm
Data Set.
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Figure 74: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Hospital Anatomical Back View 41 cm
Data Set.
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Figure 75: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Hospital Heart/Lungs Front View 41 cm
Data Set.
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Figure 76: Left-Right Image Pair, the Left Based Groundtruth and the Dis-
parity Results of 4 Algorithms on the Hospital Heart/Lungs Back View 41 cm
Data Set.
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B Stereo Algorithm Results Empirical Evalu-

ation - Averages

Figure 77: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Full Anatomical - Collapsed Across Distance.
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Figure 78: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Closed - Collapsed Across Distance.
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Figure 79: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Heart Open - Collapsed Across Distance.
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Figure 80: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Kidney - Collapsed Across Distance.
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Figure 81: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Liver - Collapsed Across Distance.
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Figure 82: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Lungs - Collapsed Across Distance.
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Figure 83: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab Phantom Liver - Collapsed Across Distance.
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Figure 84: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab 33 cm Distance - Collapsed Across Organs (Excluding the
Phantom).
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Figure 85: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab 41 cm Distance - Collapsed Across Organs (Excluding the
Phantom).
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Figure 86: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on the Lab 48 cm Distance - Collapsed Across Organs (Excluding the
Phantom).
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Figure 87: Cumulative Error Graph, Box Plot and Density Plot of 4 Algo-
rithms on All the Datasets Acquired in the Lab (Excluding the Phantom).
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