
Mining Evolving Data Streams with Particle Filters

Ricky Fok, Aijun An and Xiaogang Wang

Technical Report CSE-2013-11

October 9 2013

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Mining Evolving Data Streams with Particle Filters

Ricky Fok ricky@cse.yorku.ca
Department of Computer Science and Engineering
York University
Toronto, ON M3J 1P3, Canada

Aijun An aan@cse.yorku.ca
Department of Computer Science and Engineering
York University
Toronto, ON M3J 1P3, Canada

Xiaogang Wang stevenw@mathstat.yorku.ca

Department of Mathematics and Statistics

York University

Toronto, ON M3J 1P3, Canada

Abstract

We propose a modified particle filter based learning method and apply it to learning logistic
regression models from evolving data streams. The resampling step of the particle filter
is replaced by choosing a set of regression coefficients (i.e., particles) that maximizes the
training accuracy. The method inherently handles concept drifts in the data stream and is
able to learn an ensemble of logistic regression models with particle filtering. We evaluate
the method on both synthetic and real data sets and find that our method outperforms
other state-of-the-art algorithms on the data sets tested.

Keywords: Concept Drift, Ensemble Methods, Stochastic Optimization, Data Stream
Mining

1. Introduction

In this paper, we propose a method to handle concept drifts by performing sequential
Bayesian inference on streaming data. We model concept drifts as the change in the hidden
(or state) variables of a Hidden Markov Model (HMM) (Baum and Petrie, 1966) and employ
particle filtering (Doucet and Johansen, 2009), a sequential Monte Carlo method developed
for this exact purpose, to discover the most up-do-date concepts. In terms of data mining,
particle filtering is an ensemble method that generates a fixed number of classifiers (called
particles) at each time step from the most important classifiers in the previous step1. The
resulting algorithm, logistic regression with particle filtering (PF-LR), is a modified version
of conventional particle filtering in order to reduce the extent of overfitting.

The particle filter is an algorithm with applications in object tracking (Gustafsson et. al.,
2002). Particles at time n are generated from a prior distribution conditioned on the values
of previous hidden variables. The prior is usually assumed to be a Gaussian distribution.

1. This is the auxiliary particle filter (Pitt and Shephard, 1999) which usually gives better performance
than the original particle filter in Doucet and Johansen (2009).

Fok An Wang

The likelihood function of the generated particles are calculated with the observed data to
be used as weights of the particles. Subsequent particles are generated near the ones with
the highest values of the likelihood function. This suggests the use of weighted majority
voting (Littlestone and Warmuth, 1994) in order to obtain a classifier from the ensemble of
particles. We apply this approach to develop an ensemble method using particle filtering to
binary classification tasks. Also, we consider a modification on the particle filter where the
performances of particles are measured by the training accuracy instead of the likelihood
function used in the conventional particle filter.

The PF-LR algorithm developed is very similar to the auxiliary particle filter (Pitt and
Shephard, 1999). Two variants of auxiliary particle filters are evaluated on different data
sets. We found that the classification algorithm using the regularized auxiliary particle
filter does not outperform the one with the auxiliary particle filter. This is discussed in
appendix A. Also, we evaluate the algorithms on the commonly used synthetic benchmarks
with concept drifts, the SEA (Street and Kim, 2001) and CIRCLES (Nishida and Yamauchi,
2007). We also tested the algorithms on the real electricity pricing data (Harries, 1999).
Our results are contrasted with other existing algorithms.

The contributions of this paper are as follows

• We model concept drifts with a Hidden Markov Model and present a drift tolerant
algorithm, PF-LR, using particle filtering with linear complexity.

• This is the first attempt to use training accuracy as a criterion for particle selection.
We show that this results in very little overfitting for logistic regression.

• We show that the modified particle filter is robust to noise when used to learn re-
gression coefficients. Furthermore, the best performance is obtained by using training
accuracy as the performance measure for each particle with majority voting to give
the final prediction.

• We show that PF-LR outperforms Hoeffding Tree with Leveraging Bagging (Bifet et.
al., 2010a) and Naive Bayes with Dynamic Weighted Majority (Kolter and Maloof,
2007).

The organization of this paper is as follows. In the next section we review related
work in the literature. Section 3 gives the theoretical motivation that particle filtering is a
strong candidate to handle concept drifts. The modification to the particle filter to alleviate
overfitting is also discussed and its algorithm given. The comparison of its performance with
other algorithms is given in section 4 where we illustrate the particle filter’s ability to adapt
to frequent drifts. The discussion and conclusions are given in section 5.

2. Related Work

Mining streaming data involves making inferences on time-varying data. More often than
not, the underlying attributes in relation to the observed data also change with data (Ag-
garwal, 2007), a phenomenon called concept drift. Particle filtering is a sequential Monte
Carlo method used to estimate time series of hidden variables with the most recent data.

2

Mining Evolving Data Streams with Particle Filters

It has been used in Mathematical Finance (Hedibert and Tsay, 2011), in tracking and nav-
igation (Gustafsson et. al., 2002). However, there has been very few (if any) attempts to
apply particle filtering to handle drifts. As an application to classification tasks, particle
filtering is an ensemble method that tracks the movement of decision boundaries estimated
by the regression coefficients (i.e. the classifiers). In this section, we survey previous work
on ensemble methods, existing methods to handle drifts, and particle filtering.

2.1. Ensemble Learning

Ensemble methods (for a review, see Rokach (2010)) combine multiple classifiers to make
an overall prediction. Various methods differ in their mechanisms of combining predictions,
and in the ways that different classifiers are learned.

Weighted majority (Littlestone and Warmuth, 1994) makes the overall prediction by the
weighted average over the ensemble of classifiers. For an ensemble with M classifiers each
with weight wi, the overall prediction p̄ is

p̄ =

∑M
i wipi∑M
i wi

, (1)

where pi is the prediction given by the ith classifier. The weight of each classifier is propor-
tional to its performance. For example, Littlestone and Warmuth (1994) starts with wi = 1
for each classifier and is reduced by half whenever the classifier predicts incorrectly.

Stacking (Wolpert, 1992) is a classifier combination method where the overall prediction
is given by a meta-classifier trained on the outputs of classifiers in the ensemble. The purpose
of the meta-classifier is to learn the performances of the classifiers and making adjustments
if necessary. The performances of the classifiers are evaluated by cross validation. The
outputs of these classifiers (and the class labels of the training examples for training the
meta-classifier) are passed onto the meta-classifier. The overall output is then given by the
meta-classifier.

The bagging method (Breiman, 1996) generates M data sets from the training data by
sampling with replacement (Bootstrapping). The M generated data sets have the same size
as the training data from which an ensemble of M classifiers are obtained. Then majority
voting is used to obtain an overall prediction.

Boosting (Freund and Schapire, 1996) is a method to improve the performance of a
“weak” classifier, whose predictive accuracy can be as low as just better than random
guessing. A well known algorithm that employs boosting is Adaboost (Freund and Schapire,
1999). In Adaboost, classifiers are trained focusing on the subset of data being misclassified
by the previous classifier, with its weight given by its performance. This process iterates
until a specified number of classifiers are trained. The final prediction is given by the
weighted majority and is expected to be more accurate due to the diversity of the individual
classifiers. A similar method is Arcing (Breiman, 1998), which uses another weighting
procedure and decisions are made with majority voting.

2.2. Learning with Concept Drifts

Concept drift (Schlimmer and Granger, 1986; Maloof, 2005) is a phenomenon in a data
stream where the underlying model that generates the data changes over time. Special

3

Fok An Wang

attention to cope with changing concepts is necessary as they deteriorate classification ac-
curacy if left untreated (Schlimmer and Granger, 1986). To handle drifts, algorithms must
contain mechanisms to forget past examples when drifts occur and learn the most recent
concepts. Common techniques employed include 1) using ensemble methods, 2) forgetting
past instances by weighting, and 3) using sliding windows. Early examples include STAG-
GER (Schlimmer and Granger, 1986) and the FLORA systems (Widmer and Kubat, 1996).
More recently, Streaming Ensemble Algorithm (SEA) (Street and Kim, 2001), Concept-
adapting Very Fast Decision Tree (CVFDT) (Hulten et. al., 2001), using ensemble methods
(Wang et. al., 2003), and Dynamic Weighted Majority (DWM) (Kolter and Maloof, 2007),
a method using χ2-test along with rule induction (Sotoudeh and An, 2010). Furthermore,
an ideal algorithm to cope with concept drifts should have the following features (Tsymbal,
2004): Fast adaptation to drift, robustness to noise and recognizing recurring concepts.

STAGGER (Schlimmer and Granger, 1986) maintains a set of concept descriptions with
corresponding weights. The weights are adjusted when new examples arrive. Also, the
weights decay over time in order to cope with drifts. The FLORA systems (Widmer and
Kubat, 1996) keeps a window of currently reliable examples and hypotheses. The size of
the window is adjustable based on heuristics. When an old concept reappears, FLORA
is able use previously stored instances for learning. SEA (Street and Kim, 2001) is an
ensemble learning algorithm. Rather than generating multiple same sized data sets with
bagging or boosting, SEA builds an ensemble of classifiers by learning from sequential
chunks to satisfy the one-pass constraint on stream mining. DWM (Kolter and Maloof,
2007) is an adaptive weighting scheme. It maintains a set of classifiers and updates their
weights according to the performance of each classifier. New classifiers are created and
outdated ones are removed based on the global performance. Predictions are combined
using weighted majority. Wang et. al. (2003) proposes an approach for handling drifts
with ensemble methods. There, different classifiers are trained on chunks of data. Each
of them are weighted by their classification performance. The predictions are combined by
weighted majority voting. CVFDT (Hulten et. al., 2001) is a an extension of an earlier
VFDT (Domingos and Hulten, 2000) with a drift handling mechanism. VFDT is a decision
tree algorithm using the Hoeffding bound (Hoeffding, 1963). CVFDT adapts to changing
concepts by replacing out-of-date subtrees based on their classification accuracy. Sotoudeh
and An (2010) proposed a method to detect drifts using the χ2-test along with rule based
classification. Their detection method is sensitive to partial drifts where drifts occur only
in a subspace of the feature space. When a drift is detected, rule quality measures are used
to judge the relevance of old rules and old instances.

2.3. Particle Filtering

Particle filtering (Doucet and Johansen, 2009), or sequential Monte Carlo (SMC), has been
extensively used in the inference of Hidden Markov Models (Baum and Petrie, 1966), where
time series data are generated by a hidden Markov chain. Importance sampling (see, for
example, Geweke (1989)) is used with the most up-to-date data. In every time step, the
draws from importance sampling, called particles, are used to estimate the most recent
probability distribution of hidden variables (also called state variables), given the current
prior distributions of the hidden variables conditioned on their previous values. Resampling

4

Mining Evolving Data Streams with Particle Filters

on the estimated distribution is often performed to move the particles to regions with high
probability densities so that improbable particles are discarded. An alternative method to
resampling is to simply generate particles from particles with high probabilities in the last
time step. This is the basis of the auxiliary particle filter (Pitt and Shephard, 1999).

Regularized particle filters are summarized in Casarin and Marin (2009), which employs
the same regularization procedures as in Liu and West (2001) and Musso et. al. (2001),
where the prior distribution of current conditional distributions of hidden variables are
generated by a set of hyperparameters. It is shown there that the regularized auxiliary
particle filter outperforms other regularized particle filters with a large particle number of
10000.

Particle filters can be optimized to improve their efficiency. The most natural approach
is done with particle swarm optimization (PSO) (Kennedy and Eberhart, 1995). PSO
is a stochastic optimization method where at each time step, the particles are moved to
maximize an objective function based on a random linear combination of the best positions
visited by each particle, and the best known global position. The resulting particle filter,
PSO-PF (Klamargias et. al., 2008) (also see Ji et. al. (2008)) was shown to be more efficient
than the particle filter, especially in the presence of noise. Finally, Grest and Krueger (2007)
combined gradient descent based optimization with particle filtering.

As particle filtering is designed to estimate the hidden attributes of time series data, it
would be a useful tool to mine data streams. Particle filtering can be thought as an ensemble
method, where new classifiers are generated from the ones with high performances, while
low performing ones are discarded. However, existing particle filters weight particles in
proportion to their likelihoods. In noisy environments these methods tend to overfit. Our
proposed algorithm employs particle filtering with the training accuracy of each particle
as its weight. Majority voting is used to estimate the best classifier for the most current
concept. This is repeated for each time step, replacing the previously learned classifers
when better ones are generated. At the same time replacing out-of-date classifiers as drifts
occur. We found that this procedure leads to very little overfitting.

3. Particle Filtering for classification

In this section we provide a theoretical justification to handle drifts with particle filtering.
The modification to conventional particle filtering are presented. Lastly, we develop PF-LR,
a classification algorithm using logistic regression with particle filtering.

3.1. Motivation

Particle filtering is a method of sequential Bayesian analysis with sequential Monte Carlo
(SMC) on Hidden Markov Models (HMM). It has been shown to be effective in mod-
elling dynamical models (Doucet and Johansen, 2009). In particular, for a time series of
model parameters β(1:T) := {β(1), . . . ,β(T)}, particle filtering can be used to estimate the
posterior distribution of the model parameters p(β(1:T)|x(1:T)) by inferencing on observed
time series data x(1:T). Two assumptions of HMM are, first, that the model parameters
evolve in such a way that it is only dependent on the most recent value. In other words
p(β(n)|β(1:n−1)) = p(β(n)|β(n−1)). Second, the observed data at time n is generated solely
by β(n), the parameters at the corresponding time. That is p(x(n)|β(1:n)) = p(x(n)|β(n)).

5

Fok An Wang

By the repeated use of Bayes’ Theorem, the posterior distribution of the model parameters
can be written as

p(β(1:T)|x(1:T)) = p1(β
(1)|x(1))

T∏
n=2

pn(β(n)|x(n),β(n−1)). (2)

The series of product on the right hand side is highly suggestive that the inference can be
done sequentially. In fact, SMC estimates the conditional probability at each time with
importance sampling by generating model parameters from a chosen proposal function and
calculating their weights. We write the proposal function as

q(β(1:T)) = q1(β
(1))

T∏
n=2

qn(β(n)|β(n−1)). (3)

Dividing equation (2) by equation (3) gives the importance weights

w(1:T) = w(1)
T∏
n=2

w(n|n−1), (4)

where the incremental weight is

w(n|n−1) =
pn(β(n)|x(n),β(n−1))

qn(β(n)|β(n−1))
. (5)

Now, suppose at time n we have an approximation of the posterior through time 1 and time

n−1 given by M particles and their weights {β(1:n−1)
i , w

(1:n−1)
i }, where i = {1, . . . ,M} and

observed data x(n), sequential importance sampling proceeds as follows:

1. Generate M particles of β
(n)
i from qn(·|β(n−1)), where i = {1, . . . ,M} is the particle

index.

2. Calculate the M incremental weights w
(n|n−1)
i for each particle.

3. Calculate the weights w
(1:n)
i = w

(1:n−1)
i × w(n|n−1)

i .

Then, we have updated the posterior estimation from the one at n−1 to time n, p(β(1:n)|x(1:n)),

represented by the tuple {β(1:n), w
(1:n)
i }. In practice, the calculation of the incremental

weights is usually simplified by writing the conditional posterior as pn(β(n)|x(n),β(n−1)) =
gn(x(n)|β(n))fn(β(n)|β(n−1)) and setting the proposal function to be qn(β(n)|β(n−1)) =
fn(β(n)|β(n−1)). Then the incremental weight for each particle is just the likelihood,

w
n|n−1
i = gn(x(n)|β(n)). As the final step, the particles are resampled M times with prob-

abilities given by their (normalized) weights w
(n)
i . This is to remove particles with low

weights while duplicating the ones closer to the posterior maximum so as to reduce the
numerical error at subsequent times. Pitt and Shephard (1999) proposed the auxiliary par-
ticle filter, a method to replace resampling without its deficits by generating an auxiliary
variable for each particle - an index denoting the parents of the particles in the current

6

Mining Evolving Data Streams with Particle Filters

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15
 Particle Filter 2D Gaussian likelihood

β 1

time

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

β 2

time

Figure 1: A typical result from the particle filtering. The true model parameters are denoted
by the black solid line whereas the estimated posterior mean is in red dashed.

time step. The auxiliary variables are generated with a distribution proportional to each
particle’s weight and therefore improbable particles are less likely to contribute.

In essence, the particle filter tracks the movement of model parameters as data arrive.
To understand that this is important for classification tasks, consider the following example.
Suppose one chooses a regression model for classification. When a drift occurs, the change
in the model parameters corresponds to the movement of the decision boundaries over
time. Therefore, particle filters could be used to handle drifts by tracking the movement of
decision boundaries.

As an illustration a typical result of the particle filter is shown in figure 1. The evolution
of the parameters β(n) and x(n) is according to two dimensional Gaussian distributions

β(n) ∼ N (β(n−1), I) (6)

x(n) ∼ N (β(n), I) (7)

We imposed two types of drifts - ones that are small and gradual throughout in accor-
dance with equation (6), as well as a sudden jump at t = 50. In either case, the particle
filter is able to track the movement of the model parameters. This provides the theoretical
motivation that particle filtering can be used in classification tasks to handle drifts and it
is natural to construct a drift tolerant algorithm with the particle filter. Of course, concept
drifts can be expected to occur almost all the time outside of experimental conditions as
the underlying mechanisms that generate such data are often complex, dynamical and even

7

Fok An Wang

unknown. The tracking property of particle filters suggests that it would be an excellent
candidate in mining such data. In the upcoming subsection we discuss the essential features
of a particle filter classification algorithm.

3.2. Features of a Particle Filter Classification Algorithm

We present the essential features required by the particle filter classification algorithm
before turning to the discussion on the algorithm. For the purposes of constructing a fast
and accurate algorithm, we choose to learn regression models with particle filtering. To this
end we require the algorithm to possess the following properties: 1) choosing the model
parameters that gives maximum training accuracy 2) batch processing, 3) discarding all
previously processed data, 4) no drift detection and 5) a statistically monotonic increasing
predictive accuracy in static situations. In this discussion we assume that the concepts are
constantly drifting. Each of the features are discussed below.

In practice, it is important to realize that maximizing the likelihood does not imply
maximum predictive accuracy due to the presence of noise. Traditionally, a resampling or an
auxiliary variable sampling procedure is applied to suppress the exponential error from SMC
using weights proportional to the likelihood function. However, during our investigation,
we found that it gives rather poor results due to overfitting. Instead of weighting by the
likelihood, we choose the set of parameters that results in the highest classification accuracy
during training. We found that this leads to very little overfitting for logistic regression.
An intuitive argument for this is given in appendix B.

Since the particle filter classification algorithm performs regression, batch processing
is a natural choice. To satisfy the one-pass constraint for data stream mining (Aggarwal,
2007), we opt for a batch by batch processing rather than using sliding windows so each
training example is processed only once to reduce the running time. In the case of high
dimensionality, large batches are usually required for accuracy. Under such circumstances
the batches usually contain numerous drifts leading to the deterioration of the classifica-
tion performance. In such cases, a drift detection mechanism with dimensional reduction
techniques can improve the performance.

In order to obtain the most up-to-date and accurate estimates of the regression param-
eters. We discard all previously processed data and use only the current batch to estimate
the model parameters for the current time. This is because we assume the concepts are con-
stantly changing and there is no guarantee that accumulating data would lead to a better
estimate of the parameters.

The particle filter is extremely adaptive to concept drifts as seen in the previous sections.
Therefore it is not necessary to implement a drift detection algorithm. On the other hand,
one could argue that having a drift detection algorithm combined with accumulating data
would give a more precise regression at the cost of computation time. However we do not
find this necessary at present as the algorithm presented in this paper already outperforms
other algorithms in classification accuracy and competitive in complexity. In appendix
C, we implemented a simple drift detection algorithm along with a dimensional reduction
procedure and show that it improves the algorithm’s performance in high dimensional cases.

As we do not process previous data, it is important to ensure that the learned parameters
converge to the truth. In other words, we require that the predictive accuracy to be an

8

Mining Evolving Data Streams with Particle Filters

increasing monotonic function of time in the absence of drifts. This is to say that the
learned parameters must be at least as good as the previous ones for all times. Recall that
the particle filter algorithm learns by choosing the set of parameters giving the best accuracy
on training data. To ensure a strictly increasing accuracy, we compare the performances of
each set of model parameters generated by SMC along with the learned parameters from
the last batch. Then, the learned parameters in subsequent times are guaranteed to be at
least as good as previous ones in noiseless environments.

We expect our algorithm to be highly competitive with others in mining real data in
terms of complexity, classification accuracy, and stability against drifts. The algorithm and
the effects of different input parameters are discussed in the next two subsections. Then we
perform experiments to test the algorithm’s performance in section 4.

3.3. Particle Filter Classification Algorithm (PR-LR)

The algorithm is remarkably simple. It proceeds as follows: given a batch of data and the
learned parameters from the previous batch, β∗(n−1), an ensemble of parameters (i.e. the
particles) are randomly drawn from a chosen proposal distribution conditioned on previous

particles with the largest training accuracy. For the m-th particle, β
(n)
m , the conditional

proposal function is chosen to be the multivariate Gaussian distribution with mean β
∗(n−1)
k
(n−1)
m

and a diagonal covariance matrix Σ as an input, where k
(n−1)
m is an index denoting the

parent of β
(n)
m . Then the parameter estimates at the current batch β∗(n) is obtained by

a majority voting from all particles that give the highest training accuracy. The rest of
the ensemble is discarded. This process is to be repeated for subsequent batches. Also,
we choose logistic regression as an example and refers to the particle filter with logistic
regression algorithm as PF-LR.

The algorithm uses the following notations. The a-th instance in batch n is denoted by

x
(n)
a and its class label is ya, where ya ∈ {0, 1}. The logistic function is

f(ηa) =
1

1 + eηa(β
(n),x

(n)
a)

. (8)

We use the following sign convention

ηa(β
(n),x(n)

a) = β(n) ·

(
−1

x
(n)
a

)
. (9)

The prior distribution and the proposal function are set to be equal. The proposal function
qn(β(n)|β(n−1)) is set to be a multivariate Guassian distribution with mean β(n−1) and
covariance matrix Σ.

The algorithm for each batch n is given in algorithm 1. After generating particles from
the proposal distribution, the performance of each particle is evaluated by matching their
predicted class labels with the true ones. Prediction of class labels is done by checking
whether the value of the logistic function in equation (8) is larger than 0.5 for each in-
stance, i.e. f(β(n), {x, y}(n)) > 0.5, along with the previously learned classifier from the

last batch. After the performance of each particle is obtained, M auxiliary indices k
(n)
m ,

9

Fok An Wang

where m ∈ {1, . . . ,M} are sampled uniformly among the indices corresponding to the best

performing particles2. The purpose of this step is to assign the parents of β
(n+1)
m to be β

(n)

k
(n)
m

.

Then, majority voting is performed to combine these particles. The algorithm returns the
combined classifier and the auxiliary indices. The inputs of PF-LR are the batch size B,
parameters for the proposal (Gaussian) distribution Σ, the particle number M and the data.
The rest of the input shown in algorithm 1 are obtained from time n − 1. For clarity, a

component-wise notation is used in the algorithm, where we write the m-th particle β
(n)
m as

its i-th component β
(n)
im . As the covariance matrix is diagonal with the i-th element being

σi, drawing from the multivariate Gaussian proposal distribution is equivalent to generating

each particle component β
(n)
im from a one dimensional Gaussian distribution N (β

(n)
im , σi) one

by one.

Here we discuss the impact of the inputs to the performance of PF-LR. In fact, a
good choice of these parameters depends on whether the decision boundaries are static or
dynamic. In static situations, large batch sizes would result in a more accurate estimate
of the regression parameters. However, in the presence of concept drifts, model learned
from large batches do not necessarily give a better accuracy because the model parameters
could vary significantly within a batch, and the model learned from the batch would not be
representative of the true model. This results in a poor predictive accuracy as the model
parameters are not learned well. On the other hand, too small of a batch could lead to a
poor estimation of model parameters simply due to data sparsity.

The parameters of the proposal function σi control the spread of ensembles from the
previously learned classifier, β∗(n−1). Therefore σi controls the recovery time post-drift and
the precision of learned parameters. In the absence of drifts a small spread is preferred since
it gives a higher precision. In contrast, a larger spread is favorable when the data contains
large or rapid drifts. Since a larger spread allows the particle filter to search for the best
estimate for the model parameters in a wider range. For fast drift recovery, the value of
σi should be chosen so that PF-LR would generate at least one particle close to the new
concept for a given particle number M with high probability.

The particle number M is the number of parameters generated from the proposal dis-
tribution each batch. Generally, a larger M increases the precision of parameter estimation
and improves drift recovery, but in the expense of computational time. Finally, since the
algorithm does not contain any adaptive elements, its complexity is linear. For a total of
T batches with B instances each batch and M particles, the complexity is of O(MTB).
Experimental results of the complexity is given in the next section.

4. Analysis

In this section we estimate the predictive accuracy of PF-LR on different data sets and
compare against the performances of Hoeffding Tree (Domingos and Hulten, 2000) with
Leverage Bagging (LB-HT3) (Bifet et. al., 2010a) and Naive Bayes with Dynamic Weighted

2. As the batch size is typically smaller than the particle number, there will typically be more than one
particle that gives the highest training accuracy.

3. The input parameters we used for LB-HT are ensembleSize = 10, weightShrink = 6, deltaAdwin =
0.002, gracePeriod = 200, splitConfidence = 0, tieThreshold = 0.05 and the splitting criterion is ac-
cording to the information gain.

10

Mining Evolving Data Streams with Particle Filters

Algorithm 1: PF-LR for the n-th batch

Input:

{x, y}(n), the training data in batch n
B, the number of instances in a batch
M , the number of particles
σi, the parameters of the proposal function

β∗(n−1), the learned parameters from the previous batch

k
(n−1)
m , the indices where the m-th particle will be generated from

Output:

β∗(n), the trained regression parameters for batch n

k
(n)
m , the indices where the m-th particle will be generated from in the next batch

1 for m← 1 to M do
2 for i← 1 to D do

3 Generate β
(n)
im ∼ N (β

(n−1)
i,k

(n−1)
m

, σi)

4 end

5 Calculate training accuracy Am ← Am[f(β
(n)
m , {x, y}(n)), B]

6 end
7

8 Calculate training accuracy using the classifier from last batch

9 A0 ← A0[f(β∗(n−1), {x, y}(n)), B]
10

11 Uniformly generate a list of M indices k
(n)
m ∈ K(n) for each particle, where

K(n) = {k(n)|Ak(n) = max{Aj}, j ∈ {0, . . . ,M}}
12

13 Combine the classifiers with majority voting

14 β∗(n) ← β̄, where β̄ is the mean of β
(n)

k(n) over all k(n)

15

16 return β∗(n) and k
(n)
m

Algorithm 2: Calculating accuracy from the training set

Input: f(·), {x, y}(n),βm, B
Output: Am, the accuracry ∈ [0, 1]

1 A′m ← 0
2 for a← 1 to B do

3 if (f(βm, x
(n)
i) > 0.5 AND y

(n)
a = 1) || (f(βm, x

(n)
a) < 0.5 AND y

(n)
a = 0) then

4 A′m ← A′m + 1
5 end

6 end
7 return A′m/B

11

Fok An Wang

Majority (DWM-NB4) (Kolter and Maloof, 2007). The difference between DWM-NB and
LB-HT is that DWM-NB is an online algorithm without drift detection. Whereas LB-HT
processes data batch by batch and employs adaptive sliding windows as a drift detection
mechanism. Unless otherwise stated, throughout this section we choose the batch size to
be B = 50, the particle number M = 100, and the parameters of the proposal function
σi = 0.1 for all i.

We choose two commonly used synthetic data sets, SEA (Street and Kim, 2001) and
CIRCLES (Nishida and Yamauchi, 2007), as benchmarks to demonstrate the drift and
noise tolerance, respectively. We also generate a three dimensional data set with twenty
concepts, with drifts occurring at every other batch. In the next section we apply PF-LR
to the electricity pricing data set (Harries, 1999) to illustrate the applicability of PF-LR in
real situations.

All synthetic data sets used in this section are generated by the data generator from
Minku et. al. (2010) and contain 10% class noise. The specifics of each data set will be
given in the following subsections.

Care must be taken when comparing algorithms with different learning techniques. The
DWM-NB is an online algorithm that processes one example at a time. Whereas PF-LR
and LB-HT process a batch of 50 for the synthetic data sets. To estimate the predictive
accuracy of DWM-NB, we test on 20 instances for each training instance, so that DWM-NB
is tested on the same 1000 instances in a batch of 50 instances. The performances of these
algorithms5 are evaluated on 1000 testing examples for each batch. We compare the average
predictive accuracy of DWM-NB over a batch to the those of PF-LR and LB-HT.

4.1. SEA

The SEA data set contains feature variables x ∈ [0, 10]3, with class labels y = 1 if x1 +x2 <
µ, where µ = {8, 9, 7, 9.5}. Before processing, the feature variables are normalized to
the range [0,1]. The average predictive accuracy over 50 runs with PF-LR, LB-HT and
DWM-NB are shown in figure 2. It shows that PF-LR outperforms both DWM-NB and
LB-HT. The overall predictive accuracies and the corresponding 95% confidence interval
are (98.1± 0.1)% for PF-LR, (96.5± 0.1)% for DWM-NB, and 96.3% for LB-HT. Note that
PF-LR recovers from drifts extremely fast. Whereas DWM-NB accumulates instances from
earlier times which leads to a significant drop in its predictive accuracy immediately after
drifts. LB-HT is somewhat insensitive to drifts as its performance stays roughly constant.
However, it is not able to give predictions as accurate as those of PF-LR and DWM-NB,
and its drift recovery time is very slow.

4.2. CIRCLES

This subsection shows that PF-LR has better error tolerance than DWM-NB and LB-
HT using a highly imbalanced synthetic data set, CIRCLES. Naive Bayes accumulates
each instance, constructs classifiers and predicts class labels of instances accordingly. In
the situations where the class noise overwhelms the true class label, as in the case of an

4. The input parameters we used for DWM-NB are: β = 0.5, θ = 0.01,maxExpoerts = ∞, and period = 50.
5. We used Weka (Hall et. al., 2009) to evaluate DWM-NB, and MOA (Bifet et. al., 2010b) to evaluate

LB-HT

12

Mining Evolving Data Streams with Particle Filters

0 100 200 300 400 500 600 700 800
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
SEA: PF−LR (solid blue), DWM−NB (dotted red), LB−HT (dashed black)

Batch number

Ac
cu

ra
cy

Figure 2: The averaged predictive accuracies of PF-LR (solid blue), LB-HT (dashed black)
and DWM-NB (dotted red) for the SEA data set. The vertical magenta lines
denote where the drifts occur.

imbalanced data set, it would be difficult for Naive Bayes to learn the model parameters.
However, for algorithms such as PF-LR and LB-HT that analyze data batch by batch, the
effects of class noise should be less profound. We show that this is indeed the case.

The feature space of CIRCLES is specified by x ∈ [0, 2]2. The data set CIRCLES has
four concepts with increasing signal-to-noise ratio, defined by

ρ =
number of true class labels in the minority class

number of false class labels in the minority class
. (10)

The signal-to-noise ratio and regression parameters for each concept are listed in table 1.
Because the training sets are highly imbalanced, we test the algorithm on testing data that
contains an equal number of the two classes for each concept, giving a baseline of 50%. We
found that a linear decision boundary given by equation (8) gives a performance no better
than random guessing. Therefore we used a circular decision boundary given by

ηa = (x1a − β1)2 + (x2a − β2)2 − β20 . (11)

We also impose a periodic boundary condition on the sample space of CIRCLES by
constraining the model parameters by the size of the sample size. In other words we take
the modulo-2 of the particles immediately after their generation at each batch6. In other

6. The factor of 2 in moldulo corresponds to the length of each dimension in the feature space [0, 2]2.

13

Fok An Wang

Table 1: The concepts and their signal-to-noise ratio in CIRCLES.
Concepts β0 β1 β2 ρ

1 0.15 0.2 0.5 0.17
2 0.2 0.4 0.5 0.30
3 0.25 0.6 0.5 0.51
4 0.3 0.8 0.5 0.67

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Batch number

Ac
cu

ra
cy

CIRCLES: PF−LR (solid blue), DWM−NB (dotted red), LB−HT (dashed black)

Figure 3: Comparisons of PF-LR (solid blue) with LB-HT (dashed black) and DWM-NB
(dotted red) for the CIRCLES data set. The error bars are 68% confidence
intervals. The vertical magenta lines denote where drifts occur.

words we apply the following line on algorithm 1, β(n) ← mod(β(n), 2), after the generation
step.

In figure 3 we compare the performances with the CIRCLES data set. The results show
that DWM-NB is unable to give any sensible predictions. For PF-LR, when a more suitable
regression model is chosen, i.e. regression with a circular decision boundary, PF-LR is
able to learn the model parameters. Even though the performance of PF-LR comes with
large uncertainty, it still outperforms LB-HT. The overall predictive accuracies and 95%
confidence intervals are are (79.1± 1.1)% for PF-LR, 50% for DWM-NB and (63.1± 0.2)%
for LB-HT. Even without taking the modulo, PF-LR still outperforms LB-HT and DWM-
NB, with an overall predictive accuracy of (70.6± 1.3)%.

14

Mining Evolving Data Streams with Particle Filters

Table 2: The concepts in MANY.
Concepts β0 β1 β2 β3 Concepts β0 β1 β2 β3

1 8.3 0.5 0.7 0.6 11 8.5 0.49 0.38 0.49
2 8 0.72 0.41 0.52 12 8 0.59 0.6 0.49
3 8.5 0.66 0.55 0.56 13 8.2 0.64 0.4 0.64
4 8.10 0.52 0.6 0.62 14 8 0.65 0.5 0.65
5 8.5 0.44 0.35 0.44 15 8.5 0.68 0.4 0.68
6 8.6 0.78 0.5 0.68 16 8.1 0.71 0.55 0.71
7 8.5 0.54 0.55 0.54 17 7.6 0.75 0.31 0.65
8 7.8 0.78 0.58 0.68 18 7.3 0.46 0.31 0.66
9 8.1 0.43 0.51 0.43 19 7 0.4 0.7 0.5
10 8.0 0.44 0.54 0.54 20 8 0.5 0.5 0.5

4.3. A data set with many drifts

Another circumstance where PF-LR may perform better than other algorithms is where
concepts are frequently changing. The fact that DWM-NB and LB-HT retain historical
data and that it is more prone to noise implies the classifiers used by these algorithms may
not be up-to-date after drifts. In contrast, PF-LR only relies on the examples in the current
batch and its performance is expected to be higher in the case of constant drifts.

To compare the performance of PF-LR, a data set consisting of twenty concepts are
generated. We will refer this data set as MANY. The twenty concepts are listed in table
2. The feature space as that same as that of the SEA data set, namely, x ∈ [0, 10]3.
The instances are normalized to [0,1] before processing. The performance comparison is
shown in figure 4. There, PF-LR almost always performs better than DWM-NB. Especially
between batch numbers 25 to 35, where PF-LR is seen to be unaffected by drifts whereas the
performance of DWN-NB is seen to drop rapidly immediately after each drift. The behavior
of LB-HT is interesting. It is least affected by the drift at batch number 8, presumably
due to its drift detection mechanism. However, it is unable to attain a high performance
possibly due to contamination from out-of-date examples when the drifts are too small to
be picked up by the drift detection. The overall predictive accuracies with this data set and
the 95% confidence intervals are (89.1± 0.1)% for PF-LR, (85.6± 0.1)% for DWM-NB and
(86.4± 0.1)% for LB-HT.

4.4. Real Data Analysis: Electricity pricing

To illustrate the intuitions developed using the synthetic data sets, we apply PF-LR on
the electricity pricing data set (Harries, 1999) which has been extensively studied by other
authors (Z’liobaite, 2013). The data set contains a time series of 45,312 instances recorded
at 30 minutes intervals. The class labels are UP and DOWN which indicate whether the
price is higher than the moving average price over the last 24 hours. The original data
set contains three variables denoting the time, date, day and period. We ignore these
variables and rely solely on the particle filter’s ability to track the drifts as each batch is
processed. The remaining 5 feature variables are nswprice, nswdemand, transfer, vicprice
and vicdemand. The values of each of these are divided by a factor of 1000 to bring them

15

Fok An Wang

0 5 10 15 20 25 30 35 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
MANY: PF−LR (solid blue), DWM−NB (dotted red), LB−HT (dashed black)

Batch number

Ac
cu

ra
cy

Figure 4: Comparisons of PF-LR (solid blue) with LB-HT (dashed black) and DWM-NB
(dotted red) for the MANY data set. The vertical lines that denote the drift at
every other batch is not shown for clarity.

to the range of order 1. Furthermore, we found PF-LR gives the best performance when
using only one feature, nswprice. Including other features would slightly deteriorate the
performance by up to a few percent. In this section we present the results using PF-LR
and LB-HT including only the feature nswprice and compare the performance of DWM-NB
given by Kolter and Maloof (2007).

Figure 6 shows the values of nswprice. Each estimated concept is shown as the boundary
separating the two classes. Because this data set contains frequent drifts, it is crucial to
use a batch size as small as possible so that the concept in the next batch is approximately
the same as the current batch. On the other hand, the batch size must be large enough so
that logistic regression is accurate.

In contrast to the synthetic data set analyses earlier where independent testing data
were available, the purpose of analyzing this time series is to predict whether the electricity
price would rise above the 24 hour moving average. To do so, we estimate the regression
parameters with the current batch and predict the class labels in the next batch. Then we
repeat the process when the class labels for batch n+1 become known, a procedure referred
to as prequential evaluation. The results for different batch sizes are shown in table 3 and
figure 5. As expected, the performance of PF-LR improves as the batch size decreases, due
to the fact that smaller batches give a better description of the current concept. However,
when the batch size becomes too small, say B < 6, logistic regression becomes unreliable
due to data sparseness. Consequently, the performance drops and its uncertainty grows. As

16

Mining Evolving Data Streams with Particle Filters

2 4 6 8 10 12 14 16 18 20 22
0.75

0.8

0.85

0.9

0.95

1
Predicive accuracy on the Electricity Pricing data set with varying batch sizes

Batch size, B

Ac
cu

ra
cy

Figure 5: Predictive accuracy of PF-LR as a function of batch size B with M = 100. The
error bars are 68% confidence intervals.

Table 3: Predictive accuracies of PF-LR on the electricity pricing data with varying batch
size, B.

B 4 6 8

Accuracy 0.883± 0.195 0.915± 0.006 0.907± 0.01

B 10 15 20

Accuracy 0.905± 0.002 0.891± 0.011 0.879± 0.007

a sanity check, we plot the decision boundary obtained by PR-LR in figure 6. In analogy
to figure 1, we see that PF-LR is able to track the movement of the decision boundary
exceptionally well.

Finally, we report the recorded training times for PF-LR in table 4.7 By comparing
between ELEC with SEA and CIRCLES where the number of instances are roughly the
same, we see the training time for ELEC is roughly 5 times those for SEA and CIRCLES.
At the same time, the number of batches in ELEC is 5 times larger than those for SEA
and CIRCLES. This linear dependence on the total batch number is manifest between
other combinations of data sets. In our Matlab implementation of PF-LR we vectorized all

7. We implemented PF-LR in Matlab. These tests were performed with the AMD Phenom II X4 995
Processor at 3.21GHz.

17

Fok An Wang

ç
çç
çç
çç
ççççççççç
ç
çç
ç
ç
çç
çççç

ççççççç
çççççççççççççççççççççççççç
ç
ç

çççççççççççççç
çç

çççç

ç

ççç

ç

çççç

ç

ç

ççççç

ç

çç
çç
ç
ç
ççç
çççççççç
çççç

çç

çç

ççç

ç

çç

ç

çç

ççççç

çç

ç

çç

çç

ç

ç

ç
ç
ç
ç

çç

ççççç

çç

ç

ç

çççç

ççç

ç

ç

ççç
ç
çç

ç

ç
ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

ç

çççç

ç
çç

ç

ç

ç
çç

çç

ç
ç

ççççç

ç

çç
çççç
ç

ç

ç

ç

ç

çç

ç
çç

çççç

ççççç

ç

çç

ç

ç

ççç
ççççç

ç
ç
ççç

ççççççç
çççççççççççç

ç

ççççç
ç

çç

ç
çç

ççç

ççççç

çç

ççç

ç

ç
ç
ç

ç

çççç

çç

çççç
çç
ç
çç
ççççç
ç
çç
çç

çç

ç
ç
ççç
ççç
çççççççç

ç

ç

çç

ççççççççç

çç

ç

çççç

ç

ççççççççç
ç
ççççç

ç

ç

ç

ç

ç

çç
ç

çç

ç

ç

çç

ç

çç

ç

ççç

ççç

ççç

ç

ç

ç
ç
ççç

çç

ççç

ç

çç

ççç

çç

ççç

ç

ç

ç

çç

ç

ç

ç

çç
ç
ççççç
ç

ççç

ç
ç
ç
ç
ççç
ç
çççç

ç

ç

çç
ç

ç

ç

çç
çç

ççç
ç
çç
ç
ç
ç

ç

çç

çç
ç

çç

ç
ççç
ç
ç
ç

ç

ç

ç
çç
ç
ççççç
çç

ç

ç

ç

ççççççç
çç
ç

ç

çç
ç

ç
ç

çç
ç
ç

ç

ç

ç
ç

çç

ç
çççççççççç
çç

çç

çç

ç
çç
çç
ç
çç

ç

çççç

ç

ççççççç
çç
ççç
ç
çççççççççççççççç

ççç
ççç

ç

ççç

çç

ç

ç

ç
çç

ç
çççç

çç

ç
ç

ç
çç

ç

ç

ç

çç
ççççç

çç

ç

ç
çççç

çç
ç
ç

çç
ç
çç
ççç
çç
ç
ç

ç

ç

çç

çç

ç

ç
ç

ççç

ç

ç

çç

ç

ç

ççç

çç

çççççç

ççç

ç

ç

ç

çç

çç

çç

ç

çç

ç

ç

ç

çççç

ç

ç
ç

ç

ç

ç

ç

ç
ç

çç

ç

ç

ç

ç

ç
ç

ç

ç

çç

ç

ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

ç
ç
ç
ç
ççç

ç

ç

ç
ç

ç

ç

çç
ç
ç

ç
ççç

ç

ç

ç

çççç

ç

ç

ççççççççç

çç

ççç

ç
ç

ç

ç

ç

ç

çççççççç
ç
ç

çççççççç
ç
çç
ç
ç

çççççççç

ç

ç

çççççççççç
çç

çç
ç
ç

ççççç
çç

ç

ç

çç

ç

çç
ççççç
ç
ççççççççççç
çç
ç
ç

ç
ççç

ç

çççççççç
ççççç
ç
ççç
ççççç
çç
çççççççççç
ç

ç

çç
çççççç
ç
ççç

ççççç

ç

ç

çççç
çççç
ççççç

ç

ç

ç

ç

çç

çç

çç

ç

ç

ç

ççç

ççç

çç

ç

ç

ç

ççççç

ç

ç

ç
çç
ç

ç

ççççç

óó
ó

ó

ó

ó

óóó

óó

ó

ó

óó
óóóóó

óóóóóó

óó
ó

ó

ó
ó
óó
ó

óó

ó

ó

ó

óó

ó

óóóóóóóóóóóóóóóóóóóóóóóóó
ó
óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

óó

óó

ó

óóóóó

ó

óóó
óó

ó

ó

óó

ó

ó

óóó

óóóóóó

óó

óó

óóóó

ó

óó

óóóóóó

ó

ó

ó

ó

óó

ó

óóó
óó

óóóóóó

óóóó

ó

óó

óóóóóó

ó
óóóóóóó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

óóóóó

óó

ó

óóóó

ó
óóó

ó

óóó
óóóóóó
óóó
óóóóóó
ó

óóóóóóóóó

óóóóóóó
ó

óó

ó

óó

óóó

óóóóóóóóóóóóóóóó

ó

ó

ó

óóó
óó
óó

ó

óóóó
óóóó
óó
ó

óóó

óó
óó
ó

ó

óó
ó
ó

óóóó

óóó

ó

ó

óóóó

óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó
ó
óóó

ó
óó
óó
ó
óó

óóó
óó

óóó

óóóó

óó
óóóóó
óóó
óóóóóó
ó

ó

óóóóóóóó
ó

ó

óóóóóóóó
ó
óó

ó

óó

ó
ó
ó

óó
ó

ó

ó
óóóó
óóó
ó
ó

óó
ó
óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

ó
óó

óóóóóóóóóóóóóóóóóóó
ó
óóó
ó
óóóó
óóó

óó
ó
óóóóóóóóóóóóóóóóóóóóóó
óóóóó
óó
ó
óóóóóóóóóóóóóóóóó

óó

óóóóóó

óó
ó
óóó
óó

óóóóóóóóóóóóóóóóóóóóó

óó
óó
ó
óó

óóó

ó

ó

ó

óóóó

ó

ó

ó

óóóóóó

óóóóóóóóó

óóóóóóóóóóóóóóó
ó
óóóó

ó

óóóó

ó

óóóó

ó

óóóó

ó

ó

ó

ó

óó

óóóóóóóóóóóóó

ó

óóó

ó

ó

ó

ó

óóó

óó

óóó
ó

ó

óóóó

óóóóóóóóóóóóóóó

óóó

óóóóó

óóó

óó
óó
óó
ó
ó

óó

óó
óóóóó

ó

ó

óóó

óóó

óóóóóóóóóóóóóóó
ó
óóó
óóóó

ó

óó

óóóó

óóóóóó

ó

ó

ó

ó
ó
ó
óóóóóóó

óóóóó
ó
óóóóóóóóó
ó
ó
óó

ó

óóó

ó

óó

ó

ó

óóóóóóó

óóó

ó
ó

ó

óóóó

ó

óóóóóó

óóóó
ó
óóóóóóóóóóóóóó

óó

ó

ó

óóóóó

ó

óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó
óóó
ó
óó
ó
óóóó
óóóóóóóóóó
ó
óóóó
ó
ó

óóóó

óó

óóóóóóóóóóóóóóó

óóóóó

óóóóóóóóóóó

ó

óó
óóóóó
ó
óóóó
ó
óóóóóóóó
óóóóóó

óóó

ó

ó

ó

óó

ó

óóóó

ó

óó

ó

ó

ó

ó
óóóóóóóó

ó

óóó
óóóóóóóóóóóóóóóó

ó

óóóóóóóóóóó

óóóó

ó

óóó

ó

óóó

óóóó

óóó
ó
óó
óó

ó

óó

ó

ó

óóó
óó
ó
ó
ó

ó

óóóóóóó

óóóó
óóóóóóó

ó

óóóóó
óóóóó

óó

ó

ó

óóóó

ó

óóó
óó
óóóó
ó
ó

óóóóóóóóóó

óóóóóó
óó

ó

óóóóó
ó

ó

óó
óó

óó
ó

ó

ó

ó

óóóóó

ó

óóó

ó

ó

ó

ó

óó

óó

óó

ó

óóóóóóóóó

óóó

óóó
ó

óó

óó

ó

óóó
ó
óóóóóóóóóóóóóóóóóóóóóóóóóóóó

óó

óó

óóóóóóó

ó

óó

ó

óó

óóóóóóóó

ó

ó
óóóó

óó

ó
óó

ó
óóóóó
óóóóóóó
ó
ó

ó

óóóóóóóóóóóó

ó

ó

óóóóóóó
ó
ó

ó

óóóó
ó

óó

ó

óó

ó

óó

ó

ó

óóóóóóóóóóóóóóóóóóóóóóóóó
ó
ó
ó
ó

ó

ó
óó
ó
ó
óóóóó
óó
óóóóóóóóóóóóóó

ó
óó
óóó

óó

óó

óó

óó

ó

ó

óó

óóó

ó
óóó
óó
óóó
óó

óóó

óóóóó

ó
óó

ó

ó

óóóóóóóóóóóóóóó

óóóó
óó

óó
óó

ó

0 500 1000 1500 2000 2500
Time

2000

3000

4000

5000

6000

7000

nswprice

Figure 6: Values of the feature variable nswprice of the first 2500 instances. The markers
denote the classes DOWN (red triangle) and UP (black circle). It is evident that
drifts occurs throughout the data set. The solid line shows the decision boundary
learned by PF-LR.

Table 4: Recorded training times in milliseconds for PF-LR in Matlab with an AMD Phe-
nom II X4 995 Processor at 3.21GHz.

Training time (ms) PF-LR Number of Instances T

SEA 404.7± 7.3 40000 800
CIRCLES 655.3± 7.3 40000 800

MANY 25.4± 2.8 2000 40
ELEC (B=10) 1907± 54.3 45312 4531

calculations within a batch, keeping only the loop over different batches. The loop over the
batches gives the running time a linear dependence on T . Because Matlab is optimized for
operations involving vectors and matrices, the running time’s dependence on the batch size
B is suppressed.

5. Discussion and Conclusion

We used training accuracy for particle selection instead of the likelihood function as done in
conventional particle filtering and developed PF-LR. This report demonstrated that PF-LR
outperforms other state-of-the-art algorithms in terms of drift recovery and accuracy for the
data sets tested. Synthetic data sets were analyzed to develop an understanding of PF-LR
- the SEA data set was used to demonstrate the drift tolerance of PF-LR. CIRCLES was
used to show its applicability to very noisy data. Its ability to adapt to drifts was further

18

Mining Evolving Data Streams with Particle Filters

Table 5: The overall predictive accuracies of PF-LR, DWM-NB, and LB-HT for the data
sets tested. The highest value obtained for each data set is in bold.

Data set PF-LR DWM-NB LB-HT

SEA (98.1± 0.1)% (96.5± 0.1)% 96.3%

CIRCLES (79.1± 1.1)% - (63.1± 0.2)%

MANY (89.1± 0.1)% (85.6± 0.1)% (86.4± 0.1)%

ELEC (B=10) (90.7± 1.1)% 0.808%∗ 86.3%

tested on a data set with frequent drifts. Then we applied PF-LR to a real data set - the
electricity pricing data, to show that it is able to obtain the highest accuracy reported in
the literature (Z’liobaite, 2013). We found that the complexity is linear in the number of
batches processed. We summarize our results8 in table 5.

The results clearly show that PF-LR outperforms DWM-NB and LB-HT. It is important
to note that DWM-NB and LB-HT uses very different learning mechanisms. In particular,
DWM-NB is an online algorithm that forgets previous instances based on the classifier’s per-
formances. It handle drifts by adaptively creating and removing classifiers. While LB-HT
is a decision tree method using adaptive sliding windows as a drift detection method. The
fact that PF-LR outperforms algorithms with different learning mechanisms consistently
shows its potential in mining evolving streaming data.

Granted, particle filter based algorithms handle concept drifts exceptionally well. They
are not without limitations. As particle filtering is a Monte Carlo method, it suffers from the
curse of dimensionality in the same way as other Monte Carlo techniques. An analysis with
a ten dimensional synthetic data set is undertaken in appendix C. There, we see that PF-
LR gives rather poor performances in high dimensions but it can be avoided by performing
dimensional reduction methods.

Perhaps another attractive feature of particle filtering is that it is very intuitive and
theoretically motivated. The manner how each input parameter of PR-LF affects the per-
formance is manifest and they can be adjusted, or even be made adaptive, to fit the analysis
at hand with ease. In particular, in situations where the accuracy is preferred over compu-
tation time, the particle number M can be made larger. Data sets showing large and rapid
drifts can be handled by either choosing a proposal distribution with wide spread to im-
prove drift recovery or decreasing the batch size. For more static circumstances a proposal
function with narrow spread as well as a large batch size can be chosen to maximize the
precision and accuracy, respectively.

As we only implemented the particle filter algorithm with the most basic features; a naive
choice of the proposal function with parameters σi and a fixed batch size. The possibilities
to boost the performance of PF-LR are many. For example, a drift detection algorithm
could be used and update the spread parameters σi of the proposal function accordingly
- using a narrow spread for static situations and a wide spread immediately after drifts.
Also, a large change in the learned parameter usually implies a drift is occurring. Therefore
an alternative method would be updating σi in a way that depends on the magnitude the

8. The result of DWM-NB for ELEC is taken from Kolter and Maloof (2007).

19

Fok An Wang

parameters have changed from the last batch. We leave the opportunities to improve PF-LR
for future research.

20

Mining Evolving Data Streams with Particle Filters

Appendix A. Regularized Particle Filtering

In this appendix we compare the performance of an algorithm based on the regularized
particle filter (Casarin and Marin, 2009), which we call RegPF-LR, with the other algorithms
discussed in this paper. We found that RegPF-LR does not outperform PF-LR in all of the
cases considered.

In regularized particle filtering, the parameters for the conditional proposal function,
Σ, are regularized by a conditional hyperprior distribution with hyperparameters a, and h,
where a controls the the mean of the hyperprior and h controls its variance. We choose the
covariance matrix Σ to be a diagonal matrix with elements σi, where i ∈ {1, . . . , D}, and
D the dimensionality of the regression coefficients β. We choose the hyperprior on σi to be
a log-normal distribution. At batch n, the i-th component of the m-th particle is denoted

by the tuple (β
(n)
im , σ

(n)
im). Let θ

(n)
im = log σ

(n)
im and θ̄

(n)
i be its mean over the particle index,

the generation scheme is

θ
(n)
im ∼ N (aθ

(n−1)
im + (1− a)θ̄

(n−1)
i , h2) (12)

β
(n)
im ∼ N (β

(n−1)
im , (σ

(n)
im)2). (13)

Algorithm 3 shows RegPF-LR. It is structurally similar to that of PF-LR other than the
extra steps involved in the generation of the proposal parameters σim.

To initiate RegPF-LR, a preliminary run of 500 iterations was performed on the first
batch. This is so that a suitable initial values of the logistic regression coefficients and
the proposal parameters are chosen. Then we compare the performances of RegPF-LR to
those of PF-LR DWM-NB and LB-HT in figures 7. We found that RegPF-LR performs
marginally better than DWM-NB and LB-HT in the SEA, CIRCLES and MANY data sets.
However, PF-LR outperforms RegPF-LR in all the data sets considered. In CIRCLES,
even though PF-LR and RegPF-LR achieve similar predictive accuracies, the uncertainty
associated with RegPF-LR is consistently larger than that of PF-LR. In MANY, PF-LR
constantly outperforms RegPF-LR. In MANY, even though the performance of PF-LR can
be worse than that of RegPF-LR at times, the overall accuracy of PF-LR, with 89.1%, is
higher than that of RegPF-LR at 88.1%.

21

Fok An Wang

Algorithm 3: Classification algorithm with a regularized particle filter

Input:

{x, y}(n), the training data in batch n
B, number of instances in a batch
M , number of particles

θ∗(n−1), the logarithm of the parameters of the proposal function

β∗(n−1), the learned parameters from the previous batch
Output:

β
∗(n)
i , the trained regression parameters for batch n

1 for m← 1 to M do
2 for i← 1 to D do

3 Calculate θ̄i ← mean of θ
(n−1)
im

4 Generate θ
(n)
im ∼ N (aθ

(n−1)
i,k

(n−1)
m

− (1− a)θ̄i, h
2)

5 Calculate σ
(n)
im ← exp(θ

(n)
im)

6 Generate β
(n)
im ∼ N (β

(n−1)
i,k

(n−1)
m

, σ
(n)
im)

7 end

8 Calculate training accuracy Am ← Am[f(β
(n)
m , {x, y}(n)), B]

9 end
10

11 Calculate training accuracy using the classifier from last batch

A0 ← A0[f(β∗(n−1), {x, y}(n)), B]
12

13 Uniformly generate a list of M indices k
(n)
m ∈ K(n) for each particle, where

K(n) = {k(n)|Ak(n) = max{Aj}, j ∈ {0, . . . ,M}}
14

15 Combine the classifiers with majority voting

16 β∗(n) ← β̄, where β̄ is the mean of β
(n)

k(n) over all k(n)

17 θ∗(n) ← θ̄, where θ̄ is the mean of θ
(n)

k(n) over all k(n)

18 return (β∗(n),θ∗(n)) and k
(n)
m

22

Mining Evolving Data Streams with Particle Filters

0 200 400 600 800
0.9

0.92

0.94

0.96

0.98

Batch number

RegPF−LR (solid), DWM−NB (dot−dashed), LB−HT (dashed)

SE
A

Ac
cu

ra
cy

0 200 400 600 800
0.9

0.92

0.94

0.96

0.98

Batch number

SE
A

Ac
cu

ra
cy

RegPF−LR (solid), PF−LR (dot−dashed)

0 200 400 600 800
0.4

0.5

0.6

0.7

0.8

0.9

Batch number

C
IR

C
LE

S
Ac

cu
ra

cy

RegPF−LR (solid), DWM−NB (dot−dashed), LB−HT (dashed)

0 200 400 600 800
0.4

0.5

0.6

0.7

0.8

0.9

Batch number

C
IR

C
LE

S
Ac

cu
ra

cy

RegPF−LR (solid), PF−LR (dot−dashed)

0 10 20 30 40

0.65
0.7

0.75
0.8

0.85

0.9
0.95

Batch number

M
AN

Y
Ac

cu
ra

cy

RegPF−LR (solid), DWM−NB (dot−dashed), LB−HT (dashed)

0 10 20 30 40
0.6

0.7

0.8

0.9

1

Batch number

M
AN

Y
Ac

cu
ra

cy

RegPF−LR (solid), PF−LR (dot−dashed)

Figure 7: Comparison between RegPF-LR, DWM-NB, and LB-HT (left column), and be-
tween RegPF-LR and PF-LR (right column).

23

Fok An Wang

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

x

y

Training data: Fitted decision boundaries with
maximum likelihood (dot−dashed), training accuracy (solid).

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

x

y

Testing data

Figure 8: This figure shows that the maximum likelihood estimate (dot-dashed) is more
sensitive to noise than the one obtained by maximum training accuracy (solid).

Appendix B. Dealing with Overfitting

Because of the small patch sizes required to give an accurate description of changing con-
cepts, some conventional methods relying on optimizing the predictive accuracy becomes
ineffective for mining streaming data. For instance, predictive accuracy obtained from
holding out a subset of the batch at hand becomes unreliable. While cross validation may
become too costly. This section illustrates qualitatively the mechanism in which PF-LR
overcomes overfitting by maximizing the training accuracy.

Maximizing the training accuracy to fit a logistic regression model is less sensitive to the
method of maximum likelihood. To see this, we will first look at a simple one dimensional
case and generalize the argument to higher dimensions. Figure 8 shows two data sets with
class labels y ∈ {0, 1} on the y-axis and the features are evenly distributed on the x-axis.
The training data set at the top has two instances affected by noise, marked by X. The
testing data set is shown below, with the true decision boundary at x = 0. The vertical
lines represent the decision boundary obtained by maximum likelihood (dot-dashed) and
that obtained by maximum training accuracy (solid). The class labels of each instance are
assigned y = 1 if it lies to the right of the boundary, and y = 0 otherwise. As seen in
figure 8, a biased noise distribution skews the maximum likelihood estimate. However the
fit obtained by maximum training accuracy is unaffected, as the training accuracy is still
maximized at the true value. Because of the skewed likelihood estimate, the predictive

24

Mining Evolving Data Streams with Particle Filters

x

Figure 9: This figure shows the projection of instances into the one dimensional case. The
true decision boundary is denoted by the solid line. The dot-dashed lines show
the distances from the instance to the decision boundary along the direction
perpendicular to it.

accuracy is affected. On the other hand, the estimate from maximum training accuracy is
more robust to noise. This is shown in the bottom plot of figure 8.

Generalizing the above argument to higher dimension is straight forward. The scenario
at any dimension can be reduced to the one dimensional case and apply the same argument
in the previous paragraph. This is done by retaining only the projection of feature variables
in the direction perpendicular to the decision boundary. A two dimensional case is shown in
figure 9. Finally, this argument remains valid in the case where the distribution of instances
are not even.

To further support our claim. We compare the results of maximum likelihood versus
that of maximum training accuracy for the synthetic data sets we used in the main sections.
Figure 10 shows that PF-LR with training accuracy outperforms PF-LR with the likelihood
function in all synthetic data sets used. Further, the training accuracy approach continues
to work when the noise level is high as in the CIRCLES data set. Where as the approach
with the likelihood function breaks down, with its predictive performance no better than
random guessing.

25

Fok An Wang

0 100 200 300 400 500 600 700 800

0.95

1

batch number

Ac
cu

ra
cy

SEA

0 100 200 300 400 500 600 700 800
0.5

1
CIRCLES

batch number

Ac
cu

ra
cy

0 5 10 15 20 25 30 35 40
0.7
0.8
0.9

MANY

batch number

Ac
cu

ra
cy

Figure 10: Predictive accuracy using the likelihood (dot-dashed) and training accuracy
(solid).

Appendix C. The HYPERPLANE Data Set

The HYPERPLANE data set (Hulten et. al., 2001) contains variables x ∈ [0, 1]10, with
class labels y = 1 if (xi +xi+1 +xi+2)/3 > 0.5, where i = {1, 2, 4, 7}. Since particle filtering
is a Monte Carlo method, it suffers from the curse of dimensionality and particle filters
perform poorly in high dimensions.

To alleviate the detrimental effects from the high number of dimensions, we implement
a drift detection algorithm and then apply a dimensional reduction procedure. We say a
drift is said to have occur if the training accuracy is less than 0.75. When this happens
(say, at time n) we perform a logistic fit with the current batch and record the estimated
coefficients β∗(n). Then we reduce the dimensionality by testing the logistic fit against

the null hypothesis where each of the regression coefficients vanishes, β
(n)
k = 0, where k

denotes the k-th component of β(n), and keep only the ones with p-values less 0.05. This

corresponds to rejecting the hypothesis of β
(n)
k = 0 with 95% confidence.

Figure 11 shows the effects of implementing a dimensional reduction procedure with drift
detection. It is clear that dimensional reduction dramatically improves the performance of
PF-LR. In figure 12, we compare the performances of PF-LR and DWM-NB. We see that
PF-LR is on par with DWM-NB after dimensional reduction.

26

Mining Evolving Data Streams with Particle Filters

0 100 200 300 400 500 600 700 800
0.4

0.5

0.6

0.7

0.8

0.9

1

Batch number

Drift detection present (top, blue), no Drift detection (bottom, red)

Ac
cu

ra
cy

Figure 11: Blue: With drift detection. Red: Without drift detection.

0 100 200 300 400 500 600 700 800
0.7

0.8

0.9

1
PF−LR (top, solid), LR (bottom, dot−dashed)

Batch number

Ac
cu

ra
cy

0 100 200 300 400 500 600 700 800
0.7

0.8

0.9

1
PF−LR (solid, blue), DWM−NB (dot−dashed, red)

Batch number

Ac
cu

ra
cy

Figure 12: Particle Filter vs DWM-NB. The results shown for particle filter is the average
over 50 runs on the same training set.

27

Fok An Wang

References

A. Doucet, A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years
later. In Handbook of Nonlinear Filtering (editors D.Crisan and B.Rozovsky). Cambridge:
Cambridge University Press, 2009.

C. C. Agarwal. Data streams: models and algorithms. Page 41. ISBN- 10: 0-387-28759-0.
Springer, 2007.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. The annals of mathematical statistics 37 (6): 15541563, 1966.

A. Bifet, G. Holmes, and B. Pfahringer. Leveraging bagging for evolving data streams.
In Proceedings of the 2010 European conference on machine learning and knowledge
discovery in databases: Part I, ECML PKDD10, pages 135150, 2010c.

A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer. MOA: Massive Online Analysis. Journal of
Machine Learning Research 11, 1601-1604, 2010.

L. Breiman. Bagging predictors. Machine Learning, 24:123140, 1996.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801849, 1998.

R. Casarin and J. Marin. Online data processing: comparison of bayesian regularized par-
ticle filters. Electronic Journal of Statistics. Vol. 3, 239258, 2009.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 7180. ACM Press, New York, NY, 2000.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 148156. Morgan
Kaufmann, San Francisco, CA, 1996.

Y. Freund and R. E. Schapire. A Short Introduction to Boosting. Journal of Japanese
Society for Artificial Intelligence, 14(5):771-780, September, 1999.

J. Geweke. Bayesian inference in econometric models using Monte Carlo integration, Econo-
metrica, Vol. 57, pp. 1317-1339, 1989.

D. Grest, V. Krueger. Gradient-Enhanced Particle Filter for Vision-Based Motion Capture.
Human Motion Understanding, Modeling, Capture and Animation. Lecture Notes in
Computer Science Volume 4814, pp 28-41, 2007.

Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P-J.
Nordlund. Particle filters for positioning, navigation and tracking. IEEE Trans. Signal
Processing, vol. 50, no. 2, pp. 425437, Feb. 2002.

M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical report, Univer-
sity of New South Wales, 1999.

28

Mining Evolving Data Streams with Particle Filters

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten. The WEKA
data mining software: An update; SIGKDD Explorations, Volume 11, Issue 1, 2009.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):1330, 1963.

G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In Proc. of
the 7th ACM SIGKDD, pages 97106. NY, USA, 2001.

C. Ji, Y. Zhang, M. Tong and S. Yang. Parallel problem solving from nature PPSN X,
Lecture Notes in Computer Science Volume 5199, pp 909-918, 2008.

J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of IEEE Interna-
tional Conference on Neural Networks IV. pp. 19421948, 1995.

A.D. Klamargias, K.E. Parsopoulos, Ph.D., Alevizos, M.N., Vrahatis. Particle Filtering
with Particle Swarm Optimization in Systems with Multiplicative Noise, Genetic and
Evolutionary Computation Conference 2008 (GECCO’08), Atlanta (GA), USA, pp. 57-
62, 2008.

J. Z. Kolter, & M. A. Maloof. Dynamic weighted majority: An ensemble method for drifting
concepts. Journal of Machine Learning Research 8:27552790, 2007.

N. Littlestone and M. K. Warmuth. The Weighted majority algorithm. Information and
Computation, 108:212261, 1994.

J. Liu and M. West. Combined parameter and state estimation in simulation based filtering.
In Doucet, A., de Freitas, N., and Gordon, N., editors, Sequential Monte Carlo Methods
in Practice. Springer-Verlag, 2001.

F. L. Hedibert and R.S. Tsay. Journal of Forecasting J. Forecast. 30, 168209, 2011

M. A. Maloof. Concept drift. In J. Wang, editor, Encyclopedia of data warehousing and
mining, pages 202206. Information Science Publishing, Hershey, PA, 2005.

L.L. Minku, A.P.White, X.Yao. The impact of diversity on on-line ensemble learning in
the presence of concept drift, IEEE Transactions on Knowledge and Data Engineering,
vol.22, no.5, pp. 730742, 2010.

C. Musso, N. Oudjane, , and F.Legland. Improving regularized particle filters. In Doucet,
A., de Freitas, N., and Gordon, N., editors, sequential Monte Carlo methods in Practice.
Springer-Verlag, 2001.

K. Nishida and K. Yamauchi. Detecting concept drift using statistical testing. In Discovery
Science, pages 264269. Springer, 2007.

M. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590599, 1999

M.K. Pitt, R.S. Silva, R.S. Giordani and R. Kohn. Auxiliary particle filtering within adap-
tive Metropolis-Hastings sampling, http://arxiv.org/abs/1006.1914, 2010

29

Fok An Wang

L., Rokach. Ensemble-based classifiers. Artificial Intelligence Review 33 (1-2): 139, 2010

J. C. Schlimmer and R. H. Granger. Beyond incremental processing: Tracking concept drift.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 502507.
AAAI Press, Menlo Park, CA, 1986.

J. C. Schlimmer , R. H.Granger. Incremental learning from noisy data, Machine Learning,
1(3), 317-354, 1986.

D.Sotoudeh, A. An. CIKM10, Proceedings of the 19th ACM international conference on
Information and knowledge management. Pages 769-778, ACM New York, NY, USA
2010.

W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale classification.
In Proc. of the 7th ACM SIGKDD. NY, USA, 2001.

A. Tsymbal. The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin, 2004.

H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble
classifiers. In ACM SIGKDD, pages 226235, 2003.

G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts.
Machine learning, 23(1):69101, 1996.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241259, 1992.

I. Z’liobaite. How good is the electricity benchmark for evaluating concept drift adaptation.
arXiv:1301.3524v1, 2013.

30

