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Abstract

We present a Bayesian model for parallelized canonical circuits in the neo-
cortex, which can partition a cognitive context into orthogonal symbol rep-
resentations. The model is capable of learning from infinite sensory streams,
updating with every new instance and without having to keep instances older
than last seen per symbol. The inherently incremental and parallel qualities
of the model allow it to scale to any number of symbols as they appear in
the sensory stream, and to transparently follow non-stationary distributions
for existing symbols. These qualities are made possible in part by a novel
Bayesian inference method which can run Metropolis-Hastings incrementally
on a data stream, and significantly outperforms particle filters in a Bayesian
neural network application.

Keywords: neocortical canonical circuits, Bayesian brain, symbolic
abstraction, incremental Metropolis-Hastings, data stream learning

1. Introduction

We present a model for a hypothetical functional unit of the neocortex
and its relationship with proximal peers which share the same cognitive con-
text. Our model is not one of the neocortex at large, which would require a
network of cognitive contexts, but we hope it offers a building block for such
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an objective. Our approach is to first identify key computational aspects
of the neocortex, and then build the model upon those assumptions. We
demonstrate how the resulting model can orthogonalize a cognitive context
developing representations for the cognitive symbols. The model is evaluated
on popular machine learning datasets.

Our assumptions are detailed in section 2. The principal assumption is
the existence of an elementary functional unit in the neocortex, identified as
a canonical circuit. Next, we assume that each canonical circuit develops to
represent a particular cognitive symbol, by learning towards data associated
with its symbol, and learning away from the data of all other symbols. An-
other assumption is that each canonical circuit must execute concurrently
with all other canonical circuits, in complete task parallelism. Next we as-
sume that neocortical computation is analogous to Bayesian inference, and
we approach this aspect through Marr’s three levels of analysis. Lastly, we
assume that canonical circuits must operate inherently incremental by learn-
ing with few examples, from infinite data streams, and without having to
store old data or use multiple epochs. There is existing work in neocortical
computational modeling which covers the previous listed assumptions to a
certain extent either individually or in subsets. However, we are not aware of
any work which covers all the assumptions jointly. One of our contributions
is that we identify the state of each aspect in current neuroscience, propose
correlations between them, and propose a model that puts them all in a
common framework.

In our model, each cognitive symbol is represented by a canonical circuit
in the form of an independent Bayesian neural network. Each of these neural
networks updates with its own Bayesian inference process, yet coupled in-
hibitory to those of other symbols, so that each pursues uniqueness and the
overall result is orthogonalization of the cognitive context which describes the
data stream. The model starts blank and adds a canonical circuit for each
new symbol as it shows up in the stream. For example, cognitive context
could be ”direction of motion” with its symbols being ”up”, ”down”, ”right”,
etc. Figure 1 shows a simplified visualization of how canonical circuits or-
thogonalize a cognitive context. Due to the task parallelism, regardless of
how many canonical circuits become involved, the model runs in constant
time, and the canonical circuits can be distributed to different processors or
machines across the network.

In order to meet the requirements for incremental learning, we developed
a novel Bayesian inference method which runs Metropolis-Hastings (MH) on
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Figure 1: Example orthogonalization of a cognitive context. The left plate shows the
development of a canonical circuit ccA for the first symbol that shows up in the streaming
sensory input. The other canonical circuits are not initialized yet. The right plate shows
the state after each canonical circuit has associated with a symbol. From here on, they
all continually specialize for their symbols while opposing each other.

a data stream. The method makes it possible for a single data instance to be
sufficient in forming a useful representation of a symbol, and for each symbol
to update with each new data instance efficiently. No data instances, before
the last seen per symbol, have to be kept for subsequent updates. We discuss
how it is possible in an optimal model for not even the latest instance to be
required. We call our method Incremental Metropolis-Hastings (IMH). IMH
recurrently re-uses the last posterior as a new prior. Priors and posteriors
are represented as non-parametric probability distributions, utilized through
Monte Carlo or kernel density estimators. Therefore the inference does not
suffer from limitations of point-based approximation such as Maximum-a-
Posteriori.

From a purely computational perspective, we contribute a Bayesian clas-
sification model which is capable of supervised learning of unlimited number
of symbols (classes) from an infinite data stream, and which has simple pa-
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rameterization. Because of its incremental learning qualities, the model is
unique in handling concept drift transparently, i.e. it inherently supports
non-stationary class distributions. We show that it matches the performance
of state-of-the-art incremental learning methods. IMH is also a computa-
tional contribution in itself, because we show it vastly outperforms particle
filters for incremental Bayesian inference, at least with a neural network
model.

In the following section we present the background for our model, struc-
tured as a literature review of the principal assumptions, each of them iden-
tified as a subsection. We attempt to relate them by expressing them into
a shared terminology, which allows for a unified perspective upon which we
build the model. In the third section we describes our model in details.
The forth section reviews existing and related models. In the fifth section
we present the evaluation results, after which we finish with a Conclusions
section.

2. Background

2.1. Canonical circuits in the neocortex

The idea of elementary circuits as functional modules in the neocortex
was hypothesized as early as 1938 [1], though it remains an open question [2].
A prominent hypothesis of this type is the columnar view of the neocortex,
based on functional identification of neural circuits perpendicular to the pial
surface [3, 4, 5], as well as a repeating template of neural distribution and
connectivity found in such circuits [6, 7, 8]. In the columnar hypothesis,
the smallest circuit is called a mini-column, and proximally connected mini-
columns form a column. Depending on the area of neocortex, a mini-column
is linked to a specific representations such as line orientation, isofrequency
tones, angles, or direction of motion. Inside a column, its mini-columns
typically cover the full range of their representation type, such as full 180 ◦

covered for orientation or direction of movement, or the full tone frequency
spectrum [3]. Columns are proximally or distally interconnected with many
peer columns across the neocortex.

Even though the direct and indirect legacy of the columnar hypothesis
is undeniable [9], it hinges too much on anatomical modularity, which is
debatable [2, 10]. There is a general consensus however that there is some
functional differentiation between neocortical circuits [9]. da Costa et al. [9]
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review the legacy of the columnar hypothesis, its criticism, and recent per-
spectives, and then propose that we focus on the most salient aspects of the
idea by using the term canonical circuits instead of mini-columns, and not
trying to constrain these circuits into rigid physical columns. Their canonical
circuit ”embodies the idea of a repeated local circuit that performs some fun-
damental computations that are common to all areas of the neocortex.”. In
their view, the exact physical location and configuration of canonical circuits
can change and even be overlapping [9].

2.2. Symbols and Cognitive Contexts

The canonical circuit has a multifaceted input [2, 7]. One part of the
input is from the environment, coming from subcortical structures such as
the thalamus. Another part of the input comes from peer cortical circuits
which could be anywhere in the neocortex. The environmental and the peer
inputs come into the canonical circuit at different locations, and can therefore
be seen as contextual to one another, through the canonical circuit as a
context processing element. Therefore, we will refer to the combined input
as cognitive context.

Certain facts put forward in the columnar hypothesis suggest that a col-
umn, and therefore all its mini-columns, share a similar set of inputs [5].
The width of a column is also linked to the termination width of the sensory
(thalamic) input [4]. In other words, any particular cognitive context could
be seen as being processed by a group of canonical circuits. Each canonical
circuit in the group represents a particular aspect of the cognitive context,
for example a particular angle in the cognitive context ”line orientation.” We
will refer to any particular representation of a cognitive context as a cogni-
tive symbol. Any such symbol has meaning only given its context. The term
cognitive symbol has been defined previously, in a compatible perspective,
as the internal categorical representation of an external physical or informa-
tion entity [11]. Identifying the symbol representation mechanism in neural
circuits is a critical challenge [12].

2.3. Requirements for parallelism

The assumption of canonical circuits implies that each circuit is distinct
from others and can execute in parallel [13]. Functional magnetic resonance
imaging during various behaviour shows that multiple distal areas of the
neocortex appear as active at the same time. It is therefore unlikely that
canonical circuits involved in a particular behaviour have close correlations
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of internal states. We assume that the learning method inside one canonical
circuit must be able to execute without knowing the states in other canonical
circuits, i.e. in complete task parallelism. In other words, each canonical
circuit should be able to run on a separate machine.

2.4. Why Bayesian and how?

Bayesian probabilistic inference is becoming a leading candidate for ex-
plaining the operation of the brain [14, 7, 12, 15]. Bayesian probability is an
evidential probabilistic interpretation, where probability is an abstract con-
cept describing a state of knowledge, as opposed to the view of probability as
a frequency [16, 17]. Given new relevant data and given a probability model
for that data (called the likelihood) in terms of some parameters of interest
θ, Bayesian inference provides a way to update an assumed probability of
the parameters p(θ) (called the prior before the update and posterior after
the update) using a simple formula:

p(θ|data) =
p(θ)p(data|θ)

p(data)
(1)

The challenge in Bayesian inference comes from how the probability mod-
els and distributions are framed, learned, and utilized, and how the inference
equation (1) is executed. Solutions from Bayesian inference could be either
models of the whole posterior distribution, or point-based approximations
such as Maximum-a-Posteriori (MAP). Using the whole distribution as a so-
lution gives much more informative solutions because it describes the proba-
bility of the parameters at any possible value. This is important when there
is uncertainty, as is usually the case, because the probability distribution
can account for it, while a singular value is over-confident. This is especially
relevant when the goal is to learn from few examples.

Tenenbaum et al. [12] note how Bayesian inference quickly becomes a sus-
pect when we consider how the brain learns and generalizes all too well from
sparse, noisy, and ambiguous data: ”If the mind goes beyond the data given,
another source of information must make up the difference. Some more ab-
stract background knowledge.” The authors note how in different disciplines
that study the brain this abstract background knowledge is known under
different names, such as constrains in psychology and linguistics, inductive
bias in machine learning, and priors in statistics.

To consider the idea of a Bayesian brain systematically, we can look at
it through the three levels of analysis in Marr’s approach to understanding
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information processing systems [18]. The names of Marr’s levels can be
misleading, however the underlying questions are intuitively distinguishable:
the top level (called computational) considers what the system does and
why, the middle level (called algorithmic or representational ) considers what
representations are used and how they are built and manipulated, and the
bottom layer (called physical) considers how the whole system is implemented
physically.

At the top Marr’s level we have to consider conscious action. Whether
Bayesian inference applies at this level is debatable. Critics argue that
many conscious processes are notoriously deviant from Bayesian expecta-
tions. However there are arguments that this is only so for a single individ-
ual where a particular behaviour is just one sample, and that when looked
at collectively, at the population distribution level, behaviour is faithfully
Bayesian [19]. There is work showing that the brain operates akin to sam-
pling from the population behaviour distributions. For example, Sanborn
et al. [20] show that the rational model of categorization in cognitive sci-
ence works better with Gibbs sampler and particle filters, than with MAP.
The representational and physical Marr’s level can be described more as un-
conscious. Existing Bayesian brain theories focus on the representational
level, where they attempt to explain how prior and posterior probability dis-
tributions are built and maintained on a conceptual level. We present key
examples in section 4.1. There are few attempts in literature that attempt
to explain the prior and posterior probability distributions on the physical
level in terms of neuron and circuit specifics [21, 22]. In general, this issue
is considered unresolved [15, 12]. ”Uncovering their neural basis is arguably
the greatest computational challenge in cognitive neuroscience...” [12].

2.5. Learning with few examples

We consider it unlikely that the brain archives multiple data instances in
their original form, for later use in an epoch-like processing. It is more likely
that the streaming data, which the brain constantly experiences, is used only
at the time of exposure, after which only their contribution remains in the
form of adjustments made to neural networks. Under this assumption a
faithful neuromorphic algorithm has to learn with few examples at a time.
This means the algorithm should start developing useful symbol representa-
tions after the first few related instances, as well as use few instances at each
update stage.
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The quality of learning with few instances has been noted as essential
cognitive science. Tenenbaum et al. [12] addresses this topic and discusses
how the brain needs only a few examples of a symbol in order to form an
understanding. They point out how children can learn to use a new word
after just a few examples of it.

3. Proposed Model

3.1. Overview and Definitions

This work presents two independent but complementing contributions.
The principal contribution is a model for incremental and Bayesian orthog-
onalization of a cognitive context, where each resulting cognitive symbol is
adopted by a canonical circuit, executing in parallel with all other circuits.
The model describes how canonical circuits relate in a cognitive context, and
how cognitive symbols develop while inhibiting each other. We refer to this
model as Cognitive Context Orthogonalizing Networks (CCON).

In order to run however, each canonical circuit in CCON needs an incre-
mental Bayesian inference method over a non-linear high-dimensional neural
network and running over a data stream (i.e. not requiring multiple epochs
with archived data). The most fitting existing method is particle filters.
However, as discussed later in sections 4.2 and 5, CCON is too complex for
particle filters. Therefore we develop the Incremental Metropolis-Hastings
(IMH) method. IMH complements CCON, however it can also be used in-
dependently in different problems. IMH is the result of pursuing a more
biologically plausible incremental inference, one which could be explained
better on the physical Marr’s level.

An overview of CCON is illustrated in Figure 2. It is composed of mul-
tiple canonical circuits (denoted as cc1, cc2, ..., ccK), each specializing for a
cognitive symbol (i.e. class) of a single cognitive context. A canonical circuit,
cck where k = 1, ..., K , is a construct consisting of an IMH Bayesian process
Bk and a multi-layer feed-forward neural network NNk whose synapses are
controlled by Bk. Each canonical circuit cck acts as a binary classifier, that
outputs the probability for the presence of its associated symbol in the cur-
rent data stream instance.

The data stream from which the model needs to learn is potentially in-
finite and defined as S =< e1, e2, ..., e∞ >, where ei denotes the labeled
training example that arrives at the i-th time point. A training example ei

consists of xi and yi, which represent respectively the environmental and peer

8



input parts defined earlier. Specifically, xi is a vector of sensory attribute
values, and it is the same for all cck. yi is the supervision information coming
from distal peers outside the cognitive context, suggesting which symbol is
related to xi. Because each cck is a binary classifier, yi needs to be a binary
class label. Therefore any original multinomial supervision label is converted
to multiple binary labels, one for each cck. For example, if there are three
classes A,B,C and a training example ei belongs to class B, then the class
label yi of ei for ccB will be a 1, while yi for ccA and ccC will be a 0.

)1(

1

),( )1(

1  x
1NN

)1(

D

)1(

2

)1(

3
)1(

4

)1(

5
)1(

6

1mc

)2(

1

),( )2(

1  x
2NN

)2(

D

)2(

2

)2(

3
)2(

4

)2(

5
)2(

6

2mc

)(

1

K

),( )(

1

Kx 
KNN

)(K

D

)(

2

K

)(

3

K
)(

4

K

)(

5

K
)(

6

K

Kmc

...
x

x

xx

Mutual Inhibition / Orthogonalization

...
Bayesian 
Inference 
Process

Bayesian 
Inference 
Process

Bayesian 
Inference 
Process

1y 2y Ky

Figure 2: Overview of the CCON model, showing K canonical circuits of a single cognitive
context, each circuit with its Bk Bayesian inference process and its NNk neural network.
The same input x feeds all canonical circuits, but each of them has its own supervision
information yi. The top shows that canonical circuits are mutually inhibitive resulting in
orthogonalization of the cognitive context.

The neural network NNk in a canonical circuit cck is approximated with a
multi-layer feed-forward neural network, fully connected in-between adjacent
layers. The input layer is determined as per the dimensionality of input x,
and the output layer has a single output neuron. Calling upon the universal
approximation theorem [23], we use only a single hidden layer. The number
of neurons H in each hidden layer can be determined by the user. All weights
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w(k) and biases b(k) of NNk are represented jointly as θ(k). The output neuron
vout uses a log-sigmoid activation function in order to contain the output
within 0 and 1. All other neurons use a hyperbolic tangent sigmoid transfer
function tanh1. Thus, given an instance with sensory input x, the output of
NNk is:

ξk(x, θ(k)) = 1/[1 + exp(−b
(k)
out −

H∑

h=1

w
(k)
h2outvh(x, θ(k))] (2)

where wh2out is the weight from hidden neuron h to the output neuron,
bout is the bias of the output node, and vh(x, θ(k)) is the output of hidden
layer neuron h, computed as:

vh(x, θ(k)) = tanh(b
(k)
h +

dim(x)∑

j=1

winp2hxj) (3)

The following interpreted execution log provides an idea of how the model
works on one of our evaluation datasets (Wine). Out of the first 11 instances,
only a select few instructive are shown. We can see that CCON starts dif-
ferentiating early and progressively better. By the 11 th instance it is already
working with high precision.

Instance 1:
Its symbol: A
First time symbol A is seen, therefore a new ccA is initialized
How all canonical circuits see this instance at start:

ccA: Match/Recognition: 0.99999
How all canonical circuits see this instance after learning:

ccA: Match/Recognition: 0.99999
...
Instance 3:

Its symbol: B
First time symbol B is seen, therefore a new ccB is initialized
How all canonical circuits see this instance at start:

ccA: Match/Recognition: 0.99999
ccB: Match/Recognition: 0.99999

How all canonical circuits see this instance after learning:

1Log-sigmoid transfer function was also tried, without noticeable impact.
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ccA: Match/Recognition: 0.99995
ccB: Match/Recognition: 0.99999

...
Instance 5:

Its symbol: C
First time symbol C is seen, therefore a new ccC is initialized
How all canonical circuits see this instance at start:

ccA: Match/Recognition: 0.99999
ccB: Match/Recognition: 0.97186
ccC : Match/Recognition: 0.99999

How all canonical circuits see this instance after learning:
ccA: Match/Recognition: 0.83387
ccB: Match/Recognition: 0.48339
ccC : Match/Recognition: 0.87383

...
Instance 11:

Its symbol: A
ccA already exists for it
How all canonical circuits see this instance at start:

ccA: Match/Recognition: 0.93646
ccB: Match/Recognition: 0.00132
ccC : Match/Recognition: 0.04108

How all canonical circuits see this instance after learning:
ccA: Match/Recognition: 0.98506
ccB: Match/Recognition: 0.00015
ccC : Match/Recognition: 0.04137

...

3.2. Cognitive Context Orthogonalizing Networks (CCON)

We recall that the goal of CCON is incremental and Bayesian orthogo-
nalization of a cognitive context into symbols, each of which is maintained
by a canonical circuit, executing in parallel with all other circuits. In com-
putational terms only, CCON is a Bayesian classifier that can learn from an
infinite data stream, with few instances at a time, and scale dynamically to
any number of classes as they show up in the stream, processing each class
in parallel.

CCON starts from a blank state, and adds a new canonical circuit for each
new symbol when it first shows up in the data stream. The neural network
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of a new canonical circuit is initialized using gradient descent so that ξk = 1
for the first data instance. Once a canonical circuit cck is initialized, its Bk

maintains a conditional probability distribution for θ(k) = {θ(k)
1 , θ

(k)
2 , ...θ

(k)
D }

where θ(k) represents the configuration of NNk. Bk learns the distribution
from the streaming data one instance at a time, while distancing itself from
other symbols in the shared cognitive context.

To be more specific, let us suppose that new input (x, y) arrives at time
t and we look at a single canonical circuit cck. The most recent probability
distribution of θ(k) maintained by Bk is p(t−1)(θ(k)), last updated at time t−1,
and NNk is parameterized with a sample from it. The level of recognition
ξk(x, θ(k)) can be used to measure the likelihood of θ(k) given x and y,
based on a Bernoulli discriminative data likelihood model ξy

k(1 − ξk)
1−y. To

simulate inhibition between different canonical circuits, we formulate the data
likelihood using a specialized set of i.i.d. instances for each canonical circuit.
At time t, each canonical circuit cck has its own update set of instances
D

(t)
k = {(x(1), y(1)), (x(2), y(2)), ...(x(K), y(K))}, where each instance is the last

seen of each of the K classes, and only y(k) = 1 while all others are 0.
Therefore all the D

(t)
k share the same x(k) but have different y(k). The data

likelihood for cck at time t is then:

p(D
(t)
k |θ(k)) =

|D(t)
k |∏

i=1

p(y(i)|x(i), θ(k)) =

|D(t)
k |∏

i=1

ξk(x
(i), θ(k))y(i)

(1−ξk(x
(i), θ(k)))1−y(i)

(4)
All the instances which have y = 0, i.e. all those associated with symbols

of other canonical circuits, are used as a representation of what cck needs
to distance from. In other words, the inhibition is being simulated by the
(1 − ξ)1−y factors in equation (4). It would be more biologically plausible if
the model did not have to store even the last seen instance per symbol, and
could learn with the current instance only. We believe this is possible if all
the NNk are modeled as recurrent neural networks and the desired inhibition
between them is implemented through their attractors and synchrony. We
attempted this approach but have so far been unsuccessful and this remains
as key future work.

The Bayesian inference process executed in each cck can then be expressed
as:

p(t)(θ(k)|D(t)
k ) ∝ p(t−1)(θ(k))p(D

(t)
k |θ(k)) (5)

where p(t−1)(θ(k)) is the previous posterior, used as empirical prior at time
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t. In addition to using only the last seen instance per symbol, one could
optionally use multiple last seen instances per each symbol, and this improves
the inhibition simulation.

As data stream instances keep coming in, each instance replaces the older
instance of its symbol in all the D

(t)
k sets, and for each new instance all

canonical circuits update again in parallel using equation (5). The process
recurrently reuses the last posterior as new empirical prior, developing p(θ(k))
with each new instance, and constantly sampling from it for the latest NNk

parameter configuration.
So far we described how CCON learns. The model can also be used for

predictions at any time by getting the recognition ξk of each of its canonical
circuits and then using the softmax model:

p(ynew = k|xnew) =
ξk(xnew, θ(k))

∑K
l=1 ξl(xnew, θ(l))

(6)

3.3. Incremental Metropolis Hastings (IMH)

We believe that a biologically plausible inference method for a single
canonical circuit cck in CCON operates as follows at a high-level: it contains
a generative process which constantly issues parameters for the neural net-
work NNk; while being constantly reconfigured, NNk persistently tries to
recognize its associated symbol in the streaming sensory data; supervision
information is used to determine how well the recognition performs, thus
measuring the likelihood of the proposed parameters; the current input per-
sistently activates the neural network, and the generative process is able to
keep proposing changes to the parameters while observing how their like-
lihood changes under the current input. Changes are accepted or rejected
based on their likelihood effect and the neural network progresses through
a chain of successively better configuration. The generative process can be
imagined as turning a dial on each parameter with speed dependant on the
likelihood effect, turning it faster when the likelihood gets worse, to look for
a new value domain, and turning it slower when the likelihood improves, to
optimize in the current value domain.

The method above is reminiscent of the Metropolis-Hastings (MH) Markov
chain Monte Carlo algorithm [16]. However MH cannot learn from data
streams because it requires all the data at each update step. Therefore, we
develop IMH which updates with a single instance instead of all the data,
and transfers the knowledge from previous updates through the prior. We
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also adopt the acceptance criterion from MH by which proposals which im-
prove the likelihood are always accepted, while proposals which degrade the
likelihood can be tolerated to some extent for exploration benefits.

In this paper we only propose how IMH works on the representational
Marr’s level. How IMH is implemented on the physical Marr’s level we leave
as an open question. It is interesting to note however that we were led to
the idea for IMH from our ongoing research into the physical level, where
we are looking into a biological process which engulfs and manipulates many
synapses inside a canonical circuit. This process has a wave-based dynam-
ics and can be interpreted probabilistically as a generative process which
continually samples neural network configurations, while learning from their
performance.

Conventional MH builds a Markov chain which converges to a desired
distribution p(t). It starts from a random value, and at each iteration proposes
a new value θnew from a proposal distribution q, to be a possible successor
to the last chain element θold. The new value is accepted with probability

min(1,
p(t)(θnew)q(θold)

p(t)(θold)q(θnew)
) (7)

Intuitively, θnew has greater chances of acceptance if it is more probable
in the target distribution p(t), and MH cares more for candidates which are
harder to propose by q. The proposal distribution q could be a normal
distribution centered on the previous value, and with a certain standard
deviation. If the proposal is rejected, θold is copied as the new chain element.
The empowering aspect of MH is that the normalizing constant of p(t) cancels
out in equation (7). Because MH starts from a random value, the Markov
chain needs to spend a certain time getting close to the target distribution
before its values can be used as a representative sample. This initial part of
the chain is often referred to as burn-in and removed after manual analysis.

IMH is based on the idea that instead of running a single long Markov
chain requiring all the data for each update, we run a short update chain for
each new data instance using only D

(t)
k for data likelihood. Starting with a

random value, each update chain at time t uses the previous posterior p(t−1)

as an empirical prior, and an acceptance probability based on equations (5)
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and (7):

min(1,
p(t−1)(θnew)p(D

(t)
k |θnew)q(θold)

p(t−1)(θold)p(D
(t)
k |θold)q(θnew)

(8)

The product of each update chain is an updated posterior p(t) in the form
of a new set of samples. Since the posteriors used in IMH are sets of samples,
we cannot use them in their original form as the next prior, since for a prior
we need a functional form which can evaluate probability for any proposal
θnew. To bridge this gap we use kernel density estimation (KDE). Given a
sample {θ1, θ2, ...θS} of size S from a probability distribution p, KDE can
estimate the probability p(θnew) for any θnew, by averaging the contributions
of a symmetric kernel Λ centered on each point of the sample:

pKDE(θnew) ≈
1

S

S∑

s=1

Λ(θs, θnew) (9)

For Λ we use Gaussian kernels with bandwidth ( 4
3S

)0.2σ, where σ is the
sample standard deviation. This is a normal-optimal bandwidth heuristic
[24], which we found allows for multiple modes, while preventing unbounded
growth by merging proximal modes as their number grows.

Each update chain starts from a random sample from the previous poste-
rior, thus using previous knowledge as a new starting point. Combined with
the use of previous posterior as a very informative prior, a transfer of knowl-
edge is achieved between update chains, allowing for much shorter chains
(in our case, several orders of magnitude). The transfer of knowledge also
removes the need for burn-in analysis, because after the first instance each
update chain no longer starts with a random value, but in some vicinity of
its target distribution.

IMH has simple parameterization because it automatically sets most pa-
rameters based on how well NNk recognizes its symbol instances, and how
well it rejects those of other symbols. To measure this quality we use the
data likelihood from equation (4), and call it the fitness of a canonical circuit.
The fitness is used to set the proposal distributions for the update chains, as
well as their length.

For the proposal distribution q we use a Gaussian centered on the current
value and with a standard deviation equal to the log of the fitness. As
a result, the worse a circuit does on predicting a new instance (i.e. away
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from its symbol or towards foreign symbols), the standard deviation will be
exponentially larger, pushing it to propose alternatives more forcefully.

For the length of each update chain, IMH takes a minimum and maximum
as parameters, and sets the actual length automatically as maximum ∗ (1−
fitness) with a lower bound of minimum. This giving less-fit canonical
circuits longer chains and vice versa. Because of this, IMH goes through
familiar instances faster, and slows down to deal with novelty.

The complexity of IMH is similar to MH because instead of running thou-
sands of iterations using the whole dataset for each iteration, as is usually
the case with MH, IMH can run much shorter chains for each data instance
in sequence. IMH does have the minor added cost for calculating KDE for
each update chain.

We recall that each canonical circuit cck learns independently, i.e. it
runs its own IMH which is independent from the IMH processes of other
canonical circuit. In terms of the update order of neural network parameters
θ(k) = {θ(k)

1 , θ
(k)
2 , ...θ

(k)
D }, they are updated one at a time and in random

order permuted each iteration. We also assume independence of the prior
components, i.e. p(θ(k)) =

∏D
j=1 p(θ

(k)
j ).

4. Related Work

4.1. Biomorphic Perspective

Computational models of the neocortex vary greatly in their objectives
and biological inspiration. Many of them do not pursue a generic func-
tion but are specialized models, for example in modeling ocular dominance
with a 2D grid over which simple Hebbian-type relationships are simulated
[25]. Models which are more generic cover only a subset of our five principal
assumptions. Even if we ignore these assumption, existing models usually
present either no evaluation or one on simplified datasets. In addition, they
model either pattern completion or time-series predictions. If we consider,
under the symbolic abstraction assumption, that a flow of reasoning can be
seen as parallel cascades and co-occurrences of cognitive symbols, then we
can argue that pattern completion and time-series predictions are relevant for
the relationships between the different cognitive contexts, while a separate
mechanism is still needed to select the symbol in each context. Since our
work focuses on symbol identification in a cognitive context, it can therefore
be seen as complementing to many existing models. Such complements can
lead to models which combine symbolic and sub-symbolic (or connectionist)
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computation, which has been considered as essential for artificial intelligence
[26, 27]. Below we review these aspects through some key related work, in
chronological order.

Fransen and Lansner [28] offer a model of associatively-networked columns
using very biologically plausible neurons. Each of their columns is built from
a single densely-connected recurrent neural network, and then the columns
are interconnected and trained with a Bayesian correlation-based (Hebbian)
learning rule. If these columns are assumed to be canonical circuits, then
they do not provide symbol abstraction, but only operate sub-symbolic on
raw input and transform it into a co-occurrence pattern. It is not clear if
they are parallelizable. The model is evaluated only on a simple artificial
pattern completion problem. This work provides a great starting point for
using more biologically plausible neurons in our canonical circuits.

Maass et al. [29] present a system of recurrent networks of integrate-and-
fire neurons, called Liquid State Machines, where they identify a column with
each recurrent network. It is a type of reservoir computing, where each recur-
rent network is a reservoir which takes the input, forms transient dynamics,
and offers opportunity for stable output neurons. In essence, it performs
sophisticated input transformation. The output neurons can then be em-
ployed in some task like time-series prediction or classification. The use of
the outputs however requires an additional method such as a perceptron-like
local learning rule or linear regression, and it is unclear how these additional
mechanisms relate to cortical circuits, or how they would be implemented bi-
ologically. Reservoirs are likely relevant to signal transformation in the brain,
however by themselves do not offer a way for symbol abstraction. Perhaps
the characteristic dynamics inside a reservoir could be related somehow to
symbols, however this model has no method for this, and the authors sim-
ply say they would be ”optimized genetically and through development”. In
addition, this model is not Bayesian.

Simen et al. [30] propose a neocortical model for a hybrid sub-symbolic
and symbolic computation. Their equivalent of a canonical circuit is given
the function of signal propagation delay and low-pass filtering, which is more
of an auxiliary function, compared to our approach where the canonical cir-
cuit is an explicit representatives of a cognitive symbols. Their model then
proposes that circuits can be organized with lateral inhibition as future work,
but does not give any computational details. In addition there is no evalua-
tion.
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Nouri and Nikmehr [31] present a hierarchical Bayesian approach to reser-
voir computing with the objective of implementing a top-down Memory Pre-
diction Framework (MPF). MPF essentially states that the system constantly
tries to predict the future input based on its past experience. The proposed
model is framed as a model of the neocortex and thalamus because of its
hierarchical regions, and is strictly a time-series solution. The time-series
prediction happens directly on raw sensory input, and there is no consider-
ation for cognitive symbols. However, if the same idea is applied over our
cognitive symbol probabilities instead of raw sensory inputs, then the re-
gions in this model can relate to cognitive contexts, and it can be used for
time-series predictions over cascades of contexts and symbols.

George and Hawkins [15] also present a hierarchical and temporal Bayesian
model inspired by the columnar hypothesis, which learns temporal coinci-
dences. As discussed above this perspective is relevant to the network of
cognitive contexts. They do not address the issue of symbol abstraction
from raw input inside a single context. Instead they skip this step and at
the bottom layer present pre-identified symbols (Gabor filters). The authors
state that ”model would require modifications to include sparse-distributed
representations within an HTM node”, and this is where our model can be
complementing.

Rinkus [2] presents a model for a generic function of canonical circuit,
which agrees with our perspective that such a role becomes clear only in
the context of its proximal peer group. It proposes that the proximal peer
group stores sparse representation of the input in terms of which circuits
are co-active in the group at the same time. The principal difference with
our model is that there is no symbolic abstraction. Also, this work has no
computational implementation or evaluation, is not Bayesian, and it uses
only binary input attributes and binary synapses.

The most current, and perhaps most relevant to our model, is the work
of Bastos et al. [13], which employs a Bayesian brain theory based on predic-
tive coding and free energy minimization [32], and relates it remarkably to
canonical circuits. Predictive coding is based on a hierarchical model where
a higher area predicts the input of the lower area using a generative process,
while the lower area computes the error between the prediction and the ac-
tual input, and sends back only the error to the higher area. The goal of
the system is to minimize the error feedback, or the surprise, which requires
better feedforward predictions. The model is conceptual only and there is no
evaluation on datasets. It is also not clear how symbols relate on the same
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level in the hierarchy or within a context. This presents an opportunity to
combine this model with ours.

4.2. Computational Perspective

Due to the data stream learning requirements in our objective, we do not
consider learning models which need all the data to be available at start.
We should note however, that Metropolis-Hastings has been applied to learn
neural network parameters given a set of training static data [33], using the
complete data set for each chain update in order to determine whether to
accept each proposal.

One related learning model is the work of de Freitas et al. [34], which,
even though in much lower dimensional problems and mostly for time series
analysis, uses particle filters to perform sequential Bayesian inference on
neural network parameters. Therefore, we compare using particle filters in
place of IMH as the Bayesian inference method for CCON. There are also
other sequential Bayesian inference methods, however they are not applicable
to our model due to its continuous state-space and the highly non-linear
probability space of neural network parameters.

Particle filters are based on importance sampling which tackles an in-
tractable distribution of θ by sampling from an approximating tractable dis-
tribution and weighting the samples with an importance weight w equal to
the ratio of these two distributions. Unlike IMH which keeps a single param-
eter value at each moment, particle filters keep many versions (particles) of
a parameter and use all of them based on their weights. Under a Markov
process assumption this approach can be formulated recursively so that it
can be used on streaming data. Starting with an initial set of approximating
particles for θ, each iteration updates their weights and performs various ad-
ditional techniques to help with a known particle degeneration issue where
few particles end up with weights close to 1 while the rest end up close to
0. Aside from the degeneration issue getting worse with increasing model
complexity, particle filters also inherit the limitation of importance sampling
in scaling with higher dimensionality.

5. Evaluation

The objective of the evaluation is to see how the CCON works as a su-
pervised classifier on data streams. Part of the evaluation is also to compare
IMH to particle filters used as inference methods in CCON. It is a limitation
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in our work that we do not evaluate on datasets which are more related to
biological behavior. We are partially prevented from doing this because we
would need a network of cognitive contexts, which is part of the future work.

We evaluate CCON in classification tasks on data streams using 10 datasets.
Two of the datasets, SEA [35] and Circles [36], are popular for data stream
evaluation and we use versions with 4 concept drifts each, at 25% intervals.
The rest of the datasets are from the UCI repository2: Waveform, Iris, Wine,
Vehicle, Balance, Liver, Vertebral, and Diabetes. The dataset Waveform is
also popular in data stream evaluation however it has no concept drifts. The
other UCI datasets are not data streams originally, however we shuffle them
in a single fixed order and assume the dataset is presented one instance at
a time. All data is normalized in the range [-1,1] before being used, as is
customary before feeding data into neural networks.

For all experiments using random functions, 10 trials with different ran-
dom initializations were used and their averages reported. Parallel program-
ming was used to have all canonical circuits execute simultaneously. Ac-
curacy was evaluated using the prequential metric [37] which is calculated
by making a prediction on every new instance, comparing to the true label,
and keeping a shifting sum of a loss function (0 for correct prediction and
1 otherwise). Its advantage over holdout validation is that it can be used
on any data stream without losing training data, while it does converge to
holdout estimates [37]. The shifting sum is over the last 50 instances, which
is an evaluation (not model) parameter and chosen empirically, noting that
evaluation results are not sensitive to it.

We present results for 3 and 7 hidden layer neurons in each canonical
circuit’s NN . Theoretically this parameter can also be made self-adjusting.
The number of MH iterations for each update is self-adjusting based on
minimum of 5 and maximum of 50. Setting any of these parameters does not
require a parameter space search problem. They are all monotonic measures
of allocated computational power. To calculate the data likelihood we try
with only the last seen instance per symbol, or the last 7 per symbol to show
how this impacts performance.

Figure 3 shows IMH significantly outperforming particle filters (p-value of
0.0001% in pairwise t-tests), when used as the incremental Bayesian inference
method in CCON. The particle filters configuration shown is the best of 6

2http://archive.ics.uci.edu/ml/
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versions which tried two different resampling techniques [38], sample sizes
of 50 and 500, as well as 1 and 50 sample evolution iterations per data
instance. For the transitional prior in our particle filters we use the same
proposal distribution from our IMH update step.

Figure 3: Comparing Bayesian inference methods for CCON. The left-most bar (in a
diagonal pattern) shows the best particle filter configuration we found. The other bars (in
crossed and solid patterns) show various configurations of IMH as detailed in the legend
on top.

CCON is next compared, using IMH, to 4 leading methods for data stream
learning: Hoeffding Adaptive Tree (also known as Very Fast Decision Tree),
Näıve Bayes with Drift Detection Mechanism, and accuracy weighted ensem-
ble classifiers using the above two methods as their base classifiers [37]. All
methods have concept drift handling ability. Figure 4 shows that CCON is
comparable with all of them, and that it excels on the vehicle dataset which
is the most challenging in our evaluation. We see that CCON does well even
with as little as 3 hidden neurons per symbol.

CCON is innately incremental because the full Bayesian inference at each
update modifies the prior only where it does not fit with the new instance,
preserving older and compliant knowledge. Figures 5 and 6 show that CCON
handles concept drifts (marked with vertical lines) as good as any of the other
methods.

While CCON matches the performance of state-of-the-art data stream
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Figure 4: Comparing CCON to leading data stream learning methods. The left-most two
bars (in crossed patterns) represent two IMH configurations: the left-most using only the
last seen instance per symbol, and the other one using 7 previous per symbol. Both IMH
configurations use a minimum of 5 and a maximum of 50 for the update chain length. The
other bars (in diagonal patterns) show the other methods as described in the legend on
top.

Figure 5: Concept drift handling on the Circles dataset. The symbol distributions change
every 200 instances, at vertical lines.

classifiers, it has the following advantages: it is fully Bayesian and hence
better with uncertainty, is not tied to a fixed number of classes and can add
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Figure 6: Concept drift handling on the SEA dataset. The symbol distributions change
every 200 instances, at vertical lines.

classes as they show up in the data stream, has innate concept drift detection,
and is much easier to parameterize. The other methods must keep a batch
of old data or sufficient statistics and use special mechanisms to forget old
knowledge in order to perform incremental learning. Therefore they require
constants such as sliding windows, forgetting parameters, speed or bounds
of change, all of which present their own parameter search problems [39].

6. Conclusion

We started by identifying five assumptions about neocortical computa-
tion: the existence of canonical circuits, their relationship to cognitive sym-
bols and contexts, Bayesian aspects, parallelism and incremental require-
ments. Following these requirements we built our CCON model for a single
cognitive context which is continually orthogonalized into symbols by canon-
ical circuits, can follow the evolution of non-stationary symbols, and can
grown the number of symbols dynamically as the context itself evolves.

We show that existing inference methods are insufficient to run the com-
plexity of CCON. Following biological inspiration, we develop IMH as a novel
inference method which enables CCON to perform as well as state-of-the-art
data stream learners, evaluated on popular machine learning datasets. IMH
is a contribution in itself as it can be used in other machine learning problems.

CCON covers only a single cognitive context. We are currently working
on networking multiple cognitive contexts where they will co-supervise each
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other. This will allows us to model higher level neocortical circuits and
evaluate against biological behavior datasets.
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