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PRECISE DOCUMENTATION & VALIDATION OF REQUIREMENTS

JONATHAN S. OSTROFF, CHEN-WEI WANG, SIMON HUDON

Abstract. This paper outlines an approach to precise documentation and validation of system
requirements. Precise documentation of requirements is important for developing and certifying
mission critical software. Function tables have been used to document specifications of software
components that are complete and disjoint. In this paper, function tables are embedded in an event
based structure allowing requirements validation by proving invariants expressing safety properties.
Function tables usually involve the use of total functions, or partial functions that are extended to
be total. However, it is often convenient to use queries involving partial functions in specifications
with preconditions defining the valid domain. Their use in tabular expressions raises the issue of
whether the expressions in a table are well-defined. We organize queries involving partial functions
in modules and specify them with contracts. We then propose a method for precise documentation,
where requirements elicited from customers are expressed as atomic, natural language descriptions
that are translated into tabular expressions referencing the specification modules, and into global
properties expressed as invariants. We develop a calculus to prove that the tabular expressions are
well-defined and that they entail the global properties. A biomedical device is used to illustrate our
method for precise documentation and validation.
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1. Introduction

Precise documentation of requirements is important for developing and certifying mission critical
software, e.g. medical devices, nuclear reactors and high assurance business systems [12]. It is known
that significant problems are likely to occur at the requirements stage [11] thus underscoring the need
for precise requirements. Standards such as IEEE 7-4.3.2 (nuclear), ISO 26262 (automotive) and
DO-178C (avionics) recommend the use of formal methods, which would also depend on precisely
documented requirements.

1.1. Tabular expressions. Experience with documentation written in a variety of natural lan-
guages has shown natural language to be inadequate for the task of precise requirements specifi-
cation, as there are usually unsuspected ambiguities. Ambiguities of this sort are resolved by the
use of precise mathematical descriptions of the product, which offer the promise of concise, precise
description [18].

Tabular expressions have been used to provide mathematical descriptions of requirements, such
as those of a nuclear power plant [18, 22]. The computer controller is, at first, represented by a
“black box”, which relates responses generated by the system, to stimuli received by the system.
The relationship is described by a mathematical function, specified by “function tables” (also called
tabular expressions). The function tables are more practical than conventional mathematical nota-
tion because the functions usually have a great many points of discontinuity and the discontinuities
can occur at arbitrary points in the domain [18].

Consider a computer controller embedded in a larger environment as in the context diagram
Fig. 1(a). In [22], stimuli from the plant (environment) are referred to as monitored variables and
responses are controlled variables. A variable such as z (in Fig. 1(a)) represents the current value
of a monitored variable and z-1 refers to its value in the previous state. The system behaviour is
modelled as a finite state machine. At discrete points in time, the system detects the current values
of all monitored variables, and uses the current state of the machine (and, possibly, past history) to
generate the current values of the controlled variables and the next state of the machine. Fig. 1(d)
provides an (artificial) example of a function table for our small system. For example, if z ≥ 0

(a) Context diagram

Plant

Controller zx, y

monitored 
variables

controlled 
variables

error

(b) Module

module system use MATH
variables

x , y , z : R
error : B

init x , y , z := 0, 0, 0
event

execute
any r
when −43.2 ≤ r
then z := r
||« Table 1(d) »
end

(c) ADT for Real Numbers

type MATH
const ε : R
axiom 0 < ε ≤ 0.001
query sqrt(r : R) : R

require r ≥ 0
ensure
−ε ≤ r − Result2 ≤ ε
0 ≤ Result

(d) Function table for module system in Fig. 1

x : R error : B y : R |
z ≥ 0 sqrt(z )∗x-1 + y false

y-1∗x-1 ≤ y−43.2 ≤ z < 0 no change true
assume: −43.2 ≤ z

Figure 1. A Small System
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Output
Input conditions r |
C1(x ) C11(x ) R1(x , r)

C12(x ) R2(x , r)
C3(x ) R3(x , r)

assume: A

Given : P1 , C1(x )∧C11(x )

P2 , C1(x )∧C12(x )

P3 , C3(x )

Qi , Ri(x , r) for i ∈ 1 . . 3

(a) Meaning of Table : A ∧ (∀i ∈ 1 . . 3 • Pi ⇒Qi)
(b) Completeness : A ∧ (∃i ∈ 1 . . 3 • Pi)
(c) Disjointness : A ∧ (∀i , j ∈ 1 . . 3 | i 6= j • ¬(Pi ∧Pj ))
(d) Well-definedness : D(A) ∧ (A ∧ (∀i ∈ 1 . . 3 • D(Pi)∧(Pi ⇒D(Qi)))

Figure 2. Completeness, Disjointness and Well-definedness of tabular expressions

(the current value of z is not negative), then output x is described by the before-after predicate
x = sqrt(z )∗x-1 + y , i.e., the predicate expresses how the current value of output x depends on the
current values of y and input z and the previous value of x .

Periodically, the plant generates a new value, say z ∈ R, which is monitored by the controller.
In response, the controller generates a new value for the controlled variables x , y ∈ R based on the
monitored variables and past history. A real system will have many more monitored and controlled
variables than shown in Fig. 1(a). However, our small system can be used to illustrate some aspects
of our method for precise documentation of software requirements, representing many real software
intensive products embedded in a larger system.

The state machine description is an idealized view of the required behaviour (suitable for a
requirements document) as outputs are generated instantaneously once the input is received. Where
necessary, accuracy and timing tolerances can be supplied within which the final implementation
must operate (see [24]). Tabular expressions usually involve the use of total functions: partial
functions need to be expanded to total functions, or dependent subtyping is used, to keep the use
of the functions well-defined.

In any real system it will not be possible to describe the behaviour in a single function. Instead,
the requirements include a number of inter-acting functions, which themselves are represented by
function tables. As stated in [22, 20, 10, 23], the function tables must be complete and disjoint as
shown in Fig. 2. Completeness ensures that all possible inputs are covered. Disjointness ensures
that there are no conflicts in the outputs.

A mathematically precise requirements document is an essential prerequisite for the development
of safety critical software. Domain experts can review them for correctness. Programmers can use
them for design and coding. For regulatory authorities, such a document provides greater assurance
that the software is precisely specified in a way that will not exhibit unintended, unsafe behaviour.

1.2. Contribution of this paper to precise requirements. In Fig. 1(a), the plant periodically
generates new values for the monitored variable z . In order to describe and analyze the behaviour
of the system consisting of both the action of the plant and the controller, we embed the function
table of the controller in an Event-B style machine as shown in Fig. 1(b).

Event-B [1] is a notation and method for discrete systems modelling by refinement. Event-B
models are described in terms of the two basic constructs contexts and machines. Contexts contain
the static part of a model (e.g. carrier sets, constants, axioms and theorems) whereas machines
contain the dynamic part (e.g. state variables, invariants and events). An initialization statement
establishes an initial state of the system by assigning suitable values to these variables. The events
determine what can happen in the system during an execution and are described via a before-after
predicate. The execution terminates when no action is enabled anymore.
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Let variables v define the state of the system. An event is composed of a guard G(r , v) and an
action S (r , v) where r is parameter: a value chosen non-deterministically every time the event is
executed. An event is represented using the syntax: any r where G(z , v) then S (r , v). Actions are
relations between two states that may be specified with assignments that may be non-deterministic.
For example for state variables x , y and z , the action x := x + z || y := y − x may also be written
as the before-after predicate x , y : | x = x-1 + z-1 ∧ y = y-1 − x-1.

Queries (with pre/post conditions) such as sqrt in Fig. 1(c) are not directly supported by func-
tion tables and Event-B. As mentioned above, function tables are constructed from total functions.
However, it is often more convenient to allow the use of partial functions (specified with a precondi-
tion) directly without any conversion. The precondition of a partial function captures in one place
where the function can meaningfully be applied, thus providing a logical “firewall” between the
specifier and the client so that functions are not misused on meaningless inputs. See the discussion
on design-by-contract in [14].

Contributions of this paper:

(1) Description of system behaviour with events and function tables. It is often the case that
many details of a complex environment (the plant) can be ignored by implementors and
reviewers if they are given a complete and precise specification of the black-box input-output
behaviour of the computer controller (based on the feedback of domain experts). We use an
Event-B style machine to provide a precise description of the system behaviour involving
the plant and the controller as in Fig. 1(b). The controller action is specified with a function
table (for completeness and disjointness). The underlying event structure provides us with
machinery to describe and analyze the system behaviour under the specified descriptions,
before design and implementation.

(2) Queries and well-definedness. We provide a method for introducing queries such as sqrt in
Fig. 1(c), defined via pre/post conditions. Queries are useful in the construction of complex
expressions in events, invariants and function tables. Queries introduce the possibility
of a the query result being undefined if it is used in a context that does not satisfy its
precondition. We thus develop a theory of well-definedness to ensure that the expressions
(in function tables, guards and invariants) are well-defined.

(3) Decomposition into modules and types. We allow variables and associated queries to be
collected in modules. This is particularly useful when describing complex systems. If a
module does not contain any variables then we call it a type (e.g. type MATH in Fig. 1(c)).
Only the main module system may have events. Other modules do not contain any events,
only related variables, queries and invariants. If module m2 uses module m1, then the
queries and invariants of m2 may use the variables and queries of m1. In a large system,
we partition the state into modules so as to allow a separation of concerns. We may always
flatten all the modules into a single Event-B machine.

(4) Validation of requirements via proofs of invariants. To our knowledge, the literature does
not discuss the proof of invariants in systems specified by function tables. These invariants
may describe important system safety requirements. Using our calculus of well-definedness
we can prove these invariants in the framework developed above. Suppose we would like
to prove the invariant J (v) where v is the state variables of the system. As in Event-B,
the proof obligation is J (v-1)∧Gexecute(v-1)∧BAexecute(v-1, v)⇒ J (v), where Gexecute is the
event guard and BAexecute is the before-after predicate of the event action specified by the
function table.

(5) E/R descriptions. It is useful to retain informal English language statements describing
the system requirements (R-descriptions) and relevant phenomena and constraints on the
environment (E-descriptions).
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As mentioned above in the first contribution, we embed the black-box function table describing
the controller in event execute as shown in Fig. 1(b). Suppose the domain experts inform us of that
there is an environmental constraint such that the plant monitored variable z will always satisfy
(−42.3 ≤ z ). This constraint, we document as an E-description. We can constrain the system
behaviour accordingly via a guard (−42.3 ≤ r) for event execute. When analyzing the function
table in Fig. 1(d) for completeness and disjointness, we may add an assume clause with the relevant
constraint on z .

Event execute thus defines the system behaviour as follows. The action of the plant is modelled
using the any construct, the event generates an arbitrary value for parameter r constrained only
by its guard. Because of assignment action z := r , the event guard places constraint (−42.3 ≤ z )
on the plant monitored variable z . At the same time, the event updates the controlled variables x
and y (modelling the action of the controller) as specified by the function table in Fig. 1(d).

Event-B was designed to act as a simple foundation on top of which other constructs (such as
our function tables, queries and modules) can be built. The synergy of function tables and events
means that: (a) the controller specification is complete and disjoint, and (b) the overall system
behaviour is precisely defined by Event-B semantics.

As a simple example of a requirement, the domain experts might specify that (0 ≤ x ∧ 0 ≤ y)
hold in all states. This is a system safety property that we must prove given the specification of
the computer controller. We document this requirement as an R-description. We may express the
safety requirement as invariant J (x , y .z ) where J (x , y , z ) , (0 ≤ x ∧ 0 ≤ y). The event guard is

Gexecute , −43.2 ≤ z and before-after predicate is BAexecute , Gexecute ⇒ β, where

β = (z ≥ 0⇒ x = Sqrt(z )∗x−1 + y)
∧ (−43.2 ≤ z < 0⇒ x = x−1)
∧ y−1∗x−1 ≤ y

By propositional logic, we know Gexecute ∧BAexecute ≡ Gexecute ∧β. A simple proof that the invari-
ant holds is as follows.

Prove: 0 ≤ x-1 ∧ 0 ≤ y-1 ∧Gexecute ∧β ⇒ 0 ≤ x ∧ 0 ≤ y

Proof of 0 ≤ y Proof of 0 ≤ x

0 ≤ y

⇐ 〈 transitivity 〉
0 ≤ x-1∗y-1 ∧ x-1∗y-1 ≤ y

= 〈 x-1∗y-1 ≤ y ≡ true by BA 〉
0 ≤ x-1∗y-1 ∧ true

⇐ 〈 arithmetic 〉
0 ≤ x-1 ∧ 0 ≤ y-1

Case 0 ≤ z :

0 ≤ x

= 〈 BA for x 〉
0 ≤ sqrt(z )∗x-1 + y

⇐ 〈 0 ≤ sqrt(z ) 〉
0 ≤ y

Case z < 0:

0 ≤ x

= 〈 BA for x 〉
0 ≤ x-1

The well-definedness of the above proof obligation (as will be explained in the sequel) reduces
−43.2 ≤ z ∧ z ≥ 0 ⇒ z ≥ 0. The proof obligation and its well-definedness condition can be
discharged using a theorem prover. We show this for z3 SMT solver in Appendix B (on p20).

The rest of the paper is divided into the following sections. In Section 2, we show how we support
queries and well-definedness allowing for expressive ease in describing complex systems. In section
3, we present a case study of a biomedical device using the framework developed in this paper. In
Section 4, we dicuss related and future work.

1.3. Notation. The basic types are B (boolean), N (naturals), Z (integers), R (reals), and S
(strings). We use the mathematical conventions of Event-B for sets, relations and functions
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(e.g. dom, ran, #, functional application, etc.). D → R is the set of all total functions with
domain D and range a subset of R. D 7→ R is the corresponding set of all partial functions. If f1
and f2 are functions, and S is a set, then S C− f1 is domain subtraction and the over-riding operator
is f1 C− f2.

The integer interval m . .n is defined as follows: m . .n , {i : Z • m ≤ i ≤ n}. The real interval

is defined as follows: [x , y ] , {z : R • x ≤ z ≤ y}. We let x ↑ y (respectively, x ↓ y) stand for
the maximum of x and y (respectively, the minimum). We allow quantification for symmetric and
associative binary operators such as ↑ as in [4]. Event-B’s mechanized theorem prover does not
support real numbers, so we stick to handwritten proofs using the equational logic of [4] using the
one point rule, Leibniz, etc. It is possible to use other theorem provers or SMT solvers, but that is
beyond the scope of this paper.

Event-B does not directly support parameterized data structures such as SEQ [G ], which is
sequence in generic parameter G . We thus introduce the appropriate machinery for parameterized
data structures that also allow for the use of queries, as illustrated in Fig. 5(a). A sequence in
generic parameter G is an element of 1 . .n → G , where n ∈ N. We eliminate parameter n by using
generalized union: SEQ [G ] , (

⋃
n : N • 1..n → G). The expression (

⋃
n : N • 1..n → G) is

the set of all total functions whose domain is the contiguous interval of integers starting at 1 and
whose range is a subset G . Suppose we define a variable v : SEQ [R] in a module. This means that
the module has invariant v ∈ (

⋃
n : N • 1..n → G). If a query q in the sequence type has a first

argument of this type, then we may use the dot notation v .q instead of q(v). For example, we may
write v .has(2.5) instead of has(v , 2.5)

2. Well-definedness of Expressions with Partial Functions

It is often useful to have queries whose values are not defined for all their possible arguments.
It is the case for example with the sqrt query shown above: no meaningful result can be given for
negative numbers. This raises the question of what status to give to expressions like

√
−1.

In classical tabular expressions [9, 19], all partial functions are transformed into total functions
by extending the range of functions with a special undefined value. However, the logic used is still a
two-valued predicate logic. This is achieved by defining any expression involving an undefined term
to evaluate to false in an assignment. Predicates are identified with their satisfying assignments (so
that 1÷x = 1÷x effectively reduces to x 6= 0). Advantages of the approach are that the logic is kept
simple, the assigned meanings are consistent with intuitive interpretations, and the expressions are
simpler in certain cases while preserving two valued logic. However, complements will not always
work (e.g.

√
x >

√
y and

√
x ≤ √y can be simultaneously false) and complexity reappears in

the axiomatic definitions of the functions (requiring the introduction of an undefined value). Also,
conventional simplification rules, and hence some automatic simplifiers and verifiers would need to
be modified or used with caution as they are often based on the implicit assumption that functions
are total. Even worse, it allows the expression of nonsensical properties in specifications without
flagging any problem.

The use of queries presumes that functions will be partial. We thus seek a logic where we can
introduce and reason with partial functions without the need to constantly convert them into total
functions. In the logic that we adopt in the sequel, the predicate 1 ÷ x = 1 ÷ x does not pass
a well-definedness check (done using proof obligations in a standard theorem prover). However,
(x 6= 0) ∧ (1÷ x = 1÷ x ) is well-defined and it can then be submitted to the theorem prover as if
all functions were total (the prover will fail to prove it as a theorem). We thus are able to introduce
partial functions (without converting them into total functions) while using standard tools and
mathematical conventions.

Given an expression exp, we provide in the technical report [15] a recursive definition of the
predicate D(exp) which holds when exp is well-defined. For example, for a variable x we have that
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D(x ) , true. The well-definedness of a query application q(x ) with precondition Cq(x ) is defined

as D(q(x )) , D(x )∧Cq(x ).
As shown in [15] whenever we are asked to prove predicate βq holds, where βq involves a query

q , we need to discharge two proof obligations. The first obligation is that we must show that D(βq)
holds (this is usually relatively simple). The second obligation is to show that βq holds. Both
proofs can be conducted using a normal prover that treats all functions as total. From there, it
is simple to envision applying the D operator to the meaning of function tables shown in Fig. 2.
More technical details on well-definedness are provided in Appendix A.

3. Case Study: A Biomedical Device

We apply our proposed approach to document the precise requirements of a biomedical, pulse
device supplied by our industrial partner. In Fig. 3(a) we have identified the boundary of the
pulse software and its operating environment. The device monitors vital signs such as blood pres-
sure, heart rate and temperature. A reading from the device arrives as a sampled pulse (e.g., see
Fig. 3(c))). This is the monitored variable swf (sampled waveform) which we represent as a finite
sequence of real numbers (SEQ [R]). The sampled waveform is a plot of pressure levels (vertical y
axis) versus time instants (horizontal x axis). As shown in Fig. 3(b), given a sampled pulse, the
software is required to generate three outputs: 1) a detailed report on parameters whose values

(a) Context diagram

Pulse Software

IEEE-181

Pulse 

Standard

blood cuff
measuring 

instruments 

and filters

Patient

Plant

controlled
variables 

monitored
variables 

report, 
error message, 

warning message

swf

 (sampled waveform)

(b) Black-Box Behaviour

Pulse Software
swf e_msg

duration, durationp, durationn,
y10, y50, y90,
t10p, t50p, t90p,
t10n, t50n, t90n

report 

w_msg

(c) A Single Positive Pulse (IEEE-181)

(d) Is this a single positive pulse?

80

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35

y10

y50

y90

y10

y50

y90

Figure 3. The Pulse Software: System Boundary, Inputs and Outputs
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are well-defined; 2) an appropriate error message, if any; and 3) an appropriate warning message,
if any. For output 1), the software attempts to calculate the various pulse and transition param-
eters (whose values are calculated by “in-box” queries shown in Fig. 3(b)) as defined by the IEEE
Standard 181 on Transitions, Pulses, and Related Waveforms.

In the IEEE-181 standard, a single positive pulse (see Fig. 3(c)) is divided into a positive-going
transition (one whose terminating level s2 is more positive than its originating level s1), and a
negative going transition (one whose terminating state is more negative than its originating state).
The standard specifies that we use linear interpolation to obtain (real-valued) times that are in-
between the sampled time instants.

At the requirements level, the software calculates—according to IEEE-181 requirements—a va-
riety of parameters (typed to the set R of real numbers). For each pulse we must calculate its
duration, as well as the 10%, 50% and 90% levels. Moreover, for each (positive or negative) transi-
tion of the pulse, we must calculate its duration, as well as the 10%, 50% and 90% instants. Table 1
summarizes abbreviations that we adopt for these parameters.

Pulse Abb.
pulse duration duration
10% level y10
50% level y50
90% level y90

Pos. Tran. Abb.
duration durationp
10% instant t10p
50% instant t50p
90% instant t90p

Neg. Tran. Abb.
transition duration durationn
10% instant t10n
50% instant t50n
90% instant t90n

Table 1. Abbreviations for Pulse and Transition Parameters

Our industrial partner was faced with various questions with their developed code. They wanted
to know how to increase their confidence that their code was correct and at least satisfied IEEE-181.
Pulses from ill patients (e.g. Fig. 3(d)) show significant variance from the classical shape (Fig. 3(c)).
They found it difficult to write their code to deal with such variances and flag that the signal does
not really represent a legal pulse (in some cases their code produced spurious results). They wanted
to know how they could argue to certifying agencies, e.g. the FDA, that their code is safe and fit
for use. Having precise documentation of the requirements is a prerequisite for answering these
questions consistently.

Where there are multiple ten and 90 percent instants, IEEE-181 specifies that we take the 10%,
and 90% instants that are closest to the 50% instant. However, for some pulses this would result in
an ordering t90 < t50p < t10p which gives a negative duration for the transition. The interpolation
formula in IEEE-181 standard, besides being overly-complicated, does not include a description of
its limitations: it includes a division by an expression that might be zero without specifying what
to do in cases where it is. See the technical report [15] for more decision of the ambiguities and
limitations in our customer’s code and the standard.

Our proposed method helps address the above issues. For example, the limitations in the interpo-
lation formula in the IEEE standard could have been specified in a query’s precondition. our version
of the interpolation formula is total (see our abstraction RFUN). E-descriptions (Section 3.1) dif-
ferentiate between valid and invalid signals, thus helping to remove ambiguities. Given that the
standard was not always clear, we made what we thought are relevant assumptions for the sake of
the presentation. R-descriptions (Section 3.2) describe the required calculation of parameters for
valid pulses and the errors or warnings for invalid pulses. The complete specification is less than
two pages (Fig. 6 on p13 and Table 2 on p12).

3.1. Atomic E-descriptions. E-descriptions document environmental assumptions. An atomic
description consists of two parts: (1) the description number (e.g. ENV1) providing traceability
to the design, the code, and acceptance tests; and (2) an informal statement in natural language.
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By introducing a number of E-descriptions, our proposed method may also be used by standards
organizations to ensure that their standards are complete.

ENV1
A valid pulse consists of at least 3 samples, has a unique maximum and each tran-
sition has at least one 50% instant.

Also, the levels are the same across both the positive and negative transitions.

ENV2
The unique maximum partitions the waveform into a positive transition and a neg-
ative transition. The 10%, 50% and 90% levels are the same for both the positive
and negative transitions.

Furthermore, as the linear interpolation formula for calculating in-between instants (e.g. the 50%
instant for positive transition) provided by the IEEE-181 standard is undefined for integer values
of t (representing the original samples) due to division by zero. We need a well-defined query that
returns a level for an arbitrary instant t .

ENV3
The pulse waveform is sampled into a discrete number of measurements (swf ) used to
approximate the pulse. The approximation (wf ) is built through linear interpolation
of consecutive sample points.

3.2. Atomic R-descriptions. Having defined what a valid pulse is as E-descriptions (Section 3.1),
we document the required system behaviour by considering three cases:

REQ4

ok: If the input pulse is valid and the 10% levels of both transitions exist then
output all the parameters: (a) For the waveform: 10%, 50% and 90% levels. (b)
For each transition: 10%, 50% and 90% instants. (c) For each transition: the
transition duration (i.e. time from the 10% instant to the 90% instant). (d) The
pulse duration (time from the 50% instant of the positive transition to the 50%
instant of the negative transition).

REQ5
Warning: If the input pulse is valid and at least one of the 10% levels is miss-
ing, output all the parameters except for the missing 10% levels and instants (and
associated transition duration) and issue a warning.

REQ6
Error: If the input pulse is invalid then no parameters are calculated and appro-
priate error messages are printed.

Furthermore, there may be multiple 50% instants, and the standard specifies that the first one
must be selected, which is appropriate for the positive transition but not for the negative transition,
in which case the last 50% seems more appropriate (if the two transitions were meant to be treated
symmetrically). The 10% and 90% will then be defined accordingly.

REQ7
In the case where more than one 50% instants are present in the positive transition
(respectively, negative transition), the first (respectively, the last) 50% instant is to
be selected for output in conformity with REQ4.

REQ8 Output the 10% and 90% instants closest to the 50% instants such that REQ9 is
satisfied.

Finally, we document an important property about transitions:

REQ9
- For positive transition: t10p < t50p < t90p

- For negative transition: t90n < t50n < t10n
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In the next two sections we present a complete specification for the pulse software, consisting of
abstract data types (Section 3.3.1), modules (Section 3.3.2), and tabular expressions that reference
the declared module variables and queries (Section 3.4). Furthermore, we will revisit (Section 3.3.3)
the above E- and R-descriptions by examining how they are reflected in the modular specification.

3.3. Modular Specification. We propose the modular structure in Fig. 4, where the two rounded
boxes denote abstract data types (i.e. SEQ [G ] and RFUN ), and the other square boxes denote
modules. Each arrow in Fig. 4 denotes the direction of dependency and corresponds to a use clause
in Fig. 6 (on p13). A module has access to variables and queries of all modules it uses.

system pulse
pos_trans

neg_trans

waveform signal
RFUN

SEQ[R]

Figure 4. Modular Specification of the Pulse Software

3.3.1. Abstract Data Types. We often need to query the input sample sequence swf about the level
of a real-valued instant x that satisfies 1 ≤ x ≤ swf .count but does not actually exist in the discrete
domain of swf . The IEEE-181 standard recommends the use of linear interpolation; however, the
formulas supplied by the standard may suffer from the division-by-zero error, and the standard
does not give a unified formula applicable to all input instants.

This leads us to the introduction of a new data type RFUN (Fig. 5(b)) that enables us to
abstract the input sample sequence from its discrete, finite domain. Consequently, we have a
single point of querying about the level of any given real-valued instant. In Fig. 5(b), by writing

RFUN , (
⋃

x , y : R | x ≤ y • [x , y ]→ R), we introduce a new data type RFUN that is synonymous
with the set of total functions, each of which has its domain as a contiguous, real-valued interval
and has its range as a set of real numbers.

The new type RFUN supports a query seq2rfun that converts from a finite sequence of real
numbers (e.g. swf : SEQ [R]) to a continuous function. A real-valued instant in the domain of
seq2rfun(swf ) is projected to a value that is calculated using an improved version of linear inter-
polation1 that is free from the division-by-zero error. We observe that both swf and seq2rfun(swf )
agree on their projected levels from the integer domain of swf , i.e. swf = N C seq2rfun(swf ).
Queries first and last are defined for us to select instants, within a given range, that are projected
to the same given level.

3.3.2. Modules. The specification of modules is included in Fig. 6 (on page13). The system module
is the top-level unit of the pulse software, where we declare three variables to correspond to the
expected outputs: 1) report : S 7→ R that maps names of pulse or transition parameters to their
values, if they exist; 2) e msg that stores an error message, if any; and 3) w msg that stores a
warning message, if any. The system module has access to all queries and variables that are declared
in its decedent modules. We specify an event execute whose occurrence assigns an arbitrary input
pulse (i.e. any p ∈ SEQ [R]) to the state variable swf (as declared in the module signal), and it
updates variables report , e msg , and w msg according to a separate tabular expression (Table 2
on page 12) that references the accessible queries.

We distribute queries that are responsible for calculating the pulse and transition parameters
into modules that system uses, e.g. duration in the pulse module, t10p in the pos trans module,

1See the post-condition of query seq2rfun. Given a real t and a natural number n, bt + nc = btc + n. Thus
bt+1c = btc+1. In the definition of seq2rfun(s)(t) the coefficients always add up to one, i.e. (bt+1c−t)+(t−btc) = 1.
This eliminates the possibility of division by zero and avoids the case analysis in the IEEE-181 standard.
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(a) Generic Sequence

type SEQ[G] , (
⋃

n : N • 1..n → G)
queries

count(s : SEQ [G]) : N , # dom(s)

ε : SEQ [G] , ∅
infix B (s : SEQ [G]; g : G) : SEQ [G]
--append operator

, s C− {s.count +1 7→ g}
has(s : SEQ [G]; g : G) : B , g ∈ ran(s)

head(s : SEQ [G]) : G , s(1)
require s 6= ε

last(s : SEQ [G]) : G , s(s.count)
require s 6= ε

tail(s : SEQ [G]) : SEQ [G]
require s 6= ε
ensure

(Result .count = s.count − 1)
∧ (∀i : s.domain | i > 1 •

s(i − 1) = Result(i))
theorems
∀s : SEQ [G]; g : G • s B g 6= ε
∀s : SEQ [G]; g : G • last(s B g) = g

(b) Real-Valued Function

type RFUN , (
⋃

x , y : R | x ≤ y • [x , y ]→ R)
queries

ubound (rf : RFUN ) : R --upper bound of the domain

lbound (rf : RFUN ) : R --lower bound of the domain

axiom (∀rf : RFUN • dom(rf ) = [rf .lbound , rf .ubound ])
queries

has(rf : RFUN ; x1, x2, y : R) : B
, (∃x : dom(rf ) | x1 ≤ x ≤ x2 • rf (x ) = y)
--does y occur between x1 and x2?

first (rf : RFUN ; x1, x2, y : R) : R
, (↓ x : R | x1 ≤ x ≤ x2 ∧ rf (x ) = y • x )
--1st instant of level y in interval [x1,x2]

require rf .has(x1, x2, y)
last (rf : RFUN ; x1, x2, y : R) : R
, (↑ x : R | x1 ≤ x ≤ x2 ∧ rf (x ) = y • x )
--last instant of level y in interval [x1,x2]

require rf .has(x1, x2, y)
seq2rfun(s : SEQ [R]) : RFUN --linear interpolation

ensure dom(Result) = [1, s.count ]
∧ (∀ x : [1, s.count ] •

Result(x ) = s(bxc)∗(bx + 1c − x )
+ s(dxe)∗(x − bxc))

Figure 5. Abstract data types for the pulse system

etc. In those modules we also declare queries that calculate the intermediate results, e.g. ymax in
the signal module. The result of each query is precisely defined either by an equality expression
(, . . . ) or by a post-condition (an ensure clause). A query may only be used in a context where its
precondition (the require clause) holds, for otherwise its result is not well-defined. For example,
queries ymax and t50p are only well-defined when s3 and t50p? hold, respectively. We also use
a require clause at the module level to specify constraint that is to be included as part of the
preconditions of all queries. For example, in the waveform module, each query should include the
constraint s3∧ um as part of its precondition.

The signal module is the basic unit of the pulse software where we declare the input sampled
pulse as a variable swf : SEQ [R], by instantiating the generic sequence to be a real-valued sequence.
The module that uses signal , i.e. module waveform, gains the access to variable swf . Furthermore,
according to ENV 3, module waveform abstracts sequence swf from its discrete, integer-valued
domain by defining a query wf : RFUN . More precisely, the definition of query wf uses the
abstraction function seq2rfun. Consequently, details of performing linear interpolation on sequence
swf are encapsulated in one single query, i.e. wf in waveform. Moreover, module waveform and all
its parent modules are able to calculate the pulse and transition parameters by using the higher-
level, abstract function wf : RFUN rather than swf : SEQ [R]. For example, queries t50p in module
waveform and t10n in module neg trans are defined in terms of query wf .

3.3.3. Revisiting E- and R-descriptions. We discuss how the informal E-descriptions (Section 3.1)
and R-descriptions (Section 3.2) are formalized as module queries and invariants, and entries in
the tabular specification (Section 3.4). Texts of this discussion may be integrated into a third,
cross-reference compartment for each ENV or REQ box in Sections 3.1 to 3.2.

For ENV1, in the pulse module, we define a Boolean query ok whose definition corresponds to
what qualify as a valid input pulse. Furthermore, the last two invariants in module pulse specify
that if the input pulse is valid, then all queries that calculate the pulse and transition parameters
are well-defined and the various instants appear in the right orders. For ENV2, in the waveform
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This tables is used in the context of module system in Fig.6 on p13 .
conditions on input e msg : 0..3 w msg : 0..2 report : S 7→ R

s3 um t50? t10? 0 0 format C− S1 C− S2

¬t10? ¬t10p? 0 1 format C− S2

¬t10n? 0 2 format C− S1

¬t50? 1 0 ∅
¬um 2 0

¬s3 3 0
where S1 = {“t10p′′ 7→ t10p, “durationp′′ 7→ durationp}; similarly for S2 on neg. trans.

Table 2. Requirements (see Table 4 for conditions and Table 5 for messages)

p “duration” “y10” “y50” “y90” “t50p” “t90p” “t50n” “t90n”

format(p) duration y10 y50 y90 t50p t90p t50n t90n

Table 3. Formatting Pulse & Transition Parameters (“t10p” and “t10n” left out)

Ab. Meaning
s3 are there at least 3 samples?
um is there a unique maximum?
t50? do both t50% instants exist?
t10? do both t10% instants exist?
t10p? does t10p (positive transition instant for level

y10) exist?
t10n? does t10n (negative transition instant for level

y10) exist?

Table 4. Conditions

# Error
0 no error
1 no 50% instant
2 no unique maximum level
3 input lacks 3 finite floats

# Warning
0 no warning
1 No t10p instant, durationp
2 No t10n instant, durationn

Table 5. Errors/Warnings

module, we define real-valued queries y10, y50, and y90 whose definitions are accessible by modules
pos trans and neg trans. For ENV3, we introduce the query wf : RFUN that abstracts the input
pulse swf : SEQ [R] using linear interpolation.

For REQ4, we declare queries t50p and t50n in module waveform and all other parameters as
queries in modules pos trans, neg trans, and pulse. For REQ5, in the pulse module, we define
a Boolean query warning whose definition corresponds to the case where there is at least one
missing 10% levels. Moreover, in modules pos trans and neg trans, the preconditions of queries
t10p, durationp, t10n, and durationn specify that the 10% levels must exist for their values to
be well-defined. For REQ6, see Section 3.4 for how messages are organized according to the error
conditions. For REQ7, in the waveform module, query t50p (and t50n) is defined to return the
first (and the last) 50% instant. For REQ8, in the pos trans module, query t10p calculates the last,
and hence the closest, instant with 10% level before the 50% instant t50p. Similarly, query t90p
calculates the 90% instant that is closest to t50p by selecting the first one. Symmetric calculations
apply to queries t10n and t90n in the neg trans module. Finally, for REQ9, we declare invariants
in both pos trans and neg trans modules about the 10%, 50%, and 90% instants.

3.4. Using Module Queries in Function Tables. Model-based contracts (pre/post-conditions)
specified for module queries in Fig. 6 (on p13) facilitate the the input-output behaviour description
of the pulse software as a tabular expression (Table 2). The contracts (organized by modules) and
the tabular expression together constitute the software specification, used to validate the require-
ments via checks for its completeness, disjointness and well-definedness, and proofs of properties.

Since Table 2 is used in the context of the system module (Fig. 6 on p13), it has access to all
queries that are declared in modules that it uses. The rows of the table can be divided into three
disjoint groups, corresponding to REQ4 to REQ6. The rows below the grey area correspond to
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module system use pulse
variables report , e msg , w msg : S
event

execute
any p ∈ SEQ [R]
then swf := p || « Table 2 on page 12 »
end

module pulse use pos trans, neg trans
queries

duration : R , t50n − t50p
--time between 50% instants of positive and negative transitions

require t50?
--intermediate queries

t50?: B , t50p?∧ t50n? --do both 50% instants exist?

t10?: B , t10p?∧ t10n? --do both 10% instants exist?

require t50p?∧ t50n?

error : B , ¬(s3∧ um ∧ t50?)

warning : B , ¬error ∧¬t10?

ok : B , s3∧ um ∧ t50?∧ t10?
invariant

complete(〈error ,warning , ok〉)∧ disjoint(〈error ,warning , ok〉)
ok ⇒ t10p?∧ t10n?∧ t50p?∧ t50n?∧ t90p?∧ t90n?∧ durationp?∧ durationn?
ok ⇒ (t10p < t50p < t90p)∧(t90n < t50n < t10p)

module pos trans use waveform
require t50p?
queries

t10p : R , wf .last(1, t50p, y10)
require t10p?

t90p : R ≡ wf .first(t50p, tmax , y90)
require t90p?

durationp : R , t90p − t10p
require durationp?

--intermediate queries

t10p?: B , wf .has(1, t50p, y10)

t90p?: B , wf .has(t50p, tmax , y90)

durationp?: B , t10p?∧ t90p?
invariant durationp?⇒ t10p < t50p < t90p

module neg trans use waveform
require t50n?
queries

t10n : R , wf .first(t50n,n, y10)
require t10n?

t90n : R ≡ wf .last(tmax , t50n, y90)
require t90n?

durationn : R , (t90n − t10n)
require durationn?

--intermediate queries

t10n?: B , wf .has(t50n,n, y10)

t90n?: B , wf .has(tmax , t50n, y90)

durationn?: B , t10n?∧ t90n?
invariant durationn?⇒ t90n < t50n < t10n

module signal use SEQ [R]
variable swf : SEQ [R]
queries

n : N , swf .count

s3: B , (n ≥ 3) --at least 3 samples?

ymax : R , (↑ i |1 ≤ i ≤ n • swf (i))
--maximum level (s2 in IEEE-181)

require s3

ymin : R , (↓ i |1 ≤ i ≤ n • swf (i))
--minimum level (s1 in IEEE-181)

require s3

um : B , (#i |1 ≤ i ≤ n • swf (i) = ymax ) = 1
--is there a unique maximum?

require s3

module waveform use signal, RFUN
require s3∧ um
queries

y10: R , ymin + 0.1 ∗ amplitude

y50: R , ymin + 0.5 ∗ amplitude

y90: R , ymin + 0.9 ∗ amplitude

t50p : R , wf .first(1, tmax , y50)
require t50p?

t50n : R , wf .last(tmax ,n, y50)
require t50n?

--intermediate queries

wf : RFUN , seq2rfun(swf )

amplitude : R , ymax − ymin

t50p?: B , wf .has(1, tmax , y50)

t50n?: B , wf .has(tmax ,n, y50)
tmax : R --instant for ymax

ensure 1 ≤ Result ≤ n ∧wf (Result) = ymax

Figure 6. Modular Specification: Variables, Queries, Assumptions, Invariants
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query error (invalid input). The first row of the table corresponds to input signals that satisfy
query ok (all parameters can be calculated). The grey rows correspond to query warning (most
parameters can be calculated, with a warning for those that cannot be calculated, i.e. t10p or
t10n). We define a function format in Table 3 whose domain contains parameters that can always
be calculated for non-erroneous input, excluding t10p, durationp, t10n, and durationn. The report
is formatted via an override, e.g. format C− {“t10p′′ 7→ t10p, “durationp′′ 7→ durationp}.

Completeness and disjointness of the pulse specification appear as invariants to be proved in the
pulse module (Fig. 6 on p13). The layout of of our tables makes it easy to prove that the referenced
queries and variables are well-defined, as the condition rows correspond to their preconditions. For
example, in the first row of Table 2, all parameters are calculated in the context where there are at
least three samples, there is a unique maximum, and the 50% and 10% instants exist. To complete
our validation of requirements, in the next section we establish that the tabular expressions entail
global properties that are captured as R-descriptions (e.g. REQ9 on p10).

3.5. Validating Tabular Expressions via Proofs. The process of decomposing queries into
modules, a critical step of our approach, revealed the need to introduce REQ9 (on p10) asserting
that in the case where two 10% (or 90%) instants are equally close to t50, e.g. where the first
instant occurs before t50 and the second occurs after t50, the appropriate instant should be chosen
on the basis that the 10%, 50% and 90% instants must be in different orders for positive and
negative transitions. The atomic requirement REQ9 is declared as a property proof obligation
ok ⇒ (t10p < t50p < t90p)∧(t90n < t50n < t10n) in the pulse module (Fig. 6 on p13).

Tabular expressions (e.g. Table 2) and atomic requirements (e.g. REQ9) play different roles.
The tabular expression ensures that the input-output black-box relation is completely specified.
However, it is not obvious from the tabular expression that REQ9 holds as a global safety property.
The modular specification in Fig. 6 is used to prove that REQ9 holds as a logical consequence
of Table 2. This demonstrates the consistency between the modular specification and the atomic
description REQ9, and is thus an important component of requirements validation. This proof
follows from the invariants declared in the modules pos trans and neg trans. For example, in the
positive transition module we have the invariant durationp?⇒ t10p < t50p < t90p (likewise for
the negative transition). Part of the proof of the above invariant declared for the pos trans module
is provided in Fig. 7.

Prove: t50p?∧ durationp? ⇒ (t10p < t50p)
t10p < t50p

= 〈 def. of t10p in module positive in Fig. 6 (on p13) and t50p?∧ durationp?⇒ t10p? 〉
wf .last(1, t50p, y10) < t50p

= 〈 def. of RFUN.last 〉
(↑ t : R | 1 ≤ t ≤ t50p ∧wf (t) = y10 • t) < t50p

= 〈 < over ↑; trading 〉
(∀t : R | 1 ≤ t ∧ t ≤ t50p ∧ t50p ≤ t • wf (t) 6= y10)

⇐ 〈 drop first conjunct in range; anti-symmetry of ≤; one point rule 〉
wf (t50p) 6= y10

= 〈 wf (t50p) = y50; def. of t50p in waveform 〉
¬(y50 = y10)

= 〈 def. of y50 and y10 in waveform 〉
¬((ymin + 0.5 ∗ amplitude) = (ymin + 0.1 ∗ amplitude))

= 〈 arithmetic and amplitide 6= 0 〉
true

Figure 7. Proving a property of module positive that also validates REQ9
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3.6. Using a SMT solver to discharge proof obligations. SMT solvers such as Z3 [?] allow
us to check the satisfiability of first-order predicates involving real numbers. When proving the
predicate P(x )⇒Q(x ) as a theorem, we check that there are no witnesses that satisfy the negation
of the predicate, i.e. there are no assignments to x that make P(x )∧¬Q(x ) true. Z3 will answer
unsat if the negation of the predicate has no witnesses, meaning that P ⇒Q is a theorem; sat if
a counterexample is found; or unknown if no conclusions can be reached.

Using the Z3 SMT solver, we mechanize the invariant proof in Fig. 7 by checking the validity of
each step. We represent steps in the proof structure like Fig. 7 as S0,S1, . . . ,Sn . Each step formula
Si is formed by Fi Ri Fi+1, where i ≥ 0, Fi and Fi+1 are predicates, and Ri is either an implication
or an equivalence. We check that all steps are valid and they hold together to entail H ` P . For
example, in Fig. 7, S0 is (t10p < t50p) ≡ (wf .last(1, t50p, y10) < t50p), and the theorem we aim to
prove is (t50p?∧ durationp?) ` (t10p < t50p). The following proof tree structure is encoded in Z3:

S0 ∧S1 ∧ . . .∧Sn−1 ` P

H ,S0 ∧S1 ∧ . . .∧Sn−1 ` P
mon

H ` S0 H ` S1 . . . H ` Sn−1

H ` S0 ∧S1 ∧ . . .∧Sn−1
split

H ` P
cut

We use three deduction rules: CUT introduces and proves a new assumption, MON(otonicity)
drops some hypotheses, and SPLIT divides the proof of a conjunction into the proofs of its con-
stituents. The bottom sequent in the proof tree is the target theorem. The leaves are sequents
stating that the steps establish the goal, and that the steps with their justifications are valid.
We can ensure that the goal and the steps are well-defined by checking the sufficient condition:
D(P)∧D(F0)∧D(F1)∧ . . .∧D(Fn). See Appendix C for Z3 script for proof in Fig. 7.

4. Conclusion and related work

Embedding function tables in an event system, and using queries organized in modules, allows our
framework to describe system behaviour at the requirements levels in a way that supports precise
documentation and validation of requirements, Validation is performed by (a) proving invariants
(representing system safety properties) and (b) by the use of function tables to check that the
computer controller specification is complete, disjoint and well-defined. As we mentioned in the
previous section, the complete requirements for the biomedical device in the case study is less than
two pages (Fig. 6 on p13 and Table 2 on p12). The rest of the previous section was spent explaining
the application of the method and documenting the E/R-descriptions.

The novelty of our method also lies in the synthesis of well-established software engineering
principles: the separation between the controller and its operating environment using context dia-
grams [8], the identification of monitored and controlled variables [7, 16, 5], and the use of tabular
expressions to capture black-box, input-output relations [20, 10].

The theorem prover PVS has been used to provide tool support for tabular expressions [10, 23,
3]. In PVS, partial functions are converted into total functions using predicate subtyping which
generates type checking proof obligations. Our calculus of well-definedness, on the other hand,
extends Abrial’s work [2] on model queries to the specification context of tabular expressions. While
substantial progress has been made in mechanizing such proofs, there are still many challenges [6].
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Appendix A. Well-definedness of Expressions with Partial Functions

Adding a new query q to our specification effectively introduces a new axiom into the theory and
rules for how to calculate with expressions in q , including the case in which q is a partial function
or relation. These partial relations are also used in tabular expressions. We need to ensure that
wherever they are used in tables they are well-defined.

In classical tabular expressions [9, 19], all partial functions are transformed into total functions
by extending the range of functions with a special undefined value. However, the logic used is still a
two-valued predicate logic. This is achieved by defining any expression involving an undefined term
to evaluate to false in an assignment. Predicates are identified with their satisfying assignments
(so that 1 ÷ x = 1 ÷ x effectively reduces to x 6= 0). Advantages of the approach are that the
logic is kept simple, the assigned meanings are consistent with intuitive interpretations, and the
expressions are simpler in certain cases while preserving two valued logic. However, complements
will not always work (e.g.

√
x >
√

y and
√

x ≤ √y both evaluate to false) and complexity reappears
in the axiomatic definitions of the functions (requiring the introduction of an undefined value). Also,
conventional simplification rules, and hence some automatic simplifiers and verifiers would need to
be modified or used with caution as they are often based on the implicit assumption that functions
are total. Even worse, it allows the expression of nonsensical properties in specifications without
flagging any problem.

Model contracts presume that functions and relations will be partial. We thus seek a logic where
we can introduce and reason with partial functions without the need to constantly convert them
into total functions. In the logic that we adopt in the sequel, the predicate 1 ÷ x = 1 ÷ x does
not pass a well-definedness check (done using proof obligations in a standard theorem prover).
However, (x 6= 0) ∧ (1 ÷ x = 1 ÷ x ) is well-defined and it can then be submitted to the theorem
prover as if all functions were total (the prover will fail to prove it as a theorem). We thus are able
to introduce partial functions (without converting them into total functions) while using standard
tools and mathematical conventions. Consider the following query and its pre/post-conditions:

q(x : Tx ) : Tr

--introduce new query q into the theory

require Cq(x )
ensure Rq(x ,Result)

Let A be the set of axioms (and derived theorems) of our theory already in place before the
introduction of query q . For our logic we use notations similar to that of [4]. The query can
be safely introduced into our theory provided the special local variable Result (denoting values
returned by the query) does not occur free in Cq , the free variables of Rq are limited to x and
Result , the precondition Cq and postcondition Rq refer only to previously defined symbols, and the
query is feasible:

x ∈ Tx ∧Cq(x ) ⇒ ∃r ∈ Tr • Rq(x , r)

This entails that Tr is not empty. Under these conditions we can add the following axiom to A,
where r is a fresh variable:

Query Axiom: x ∈ Tx ∧ r ∈ Tr ∧Cq(x )∧(r = q(x )) ⇒ Rq(x , r)
provided: x ∈ Tx ∧Cq(x ) ⇒ ∃r ∈ Tr • Rq(x , r)

In the sequel we omit typing constraints assuming that variables and expressions are of the correct
type. This is because correct typing is decidable and can be dealt with prior to well-definedness
and validity [2].

As an example, consider the case of the square root defined below.
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√
· (x : R) : R
--square root function

require 0 ≤ x
ensure Result2 = x

Obviously
√
−1 is undefined and so are expressions such as

√
−1 = x ∨ ¬

√
−1 = x . The question

is how to deal with such undefined expressions. Also, suppose φ1 ,
√

x = y and φ2 , (0 ≤
x ) ⇒

√
x = y . How would we write proofs of sequents such as A ` φ1 and A ` φ2? We should be

able to prove the latter but not the former since it is undefined when x < 0.
Following the logic developed for Event-B [2], we inductively define the WD (well-definedness)

operator D that maps formulas to their WD predicates. For a variable x we have that D(x ) , true.

The well-definedness of a query application q(x ) is defined as D(q(x )) , D(x )∧Cq(x ). This works
on the assumption that the feasibility of q has already been demonstrated, i.e. that Cq(x ) is a
legitimate precondition (see “provided” clause in the Query Axiom). Given any formula α we have
that D(D(α)) ≡ true, i.e. WD-predicates are themselves well-defined [2]. We introduce additional
rules for the counting quantifier and maximums and minimums. We only list a few of the rules, the
others are available in [2].

D(x ) , true(1)

D(q(x )) , D(x )∧Cq(x )(2)

D(P⇒Q) , (D(P)∧(P⇒D(Q))) ∨ (D(Q)∧(¬Q⇒D(P)))(3)

D(∀x • P) , (∀x • D(P)) ∨ (∃x • D(P)∧¬P)(4)

D((#i | p ≤ i < q ∧ R • P)) , ∀i • D(R)∧(R⇒D(P))(5)

D((↑ i |R • exp)) , [∀i • D(R)∧(R⇒D(exp))]∧[∃i • R](6)

Applying the rules to φ1 we obtain D(φ1) ≡ 0 ≤ x , hence D(φ1) on it’s own is not a theorem
and predicate φ1 does not pass the D-filter. It follows that we need 0 ≤ x either as an hypothesis
or as it appears in φ2 (where φ2 , 0 ≤ x⇒φ1). If we redo the above proof but this time for D(φ2)
we see that D(φ2) reduces to true and hence is a theorem. The query introduction axiom, QIA,
formalizes the definition of new queries:

Axiom QIA for query q : r = q(x ) ⇒ Rq(x , r)

provided r is fresh and q is feasible, i.e. Cq(x ) ⇒ ∃r •Rq(x , r) and
feasibility is well-defined: D(Cq(x ) ⇒ ∃r •Rq(x , r)) (If q is in closed
form we can use CFF, see below)

Whenever we are asked to prove a sequent A ` βq , where βq involves a query q , we show below
the need to discharge two proof obligations WD and Validity:

WD: A,QIA `D D(β) Validity: A,QIA `D β

(eqvD) where H `D P , D(H ),D(P),H ` P

We have thereby separated the proof of A ` β into two separate ones: WD and Validity.
In the validity proof, we drop the precondition Cq(x ) in the antecedent of QIA as the formula is
guaranteed to be well-defined. For example, QIA specialized for the predecessor function p yields:
r = p(x ) ⇒ s(r) = x .

We can then reformulate the predicate logic rules, to check the well-definedness of any newly-
introduced expressions in a proof either through ∃-introduction (in the goal), ∀-introduction (in
the hypothesis) or the cut rule [13, p46]:
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∀-introduction in hypothesisD
H `D D(e) H ,P [x := e] `D Q

H ,∀x • P `D Q

∃-introduction in goalD
H `D D(e) H `D P [x := e]

H `D ∃x • P

cutD
H `D D(G) H `D G G ,H `D P

H `D P

The critical idea is that both the well-definedness and validity proofs are done in this variant of
predicate calculus without the need for special machinery such as 3-valued logic and without the
need to convert partial functions into total functions. The new sequent allows us to use implicitly
the fact that each predicate is well-defined.

This means that we can use this new logic as a logic that preserves well-definedness but for which
we can prove the validity of the inference rules in the traditional predicate calculus as [13]. We
supplement the usual predicate logic, with the inference rules of equational logic (see [4] and [21])
and prove the validity of the three new inference rules of equational logic:

EquanimityD
H `D D(P) H `D P H `D P ≡ Q

H `D Q

LeibnizD
H `D D(P ≡ Q) H `D P ≡ Q

H `D α[x := P ] ≡ α[x := Q ]

TransitivityD
H `D D(Q) H `D P ≡ Q H `D Q ≡ R

H `D P ≡ R

In [15], a more extensive example is used to demonstrate proofs of well-definedness and feasibility
of queries.

When the query postcondition is in closed form “Result = f (x )” and where Result does not occur
in f (x ) and f (x ) only refers to already introduced queries that themselves have been shown to be
feasible, we then have a simpler proof obligation for feasibility:

CFF(closed form feasibility): D(Cq(x )) ∧ (Cq(x )⇒D(q(x )))

Theorem: If Rq(x , r) is in closed form, then query q is feasible.2

Therefore, CFF is sufficient for proving the feasibility of a query when its specification is ex-
pressed in closed form.

We use the WD proof obligation to filter out formulas that are not well-defined. We only try
to prove the validity of formulas such as φ2 that pass the filter. This use of the notion of well-
definedness is consistent with the less formal style of mathematicians who intuitively avoid ill-defined
statements and argue about partial functions and relations directly using their definitions without
the need to pay attention to their preconditions. The assumption is that x ≥ 0 is not actually used
in the validity proof. It is needed only to ensure that we pass the WD proof obligation.

Well-definedness of Tabular Expressions. The theory presented above can be used to flag
problems in various components of specifications, including tabular expressions (Section 3.5), queries
and proofs. The well-definedness of a table is simply D applied to its meaning ((a) in Fig. 2). As
for proofs, the main concern for well-definedness lies in the D-terms created by the repeated appli-
cation of the transitivity rule. The justification of each step might also create D-terms and a careful
analysis of their logical structure is necessary in order to find exactly which D-terms are generated.
An example of proof of well-definedness of tables and proofs in the context of the present case study
is given in [15].

2A proof of this theorem can be found in [15].
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Appendix B. Proving Small System Invariant in Z3 SMT Solver

from z3 import ∗ #z3 SMT s o l v e r

#monitored and c o n t r o l l e d v a r i a b l e s

#we use x0 and x f o r pre−s t a t e and post−s t a t e

x = Real ( ’ x ’ ) ; x0 = Real ( ’ x0 ’ ) ; y = Real ( ’ y ’ ) ; y0 = Real ( ’ y0 ’ ) ; z = Real ( ’ z ’ )

#encode in Z3 s q r t ( r : REAL) : REAL query

r=Real ( ’ r ’ ) #argument

e p s i l o n = Real ( ’ e p s i l o n ’ )

s q r t = Function ( ’ sqrt@ ’ , RealSort ( ) , RealSort ( ) )

#axiom 0 encodes the pre / p os t c o n d i t i o n o f MATH. s q r t

axm0 = ForAll ( [ r ] , Imp l i e s (0 <= r ,

And(− e p s i l o n <= r − s q r t ( r ) ∗∗ 2 ,

r − s q r t ( r ) ∗∗ 2 <= eps i l on ,

0 <= s q r t ( r ) ) ) )

#axiom 1 as in MATH

axm1 = And(0 < eps i l on , e p s i l o n <= 0.001 )

guard = −43.2 <= z

x row 1 = Impl i e s ( z >= 0 , x == s q r t ( z ) ∗ x0 + y )

x row 2 = Impl i e s (And(−43.2 <= z , z < 0) , x == x0 )

y row = y0 ∗ x0 <= y

ta b l e = And( x row 1 , x row 2 , y row )

def BA( ) : return Imp l i e s ( guard , t a b l e ) #before−a f t e r p r e d i c a t e

def i n v a r i a n t (x , y ) : return And(0 <= x , 0 <= y )

# Proof 1 : axm0 and axm1 do not c o n f l i c t wi th each o th er

# we r e p l a c e occurrences o f s q r t by the Z3 Sqr t and prove t h a t

# the d e f i n i t i o n o f axm0 i s c o r r e c t

axm0b = ForAll ( [ r ] , Imp l i e s (0 <= r ,

And(− e p s i l o n <= r − Sqrt ( r ) ∗∗ 2 ,

r − Sqrt ( r ) ∗∗ 2 <= eps i l on ,

0 <= Sqrt ( r ) ) ) )

s = So lve r ( ) ; s . add ( Not (axm0b ) ) ; s . add (axm1)

print s ; r e s = s . check ( )

i f r e s == unsat :

print ” . . . . proved ”

e l i f r e s == unknown :

print ” . . . f a i l e d to prove (unknown) ”

else :

print ” . . . f a i l e d to prove ( p r o p o s i t i o n i s f a l s e ) ”

s . model ( )
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#Proof 2 : i n v a r i a n t p r e s e r v a t i o n

i n v p r o o f o b l i g a t i o n = Impl i e s (And( i n v a r i a n t ( x0 , y0 ) , guard , BA( ) ) , i n v a r i a n t (x , y ) )

print ”> Axiom 0 ” ; print axm0 ; print ( ”> Axiom 1 ” ) ; print axm1

print ’> i n v p r o o f o b l i g a t i o n ’ ; print ( i n v p r o o f o b l i g a t i o n )

s = So lve r ( ) ; s . add (axm0 ) ; s . add (axm1 ) ; s . add ( Not ( i n v p r o o f o b l i g a t i o n ) )

print s ; r e s = s . check ( )

i f r e s == unsat :

print ” . . . . proved ”

e l i f r e s == unknown :

print ” . . . f a i l e d to prove (unknown) ”

else :

print ” . . . f a i l e d to prove ( p r o p o s i t i o n i s f a l s e ) ”

s . model ( )
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Appendix C. Proving Case Study Invariant in Z3 SMT Solver

( dec la re−fun wf ( Real ) Real )

( dec la re−fun w f f i r s t ( Real Real Real ) Real )

( dec la re−fun w f l a s t ( Real Real Real ) Real )

( dec la re−const amplitude Real )

( dec la re−const tmax Real )

( dec la re−const n Real )

( de f ine−fun cont inuous ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) )

(=> (and (<= 1 x ) (<= x y ) (<= y n ) )

( e x i s t s ( ( z Real ) )

(and (<= x z ) (<= z y )

(<= ( wf x ) ( wf z ) )

(<= ( wf z ) ( wf y ) ) ) ) ) ) )

; d e f i n i t i o n o f f i r s t and l a s t

( de f ine−fun def−f i r s t −a ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) (w Real ) )

(=> (and (<= x w) (<= w y ) (= ( wf w) z ) )

(<= ( w f f i r s t x y z ) w) ) ) )

( de f ine−fun def−f i r s t −b ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) )

; (=> ( e x i s t s ( (w Real ) ) (and (<= x w) (<= w y ) (= ( wf w) z ) ) )

(= ( wf ( w f f i r s t x y z ) ) z ) ) )

( de f ine−fun def−f i r s t −c ( ) Bool

( f o r a l l ( ( i Real ) ( j Real ) ( z Real ) (w Real ) )

; (=> ( e x i s t s ( ( x Real ) ) (and (<= i x ) (<= x j ) (= ( wf x ) z ) ) )

(= (< w ( w f f i r s t i j z ) )

( f o r a l l ( ( x Real ) )

(=> (and (<= i x ) (<= x j ) (= ( wf x ) z ) )

(< w x ) ) ) ) ) )

( de f ine−fun def−f i r s t −d ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) )

; (=> ( e x i s t s ( (w Real ) ) (and (<= x w) (<= w y ) (= ( wf w) z ) ) )

(and (<= x ( w f f i r s t x y z ) )

(<= ( w f f i r s t x y z ) y ) ) ) )

( de f ine−fun def−l a s t−a ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) (w Real ) )

(=> (and (<= x w) (<= w y ) (= ( wf w) z ) )

(<= w ( w f l a s t x y z ) ) ) ) )

( de f ine−fun def−l a s t−b ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) )
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; (=> ( e x i s t s ( (w Real ) ) (and (<= x w) (<= w y ) (= ( wf w) z ) ) )

(= ( wf ( w f l a s t x y z ) ) z ) ) )

( de f ine−fun def−l a s t−c ( ) Bool

( f o r a l l ( ( i Real ) ( j Real ) ( z Real ) (w Real ) )

; (=> ( e x i s t s ( ( x Real ) ) (and (<= i x ) (<= x j ) (= ( wf x ) z ) ) )

(= (< ( w f l a s t i j z ) w)

( f o r a l l ( ( x Real ) )

(=> (and (<= i x ) (<= x j ) (= ( wf x ) z ) )

(< x w) ) ) ) ) )

( de f ine−fun def−l a s t−d ( ) Bool

( f o r a l l ( ( x Real ) ( y Real ) ( z Real ) )

; (=> ( e x i s t s ( (w Real ) ) (and (<= x w) (<= w y ) (= ( wf w) z ) ) )

(and (<= x ( w f l a s t x y z ) )

(<= ( w f l a s t x y z ) y ) ) ) )

( de f ine−fun y10 ( ) Real (∗ 0 .1 amplitude ) )

( de f ine−fun y50 ( ) Real (∗ 0 .5 amplitude ) )

( de f ine−fun y90 ( ) Real (∗ 0 .9 amplitude ) )

( de f ine−fun t50p ( ) Real ( w f f i r s t 1 tmax y50 ) )

( dec la re−const t50n Real )

( de f ine−fun t10p ( ) Real ( w f l a s t 1 t50p y10 ) )

( dec la re−const t90p Real )

( dec la re−const t10n Real )

( dec la re−const t90n Real )

( de f ine−fun ymax ( ) Bool (= ( wf tmax) amplitude ) )

( de f ine−fun tmax−between ( ) Bool (and (<= 1 tmax) (<= tmax n ) ) )

( de f ine−fun pred0 ( ) Bool (< t10p t50p ) )

( de f ine−fun wd0a ( ) Bool (and ( e x i s t s ( ( x Real ) ) (and (<= 1 x ) (<= x tmax) (= ( wf x ) y50 ) ) ) ) )

( de f ine−fun wd0b ( ) Bool (and ( e x i s t s ( ( x Real ) ) (and (<= 1 x ) (<= x t50p ) (= ( wf x ) y10 ) ) ) ) )

( de f ine−fun wd0c ( ) Bool (and (<= 1 t50p )

(<= t50p n ) ) )

( de f ine−fun wd0d ( ) Bool (and (<= 1 t10p )

(<= t10p n ) ) )

( de f ine−fun pred1 ( ) Bool (< ( w f l a s t 1 t50p y10 ) t50p ) )

( de f ine−fun wd1a ( ) Bool wd0a)

( de f ine−fun wd1b ( ) Bool wd0b)

( de f ine−fun wd1c ( ) Bool (and (<= 1 t50p )

(<= t50p n ) ) )

( de f ine−fun pred2 ( ) Bool

( f o r a l l ( ( t Real ) )

(=> (and (<= 1 t ) (<= t t50p ) (= ( wf t ) y10 ) )

(< t t50p ) ) ) )

( de f ine−fun wd2a ( ) Bool wd0a)

( de f ine−fun wd2b ( ) Bool (and (<= 1 t50p )

(<= t50p n ) ) )

( de f ine−fun pred3 ( ) Bool

( f o r a l l ( ( t Real ) )

(=> (and (<= 1 t ) (<= t t50p ) (<= t50p t ) )
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(not (= ( wf t ) y10 ) ) ) ) )

( de f ine−fun wd3a ( ) Bool wd0a)

( de f ine−fun wd3b ( ) Bool (and (<= 1 t50p )

(<= t50p n ) ) )

( de f ine−fun pred4 ( ) Bool

(not (= ( wf t50p ) y10 ) ) )

( de f ine−fun wd4a ( ) Bool wd0a)

( de f ine−fun wd4b ( ) Bool (and (<= 1 t50p )

(<= t50p n ) ) )

( de f ine−fun pred5 ( ) Bool (not (= y50 y10 ) ) )

( de f ine−fun pred6 ( ) Bool (not (= (∗ 0 .5 amplitude ) (∗ 0 .1 amplitude ) ) ) )

( de f ine−fun pred7 ( ) Bool t rue )

( push )

( echo ”> WD 0 ( a ) ”)

( a s s e r t wd0a)

( a s s e r t (not wd0a ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 0 (b) ”)

( a s s e r t wd0b)

( a s s e r t (not wd0b ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 0 ( c ) ”)

( a s s e r t def−f i r s t −d)

; ( a s s e r t def−f i r s t −b)

( a s s e r t tmax−between )

( a s s e r t (not wd0c ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 0 (d) ”)

( a s s e r t wd0d)

( a s s e r t (not wd0d ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 1 ( a ) ”)

( a s s e r t wd1a)

( a s s e r t (not wd1a ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 1 (b) ”)

( a s s e r t wd1b)

( a s s e r t (not wd1b ) )

( check−sa t )

( pop )
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( push )

( echo ”> WD 1 ( c ) ”)

( a s s e r t def−f i r s t −d)

( a s s e r t tmax−between )

( a s s e r t (not wd1c ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 2 ( a ) ”)

( a s s e r t wd0a)

( a s s e r t (not wd2a ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 2 (b) ”)

; ( a s s e r t wd0c )

( a s s e r t def−f i r s t −d)

( a s s e r t tmax−between )

( a s s e r t (not wd2b ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 3 ( a ) ”)

( a s s e r t wd0a)

( a s s e r t (not wd3a ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 3 (b) ”)

( a s s e r t def−f i r s t −d)

( a s s e r t tmax−between )

( a s s e r t (not wd3b ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 4 ( a ) ”)

( a s s e r t wd0a)

( a s s e r t (not wd4a ) )

( check−sa t )

( pop )

( push )

( echo ”> WD 4 (b) ”)

( a s s e r t def−f i r s t −d)

( a s s e r t tmax−between )

( a s s e r t (not wd4b ) )

( check−sa t )

( pop )

( push )

( echo ”> s tep 0 ”)

( a s s e r t (not (= pred0 pred1 ) ) )
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( check−sa t )

( pop )

( push )

( echo ”> s tep 1 ”)

; ( a s s e r t ( e x i s t s ( (w Real ) ) (and (<= 1 w) (<= w tmax) (= ( wf w) y50 ) ) ) )

; ( a s s e r t def−l a s t−a )

; ( a s s e r t def−l a s t−b)

( a s s e r t def−l a s t−c )

( a s s e r t (not (= pred2 pred1 ) ) )

( check−sat−us ing

(or−else

( then s i m p l i f y smt )

( then qe smt )

( then smt ) ) )

( pop )

( push )

( echo ”> s tep 2 ”)

( a s s e r t (not (= pred2 pred3 ) ) )

( check−sa t )

( pop )

( push )

( echo ”> s tep 3 ”)

( a s s e r t (not (=> pred4 pred3 ) ) )

( check−sa t )

( pop )

( push )

( echo ”> s tep 4 ”)

( a s s e r t ( e x i s t s ( (w Real ) ) (and (<= 1 w) (<= w tmax) (= ( wf w) y50 ) ) ) )

( a s s e r t def−f i r s t −b)

( a s s e r t cont inuous )

( a s s e r t (not (= pred4 pred5 ) ) )

( check−sa t )

( pop )

( push )

( echo ”> s tep 5 ”)

( a s s e r t (not (= pred6 pred5 ) ) )

( check−sa t )

( pop )

( push )

( echo ”> s tep 6 ”)

( a s s e r t (< 0 amplitude ) )

( a s s e r t (not (= pred6 pred7 ) ) )

( check−sa t )

( pop )

( push )

( echo ”> r e l a t i o n ”)

( a s s e r t (= pred0 pred1 ) )

( a s s e r t (= pred2 pred1 ) )

( a s s e r t (= pred2 pred3 ) )

( a s s e r t (=> pred4 pred3 ) )
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( a s s e r t (= pred4 pred5 ) )

( a s s e r t (= pred6 pred5 ) )

( a s s e r t (= pred6 pred7 ) )

( a s s e r t (not (=> pred7 pred0 ) ) )

( check−sa t )

( pop )


