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Abstract 

Various models of the neural mechanisms of attentional modulation in the visual cortex 
have been proposed. In general, these models assume that an 'attention' parameter is 
provided separately. Its value as well as the selection of neuron(s) to which it applies are 
assumed, but its source and the selection mechanism are unspecified. Here we show how 
the Selective Tuning model of visual attention can account for the modulation of the 
firing rate at the single neuron level, and for the temporal pattern of attentional 
modulations in the visual cortex, in a self-contained formulation that simultaneously 
determines the stimulus elements to be attended while modulating the relevant neural 
processes. 

 

Introduction 

While visual scenes typically contain multiple objects, the capacity of the visual system 
to process all these objects at the same time is limited (Broadbent 1958, Neisser 1967, 
Schneider and Shiffrin 1977, Tsotsos 1990). In experimental settings, when presented 
with multiple objects, subjects’ performance decreases and typical errors are present 
(Treisman 1969, Treisman and Schmidt 1982, Duncan 1980, Duncan 1984). Stimuli are 
said to compete for neural representation, and the mechanisms of this competition and 
their modulatory effect on neural responses have been a subject of intense investigation 
and modeling. 

There have been several models of visual attentive neural modulations, and all assume 
that an external 'attention' parameter is provided by some other neural process. Its value 
as well as the selection of neuron(s) to which it applies are assumed, but its source and 
how all of this is determined are unspecified. Our theory, Selective Tuning (ST), presents 
a novel formulation that solves these problems (Tsotsos 2011). In ST, neuron response is 
the result of attentive modulation of its inputs across time from the whole network 
involving feedforward, recurrent, and lateral interactions. We show that not only does ST 
provide very good comparisons to single neuron firing rates in attentive tasks but also 
shows how, given visual stimuli, the stimulus locus of attention is computed and used 
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throughout the network. The goal of this paper is to show how  this model captures the 
essence of attentive modulation as well as its competitors, while additionally adding the 
critically missing element of attentional computation. Importantly, ST goes beyond other 
models in defining a modulatory mechanism at a finer level of abstraction than 
previously accomplished; in a very real sense, it subsumes the other models as a result. 
Other aspects of ST are described elsewhere (Tsotsos, 2011).  

The paper starts with a brief overview of ST and a review of computational models of 
attentional modulation. The microcircuitry of ST and the equations that govern its 
behaviour are described next, followed by two computational modeling experiments. We 
describe the experiments that form the foundation for the biased competition theory 
(Desimone and Duncan 1995, Reynolds and Desimone 1999), followed by a simulation 
of these experiments using ST. Additionally, the temporal latency of selective attention 
modulation across areas in ST is presented and compared to that of the macaque visual 
system (Mehta et al. 2000). These experiments demonstrate the fact that ST can account 
for the modulation of the firing rate at the single neuron level, and for the temporal 
progression of attentional modulations in the visual cortex in a self-contained formulation 
without the external attentional parameter. The paper concludes with a comparison of the 
specifics of the models considered, analyzing their relative strengths and weaknesses. 

 

Background 

A wide variety of models have appeared that exhibit interesting performance with respect 
to neural modulations due to attention. These will be overviewed first, followed by a 
description of the Selective Tuning model, the focus of this paper. 

 

Models of Attentive Neural Modulation 

A wide variety of models have been proposed to explain the attentional modulation of 
neural activations, in this section we briefly review a representative subset. Each model 
will be assigned an acronym for easier reference. The descriptions and equations included 
below are meant mainly to illustrate the wide variety of solutions proposed, and to 
highlight the way attentional modulation is implemented, rather than being exhaustive 
descriptions of the models. For full details, complete sets of equations and biological 
justification, the reader is referred to the original sources. For each of the models, there is 
no evaluation of their actual results presented because each in its own way shows good 
matches to data and/or behavior. As a result, the point of this comparison is to clarify 
commonalities, differences, gaps, and strengths. Here we will focus on how the different 
models present attentional neural modulation. For general reviews of theories of attention 
see (Pashler 1998a, Pashler 1998b, Itti et al. 2005, Tsotsos 2011), and specifically for 
computational modeling, see (Itti and Koch 2001, Rothenstein and Tsotsos 2008, Tsotsos 
and Rothenstein 2011). 

The biased competition theory (Desimone and Duncan 1995, Reynolds and Desimone 
1999) proposes that neurons representing different features compete and that attention 
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biases this competition in favor of neurons that encode the attended stimulus. The Biased 
Competition model (BCM) (Reynolds et al. 1999) has been proposed as a demonstration  
of the biased competition theory. The temporal evolution of a neuron’s firing rate is given 
by: 

 

where  is the excitatory input for two stimuli within the same receptive 
field, and  the inhibitory input for two stimuli within the same receptive 
field. The w's are positive and negative synaptic weights. The equilibrium response is 

described by , where B is the maximum response and A is a 

decay constant. Attention is assumed to increase the strength of the signal coming from 
the inputs activated by the attended stimulus, implemented by increasing the associated 
synaptic weights. The model makes no claims of biological plausibility – the equations 
are not good fits for neural responses, no actual competition is implemented, and there is 
no known mechanism for the multiplicative modulation of synaptic weights (Spratling 
and Johnson 2004). 

A significant number of other models of biased competition have tried to build upon 
BCM, by filling in the missing biologically-plausible mechanism, by including additional 
neuron types, and by extending the model to full networks. 

The Neurodynamical model (ND) (Rolls & Deco 2002) is a large-scale implementation 
of biased competition that consists of several interconnected network modules simulating 
different areas of the dorsal and ventral path of the visual cortex. Each module consists of 
a population of cortical neurons arranged in excitatory and inhibitory pools. The 
inhibitory pool receives excitatory input from all the excitatory pools and provides 
uniform inhibitory feedback to each of the excitatory pools, thus mediating competition 
between them. The temporal evolution of the system is described within the framework 
of a mean-field approximation, i.e. an ensemble average of the neural population is 
calculated in order to obtain the corresponding activity. For example, the current activity 
of the excitatory pools in the posterior parietal (PP) module is given by: 

 

where  is an external attentional spatial-specific top-down bias,  is a diffuse 

spontaneous background input,  is Gaussian noise. The intermodular attentional biasing 

 through the connections with the pools in the module V1 is: 

 

and the activity current of the common PP inhibitory pool evolves according to: 
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Similar equations govern the dynamics of the other models. The model asserts that 
feature attention biases intermodular competition along the ventral pathway (simulated 
areas V4 and IT), and spatial attention biases intermodular competition along the dorsal 
pathway (simulated areas V1, V4 and PP).

 
The Feedback Model of Visual Attention (FMVA) (Spratling & Johnson 2004) improves 
on BCM by providing a biologically-justified mechanism and microcircuitry for input 
modulation. Compared to most other implementations of biased competition, in which 
neurons compete by inhibiting each other’s output, in FMVA neurons compete by 
laterally inhibiting other neurons’ inputs. The key observation that drives the model is 
that feedforward connections seem to be primarily made in basal dendrites, while 
feedback connections preferentially target apical dendrites, thus appearing to have 
functionally different roles. The activations of the apical and basal dendrites are given by: 

  and   

where j and k are indices used to localize the neuron in the network, ma and mb are the 
total number of apical and basal synapses, respectively, vijk and wijk are synaptic weights 
associated with the input from neuron i (apical and basal, respectively), x is the output of 
neuron i. The apical inputs  originate from higher cortical regions or are top-down 
signals from outside the model. The basal inputs  are the outputs of neurons in lower 
cortical regions, after pre-integration lateral inhibition: 

 

where αt scales lateral inhibition,  is the output of neuron p in region k at the previous 

time step, and 
 

the positive half-rectified value of . FMVA proposes that 
feedback activations multiplicatively modulate the total feedforward activation: 

 
 . 

The reentry hypothesis (RH) (Hamker 2005) models top-down modulation as a gain 
control mechanism on the input feedforward signal, increasing activations that match top-
down predictions. Considering two interconnected areas I and II, the generic formulation 
of the modulation of the input signal 

 
to area II combines the filtered feedforward 

input  from area I with the summed top-down signal  where γ∈{L,F} is the 
origin of the attentional signal (L for location, F for feature):  
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The nonlinear pooling function f defines the influence of the filtered afferents F on cell k. 
This generic equation is adapted to the specific connectivity of each area. The 
multiplicative gain allows for multiple forms of attentional selection, by combining 
signals originating from different areas (e.g. memory for stimulus-specific features, 
motor maps for location specific feedback) that allow the system to simulate a variety of 
experimental tasks.  

An alternative account for attentional modulation comes in the form of the “feature 
similarity gain” theory (FSG) (Treue & Martinez-Trujillo 1999, Martinez-Trujillo & 
Treue 2004), according to which attention can both enhance and reduce neural activations 
in proportion to the similarity between the attended stimulus and the preferred stimulus of 
the neuron. The attentional gain effect on neuronal responses is a graded function of the 
difference between the attended feature and the preferred feature of the neuron, 
independent of the stimulus. In the computational model of FSG proposed by Boynton 
(2005), the neural response is described as a divisive contrast normalization process 
between the sum of squared linear responses to each stimulus component and the sum of 
squared contrasts plus a semi-saturation constant σ by: 

 

where each component that contributes to the activation has its own feature xi and 
contrast ci. The normalized firing rate H is modulated by a gain factor G(y) that has a 
tuning function similar to the stimulus-driven tuning function of that neuron, where y is 
the attended feature, resulting in a modulated response given by : 

 

 . 

The parameter δ is the inherent baseline-firing rate of the neuron. The gain factor G(y) is 
greater than one for a preferred feature, and lower than one otherwise. The gain factor is a 
purely feature-based effect, and is independent of the spatial focus of attention and the 
properties of the visual stimulus. 

Yet another class of models start from the observation that the neural representation of 
multiple concurrent stimuli is equivalent to a normalization operation (Busse et al. 2009, 
Carandini & Heeger 2012). As normalization is viewed as a fundamental, canonical 
neural computation, the authors hypothesize that attention has an impact on neural 
activations by influencing the normalization process. 

The

 

Normalization Model of Attention (NMA) (Reynolds and Heeger 2009) is an attempt 
to unify under a single computational model disparate results that are consistent with 
attention as a multiplicative gain factor, as a change in contrast gain, a sharpening of 
neural tuning, and various forms of attenuation and enhancement. The proposed model 
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combines neural selectivity (termed “stimulus drive”) with an external “attention field” 
and a “suppressive field”, that pools activations corresponding to non-preferred stimulus 
and unattended locations, which is used as in normalization. The resulting firing rates are 
defined as: 

 

where 

.
 

 
E(x,θ) is the stimulus drive at location x for orientation θ. A(x,θ) is the attentional field, 
S(x,θ) is the suppressive drive. σ is a constant that determines the neuron's contrast gain. 
|...|T specifies rectification with respect to threshold T. ✴ denotes convolution, s(x,θ) gives 
the extent of pooling. Stimulus contrast is also included in the equations and is not shown 
here; see (Reynolds and Heeger 2009)  for further details. A(x,q) =1 everywhere except 
for the positions and features that are to be attended, where A(x,q) >1. The fact that the 
attentional gain is applied before normalization accounts for the wide range of behaviours 
exhibited by the model. 

The Normalization Model of Attentional Modulation (NMAM) (Lee & Maunsell 2009) 
proposes that the primary effect of attention is to modulate the strength of normalization 
mechanisms. With two stimuli present in the RF, the neuron’s firing rate is given by: 

 

where Ni is the normalization term for each stimulus, Ii is the direct input driven by each 
stimulus, and u is a power term that enables the modeling of different nonlinear 
summation regimens. Each normalization term depends on the contrast of the associated 
stimulus as:

 

  

where β=1 for unattended item, β >1 for attended items, α is the slope of normalization, c 
is stimulus contrast; s is the baseline of normalization. 

The attentional modulation of firing rate and synchrony in a biophysical network of 
spiking neurons is the subject of the Cortical Microcircuit for Attention model (CMA) 
(Buia & Tiesinga 2008). Attention was modeled as a change in the driving current to the 
network neurons. In addition to excitatory (E) neurons, the investigation focuses on the 
role of interneurons, and suggests that both feedforward (FFI) and top-down (TDI) 
interneurons play a role. These are differentially modulated by attention: the firing rate of 
the FFI increases with spatial attention and decreases with feature-based attention, 
whereas the TDI increase their firing rate with feature-based attention and shift the 
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network synchrony from the beta to the gamma frequency range. The neurons are 
arranged in columns, each containing neurons of the three types. The synaptic 
connectivity was designed to ensure inter-stimulus competition and the generation of 
cortical rhythms. The dynamics of each type of neuron are given by: 

 

where A is a scaling factor; c is the stimulus contrast; β is stimulus selectivity, 0.5 ≤ β < 
1; I0 is a constant offset current. Based on the model, the authors propose a canonical 
circuit for attention, and present a number of concrete and testable predictions. 

An example of a modeling effort that tries to reconcile different approaches is the 
integrated microcircuit model of attentional processing (IMM) (Ardid et al. 2007). IMM 
is a biophysically based network model of spiking neurons composed of a reciprocally 
connected loop of two (sensory and working memory) networks. A wide variety of 
physiological phenomena induced by selective attention are shown to naturally arise in 
such a system. The proposed neural circuit is an instantiation of “feature-similarity gain 
modulation.” The channel kinetics are modeled by:

 
 

 

where s is the gating variable, x is a synaptic variable proportional to the neurotransmitter 
concentration in the synapse, ti are the presynaptic spike times, τs ms is the decay time of 
NMDA currents, τx controls the rise time of NMDAR channels, and αs controls the 
saturation properties of NMDAR channels at high presynaptic firing frequencies. 
Attention is modeled as a top-down signal originating in a working memory area, and 
primed by a cue at the start of the simulation. 

Predictive coding (Rao & Ballard 1999) is reformulated as a form of biased competition 
by Spratling (2008a, 2008b) (PC-BC). Every processing stage in the proposed model 
consists of prediction and error detection nodes, with firing rate dynamics defined by:  

 

where Si represents the current processing stage, ySi and eSi the vectors of predictive and 
error node activations, respectively, W are matrices of weight values, and η, ς, and ϑ are 
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constant scale values. The external attentional modulation signal is yAi, modulating 
activations through a set of weights WAi. A nonlinear version of these equations, that 
obtains better fits to experimental data, is also presented. 

Although all the models have good results, the source of the 'attention' parameter takes 
various forms, e.g.: ventral and dorsal prefrontal areas provide the external top-down bias 
that specifies the task (Rolls and Deco 2002), top-down signals corresponding to stimulus 
expectations or feedback processes generated by recurrent connectivity (Spratling & 
Johnson 2004), prefrontal memory circuits (Hamker 2005, Ardid et al. 2007), and 
unspecified in some models. 

The value of the attentional signal as well as the selection of neuron(s) to which it applies 
are generally assumed, and its source and the selection mechanism are unspecified. As a 
result, none of these models can address issues related to temporal relationships between 
stimuli and attentional modulation, and hierarchical communication. Also, because each 
model exhibits good performance, there is little that would allow one to decide which is 
correct. By demonstrating ST performance on a larger experimental set, we hope to 
resolve this problem. 

 

Selective Tuning 

The Selective Tuning (ST) model of visual attention (Culhane and Tsotsos 1992, Tsotsos 
1993, Tsotsos et al. 1995, Tsotsos 2011) starts from `first principles' and features a 
theoretical foundation of provable properties based on the theory of computational 
complexity (Tsotsos 1987, Tsotsos 1989, Tsotsos 1990, Tsotsos 1992). The `first 
principles' arise because vision is formulated as a search problem (given a specific input, 
what is the subset of neurons that best represent the content of the image?) and 
complexity theory is concerned with the cost of achieving solutions to such problems. 
This foundation suggests a specific biologically plausible architecture as well as its 
processing stages. Research on ST has been driven by the desire to create a theory with 
strong neurobiological predictive power as well as utility in practice. The model has been 
implemented and tested in several labs applying it to guide computer vision and robotics 
tasks. 

ST is characterized by the integration of feedforward and feedback pathways into a 
network that is able to take high level decisions, and, through a series of response-based 
decision processes, identify the neurons that have participated in that decision. The ST 
feedback process does not rely on a spatial spotlight, so ST is able to select all parts of a 
stimulus, even if they do not share a location (e.g. stimuli with discontinuities due to 
overlap, or stimuli that are separated spatially due to the nature of the cortical feature 
maps). 

The visual processing architecture is pyramidal in structure1, as in other models (e.g. 
(Fukushima 1986, Riesenhuber & Poggio 1999)) with units within this network receiving 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  A pyramidal representation is a layered representation characterized by successively coarser spatial 
representations	
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both feed-forward and feedback connections. When a stimulus is presented to the input 
layer of the pyramid, it activates in a feed-forward manner all of the units within the 
pyramid with receptive fields (RFs) mapping to the stimulus location; the result is a 
diverging cone of activity within the processing pyramid. It is assumed that response 
strength of units in the network is a measure of goodness-of-match of the stimulus within 
the receptive field to the model that determines the selectivity of that unit. 

Selection relies on a hierarchy of Branch-and-Bound decision processes.  Branch-and-
Bound is a classic mechanism that is used in optimization problems (Lawler & Wood, 
1966) and recursive pruning within the branch-and-bound strategy is especially useful for 
a hierarchical system, such as ours. Our decision processes are implemented as θ-WTA, a 
unique form of the common winner-take-all algorithm, a parallel algorithm for finding 
the maximum value in a set. There is no single winner; rather response values are 
partitioned into ordered groups where partition bins have width θ. All neurons that have 
responses within the first bin (ie., largest responses within θ of each other in value) are 
selected as the winners. In the first step of the algorithm, a θ-WTA process operates 
across the entire visual field at the top layer where it computes the global winner, i.e., the 
set of units with largest response. The θ-WTA can accept guidance to favor areas or 
stimulus qualities if that guidance is available but operates independently otherwise. The 
search process then proceeds to the lower levels by activating a hierarchy of θ-WTA 
processes. The global winner activates a θ-WTA that operates only over its direct inputs 
to select the strongest responding region within its receptive field. Next, all of the 
connections in the visual pyramid that do not contribute to the winner are pruned 
(inhibited). The top layer is not inhibited by this mechanism. However, as a result, the 
input to the higher-level unit changes and thus its output changes. This refinement of unit 
responses is an important consequence because one of the important goals of attention is 
to reduce or eliminate signal interference (Tsotsos 1990). By the end of this refinement 
process, the output of the attended units at the top layer will be the same as if the attended 
stimulus appeared on a blank field. This strategy of finding the winners within 
successively smaller receptive fields, layer by layer, in the pyramid and then pruning 
away irrelevant connections through inhibition is applied recursively through the 
pyramid. The end result is that from a globally strongest response, the cause of that 
largest response is localized in the sensory field at the earliest levels. The paths remaining 
may be considered the pass zone of the attended stimulus while the pruned paths form the 
inhibitory zone of an attentional beam. The θ-WTA does not violate biological 
connectivity or relative timing constraints. This algorithm is hinted at by Fuster (1990): 
"[I]f the relevance of a stimulus feature depends on its context, any influences that 
attention may have on cells that respond to that feature will arrive to those cells after 
analysis of the context that signals the relevance of the feature. The time taken by that 
analysis will be reflected by a relatively long latency of attention-modulated cell 
responses to the relevant feature." 
 
In more neural terms, ST uses recurrent tracing of connections to achieve localization. 
The idea of tracing back connections in a top-down fashion was present in the 
NeoCognitron model of Fukushima (1986) and suggested even earlier by Milner (1974). 
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Within the Selective Tuning model, whose earliest descriptions are found in (Tsotsos 
1991, Culhane and Tsotsos 1992 Tsotsos 1993), with accompanying details and proofs in 
(Tsotsos et al. 1995). It also appeared later in the Reverse Hierarchy Model of Ahissar & 
Hochstein (1997), Hochstein & Ahissar (2002). Only NeoCognitron and Selective Tuning 
provide realizations; otherwise, the two differ in all details. Fukushima’s model included 
a maximum detector at the top layer to select the highest responding cell, and all other 
cells were set to their rest state. Only afferent paths to this cell are facilitated by action 
from efferent signals from this cell. In contrast, neural inhibition is the only action of ST, 
with no facilitation. The NeoCognitron competitive mechanism is lateral inhibition at the 
highest and intermediate levels. This lateral inhibition enhances the strongest single 
neurons thus assuming all spatial scales are represented explicitly, whereas ST finds 
regions of neurons, removing this unrealistic assumption. For ST, units losing the 
competition at the top are left alone and not affected at all — the non-attended visual 
world does not disappear as in NeoCognitron. ST’s inhibition is only within afferent sets 
to winning units. This prediction of a space-limited suppressive surround firmly 
distinguishes the two approaches. 

 

ST circuit 

Several types of neurons are required for ST to function. The connectivity among four 
classes of neurons — interpretive, bias, gating and gating control — is presented in 
Figure 1 (adapted from Figure 5.6 in (Tsotsos 2011)). The figure shows a single assembly 
that computes a single visual quantity (feature, object, etc.) at a single tuning profile. All 
elements of this single assembly are at the same location. At the same location, however, 
there are many such competing assemblies spanning the tuning ranges of all visual 
qualtities. 

Interpretive neurons are the classical feature-detecting neurons. They will be represented 
by E, and their activation by e. They receive feed-forward input from other areas that 
arrives in lamina 4 and provide an output to other areas from laminae 5 and 6. 

Task information can be provided to the network by bias neurons. These provide top-
down guidance for visual processing, whether the selection is for locations or regions in 
space, sub-ranges of visual features, objects, events, or whole scenes to attend to. 

The gating sub-network, composed of gating and gating control neurons, is the major 
mechanism by which selection of attended neurons is accomplished and by which those 
neural activations are traced back down to their source, forming the path of the 
attentional beam. Their specific roles are described below. 
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Figure	
  1	
  Selective	
  Tuning	
  microcircuit	
  

	
  

We will use the following notation to represent connections between neurons: 

⊼ represents the set of feed-forward connections to a neuron from all sources. 

∨ represents the set of recurrent connections to a neuron from all sources. 

Ξ represents the set of local connections to a neuron; that is, the neurons to which it is 
connected within the same visual area. 

All these will be specialized by means of superscripts to distinguish the different kinds of 
connections. In order to keep the equations simple, we will assume that all activations 
and parameters correspond to a given assembly, and forgo indices that localize the 
neurons within the full network (but see (Tsotsos 2011) for the full formulation). 
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Given that our goal here is to understand how neural inputs and activations are modulated 
by attention, we will use a simple weighted sum of inputs formulation for the activation 
of neurons: 

 

where gk are weights specifying the strength of contribution from neuron k to the current 
neuron E and ek is the activation of neuron k.

 

The neuron’s firing rate S is defined by: 

 

where Z is the maximum firing rate, 
 
the positive half-rectified value of , the 

exponent ξ determines the maximum slope of the function (i.e., how sharp the transition 
is between threshold and saturation), and σ, the semi-saturation constant, determines the 
point at which S reaches half of its maximum. The value σ is determined by the base 
semi-saturation constant σ0 plus fast and slow after-hyperpolarizing potentials: 

 . 

The fast (Hfast) and slow (Hslow) after-hyperpolarizing potentials are defined by: 

  and   

respectively. The effect of these variables is to slowly decrease the value of the neuron’s 
activation e when the neuron is active.  

The temporal variation of a neuron's response is governed by: 

 

where τ is a decay time constant. 

Bias inputs act by suppressing the input to task-irrelevant interpretive neurons. For any 
given neuron, the bias input is determined as the minimum value of all converging bias 
signals: 

 

where ∨b is the set of bias units making feedback connections to E. The default value of 

each bias unit is 1.0. Adding this bias to the neural response equation yields: 
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In ST, the input signals reaching a neuron are modulated by gating control signals that are 
a result of the winner-take-all competitions between activations. The gating sub-network 
is charged with determining the winning subset of the inputs to the pyramidal neuron E, 
suppressing feed-forward connections to E that correspond with the losers of the 
competition and transmitting the values of the gating neurons down to the next layer, to 
become the gating control signals for the next layer neurons. 

The winner-take-all process creates an implicit partial ordering of the set of neural 
responses. The ordering arises because inhibition between units is not based on the value 
of a single neuron but rather on the difference between pairs of neural responses, where 
the difference must be at least as great as a task-specific parameter θ, θ ≥ 0.0. This 
process is not restricted to converging to single values as it is in all other formulations; 
rather regions of neurons are found as winners. Competition depends linearly on the 
difference between neuron response strengths: neuron A will inhibit B in the competition 
if eA(t) – eB(t) > θ. Otherwise, eA will not inhibit eB. Each input to the competition must 
be weighted by its role for the interpretive units that it feeds to reflect the importance of 
each input to the interpretive computation in the competition, Thus, the inputs to the 
gating network must be postsynaptic as shown in Figure 1. The θ-WTA process is 
defined by the recurrence relation: 
 

  
′ef ′t +1( )= ′ef ′t( )-ς Δ f,λ( )

λ∈ΞS
∑  

where e’ and t’ represent activation and time during the competition (i.e. competition 

starts at t’=0), and 

  
Δ f ,λ( ) = gλ ′eλ ′t( )− g f ′ef ′t( ) 	
  	
      if	
  	
  	
  	
  	
  	
    0 <θ < gλ ′eλ ′t( )− g f ′e f ′t( )⎡⎣ ⎤⎦  

and otherwise  0.0. 

 

The gating control signals ς are defined as: 

 

where vc is the set of gating control signals converging onto E. There is also one gating 

neuron, γf, f ∈⊼, for each of the feed-forward inputs to E, 0 ≤ γf ≤ 1.0. This results in 

gating signals: 
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γ f t + t fc( ) = ′e f t fc( )
ef t + t fc( )  

. 

Integrating the gating signals into the ST equation, and dropping the time parameter '(t)' 

for convenience, we obtain: 

 
.
 

The complete ST equation also includes lateral cooperation signals, leading to the 

complete equation: 

 

where -1.0 ≤ gh ≤ 1.0 is the weight of the connection from neuron Eh to E, and Ξa 
represent the connections horizontally across columns for neuron E. As these lateral 
signals are not relevant to the results presented here, the reader is referred to (Tsotsos 
2011) for a full description. The performance of this model will be presented after the 
experimental setup is described. 

 

Attentional modulation of neural responses 

Single-neuron attentional modulation in the macaque 

The basic attentional modulation effects, a necessary starting point for any model, are 
presented by Reynolds et al. (1999) and summarized in Figure 2. The experiment consists 
of the presentation of one or two stimuli within a neuron’s receptive field (RF), with 
attention directed to the area covered by the RF or away from it. When presented alone, 
one of the stimuli (the reference stimulus) elicits a strong response from the neuron – 
black line in Figure 2, while the other (the probe stimulus) elicits a weak response – blue 
line. When both stimuli are shown, and in the absence of attention, the presence of the 
probe results in a reduction of the neuron's response relative to the response to the 
reference stimulus alone – green line. With attention engaged and directed towards the 
reference stimulus, the response recovers, being similar to the response to the reference 
stimulus presented alone – red line. 
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Figure 2 A summary of the Reynolds et al. experimental results. See text for details. 
Combined from Figure 6a and 6b in (Reynolds & Desimone 1999). 

 

 

Single-neuron attentional modulation in ST 

To investigate the modulation of neural activations due to ST attentional selection we 
used the simple circuit illustrated in Figure 3. The responses of the model neurons are 
defined by the ST equations presented above, the same equations are used for all 4 
excitatory neurons, while the inhibitory interneurons are described by the same equations, 
omitting the gating components. Simulating the (Reynolds & Desimone 1999) 
experiments, the two neurons at the bottom of the figure correspond to the reference (left, 
labeled E1,1) and probe (right, labeled E2,1) stimuli. The two neurons at the top of the 
figure represent neurons that have the reference (left, labeled E1,2) and the probe (right, 
labeled E2,2) as preferred stimulus. Their inputs and outputs correspond to the 
connections labeled A and B, respectively, in Figure 1. The excitatory input to the output 
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units, represented by arrows is the sum of the activations of the input units multiplied by 
their respective weights (larger for the preferred stimulus, smaller for the non-preferred). 
Similarly, the inhibitory input is the weighted sum of the activations of two inhibitory 
units, one corresponding to each input. The θ-WTA competition between the two output 
units is represented as mutual inhibition. The model network also includes ST bias, 
gating and gating control units (with the associated connections, labeled C, D, G and H in 
Figure 1), for simplicity these are not represented in Figure 3. Bias units are only used in 
one experiment, as indicated. 

 

Figure 3 The network structure. Input neurons are at the bottom. Similar to the 
Reynolds & Desimone (1999) model, we include both excitatory and inhibitory 
inputs in all combinations. Excitatory and inhibitory connections are represented by 
arrows and circles, respectively. Connection size correlates with connection weight, 
i.e. E1,2 receives large inputs from E1,1 (excitatory) and E2,1 (inhibitory), and small 
inputs from E1,1 (inhibitory) and E2,1 (excitatory). 

 

The model network is tested in the same four conditions as the Reynolds et al. 
experiment, and the results are presented using the same color-coding as that used in 
Figure 2. Figure 4 represents the output of neuron E1,2 in these four experimental 
conditions. The "Pair attend reference" (red) line represents the condition when the 
reference stimulus is attended (i.e. neuron E1,2 wins the top-level θ-WTA). The attentional 
selection process is triggered 100ms after the presentation of the stimulus, indicated by a 
vertical line. It can be observed that the response for the unattended pair of stimuli is 
lower than the response for the reference stimulus alone, and that attending to the 
reference stimulus in the pair enhances the neuron’s response. The relative responses in 
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the different conditions can be changed by manipulating the weights of the different 
connections, as illustrated in Figure 11 in the Appendix. 

 

Figure 4 The output of neuron E1,2 in the four experimental conditions. The "Pair 
attend reference" (red) line represents the condition when the reference stimulus is 
attended (i.e. neuron E1,2 wins the top-level θ-WTA) 

 

 

Certain characteristics of the response, such as the amount of attentional modulation and 
the timing of the effect, can be manipulated to provide further insight into the various 
modes of operation possible in ST. 

Experiments show that the amount of attentional modulation depends on a number of 
factors, including area studied and target-distractor similarity (see (Walther & Koch 
2006) for a summary). Figure 4 has been obtained by restricting the gating signal γk to 
the values of 0 (unattended) and 1 (attended), resulting in maximum attentional 
modulation, but by reducing the range of the gating signal, the ST equations can provide 
control over the modulation. For example, in Figure 5, the amount of inhibition for the 
unattended stimulus is only 0.5, resulting in an attended response that more closely 
matches the reference alone condition.  
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Figure 5 Gating is reduced to 50% 

 

The control of this variable gating effect is not included in the equations, but since gating 
is controlled by the θ-WTA, and the θ-WTA depends of target-distractor similarity, it is 
not implausible to hypothesize that the θ-WTA process also controls the magnitude of the 
gating, but the mechanism is unknown. 

 

One significant difference between the simulation results presented above and the 
Reynolds et al. experiment is that the location of the target has been cued in the 
experiments, but not in the model. Including a spatial bias towards the reference stimulus 
in the ST model, which is the equivalent of spatial cueing prior to stimulus presentation, 
shows another mode of operation made possible by the ST equations. The response of the 
model in the four conditions with pre-cueing of the reference stimulus is shown in Figure 
6. The effect of cueing in ST is described in detail and experimentally investigated by 
Cutzu & Tsotsos (2003). 
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Figure 6 The effect of spatial cueing 

 

An interesting characteristic of the ST response in Figure 4 and Figure 5 is the strong 
rebound of the neural response to the pair of stimuli when the selection process is 
triggered. The rebound is (at least in part) due to the fact that in the model gating is 
applied instantaneously, resulting in a transient in the input signal to the neuron. This 
transient produces a strong change in the response, similar to the one corresponding to 
the stimulus onset. It is possible to control the transient, and thus the rebound, by 
applying gating gradually, which is realistic, as it is the result of the activation of the 
gating neurons. 

The delay in triggering the attentional selection also determines the location and 
amplitude of the attentional modulation. Early distractor gating produces the rebound 
while the neuron is closer to saturation, resulting in a relatively lower effect, as seen in 
Figure 7. 
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Figure 7 Earlier attentional modulation. Same parameters as in Figure 4, but the θ-
WTA takes place sooner. 

 

Before dismissing the rebound as a timing-dependent modeling artifact, we need to 
investigate what could account for different delays in the attentional modulation. 
Assuming that the rebound might correspond to a real phenomenon, can we predict the 
kinds of experiments that will show a similar effect? The Reynolds et al. experiment does 
not show any obvious equivalent, possibly due to the spatial cueing, as discussed above. 
The network discussed so far contains a single layer of neurons. In more realistic multi-
layer networks, the results of top-level competitions take time to propagate back through 
the network, resulting in the attentional modulation being applied at different times in 
different layers. This means that under the right conditions, not only will attentional 
modulation show the rebound, but since at each different layer the corresponding rebound 
will be produced at a different time, the modulation at higher levels of the network will 
show a pattern of attentional modulation consistent with the accumulation of lower level 
rebounds. 
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Latency of attentional modulation in a processing hierarchy 

One of the early predictions of ST is that of a temporal ordering and thus a time course of 
hierarchical modulation effects. Specifically, modulation will be seen at the highest levels 
first and at the lowest levels last, the opposite of what other models would suggest. 
Selection of the strongest response at the top of a hierarchical network triggers a recurrent 
localization process. At each successive layer of recurrence, part of the input to the 
selected neurons is suppressed, leading to a change in response for all neurons upstream. 
The changes in response thus occur in time steps defined by the number of layers in the 
pathway downward, plus the time it would take for the effect of suppression at one layer 
to ripple up to the neuron being examined. Significant experimental evidence for this 
prediction has been presented - e.g. (Mehta et al. 2000, O'Connor et al. 2002, Roelfsema 
et al. 2007, Lauritzen et al. 2009, Boehler et al. 2009, Buffalo et al. 2010) 

 

Reference experiment 

One of the earliest experiments to study the timing of selective attention modulation 
across areas of the macaque visual system by Mehta et al. (2000), was performed by 
simultaneous recordings from different areas, thus allowing direct comparison of the 
magnitude and timing of the responses and modulation. Recordings of laminar event-
related potential and current source density response profiles were sampled with linear 
array multicontact electrodes. The subjects were required to perform alternative 
discrimination tasks on auditory and visual stimuli, while ignoring the stimuli in the other 
modality. The visual stimuli were diffuse light flashes differing in intensity or color 
presented at the fixation point, and the effect of attention was evaluated by comparing 
responses to the visual stimuli when attended vs. when ignored. 

Responses were summed over all contacts at each time point to obtain a sum average 
rectified current flow (sAVREC), while the difference between the ignored and attended 
conditions was summed to obtain the difference average rectified current flow 
(dAVREC). The temporal evolution of the responses and of the attentional modulation 
was determined by comparing sAVREC and dAVREC in each of the investigated areas. 
Figure 9(a) shows in sAVREC in black, and dAVREC in gray. Of interest in this context 
is the finding that the earliest attentional modulation (i.e. the earliest significant 
dAVREC) was observed in the highest areas, and progressively later towards the lower 
areas.  

 

Latency of attentional modulation in ST 

To investigate the timing of the effects in a ST hierarchy, the circuit described in Figure 3 
was replicated to form four layers, as shown in Figure 8, with the output of one 
processing layer driving the input of the next. To illustrate the top-down nature of the ST 
process, gating control units are shown on the left side of the hierarchy. The circuit is 
symmetrical, and gating control units exist for each connection, but are omitted for clarity 
(same for the inhibitory interneurons). The neurons are characterized by the same 
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differential equations introduced above. Stimuli are presented at the bottom and the 
activations propagate through the network – the black curves in Figure 9.  The top-level 
θ-WTA process determines a winner, and the corresponding gating signals are 
propagated down the network, triggering local θ-WTA processes within each winning 
neuron’s afferents. This results in the modulation of the neural responses, as described 
above. 

Figure 9 compares the model spiking rates on the right with average transmembrane 
currents recorded from neurons in different visual areas in the attention experiment 
described in the previous section on the left, for the neurons corresponding to the 
attended stimulus. The figures compare the relative timing of the initial response (in 
black) and the attentional modulation (in gray) across visual areas. The attentional 
modulation for the experiment is dAVREC, and similarly, for the model it is difference 
between the responses of the interpretive units in the ignored and attended conditions. 

A detailed representation of the relevant 130-200 ms time interval is presented in Figure 
10. The neural activation (in black) shows the responses being generated progressively 
later in more superior areas, while the attentional modulation (grey) appears earlier in 
superior areas and later in early areas. In the model, the propagation time between visual 
areas has been set to 15 ms, for both the feedforward and the feedback stage. Mehta et al. 
do not provide a quantitative evaluation of the delays, but this could easily be integrated 
into the model. Note that the modeling is qualitative, meant to show only the general 
timings and shape of the response and modulation, as the details of the real network are 
unknown, however, the similarity to (Mehta et al. 2000) is striking, and a key 
characteristic of attention not found in other models. 
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Figure 8 Full network for detailed timing analysis. The θ-WTA competition is 
indicated by the mutually inhibitory connections at the top level of the network. 
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Figure 9 Attentional modulation of responses. Black indicates the neural response to 
the stimulus, while the attentional modulation is represented in grey. (a) Temporal 
pattern of activations and attentional modulation in single-unit recordings in 
primates performing attentional tasks. Adapted from Fig. 9b in (Mehta et al. 2000). 
The neural activation (in black) shows the responses being generated progressively 
later in more superior areas, while the attentional modulation (grey) appears earlier 
in superior areas and later in early areas. (b) Model results showing a similar 
activation and modulation temporal pattern. 

 

Figure 10 Model results - detail on the 130-200 ms interval, showing the temporal 
pattern of attentional modulation. 
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Discussion 

We have shown through computational modeling that ST produces qualitatively 
equivalent modulatory effects for single neurons, similar to other models, but in addition 
qualitatively correct results for a hierarchy of neurons in contrast to other models, without 
the need for external attentional or bias inputs. Other models encode attention by 
modifying contrast, bias or gain parameters whose value changes from attended to 
unattended values. These models are all silent on how this value is set or how selections 
may occur whereas ST has an integrated selection mechanism. All except for ST are data-
fitting models and unable to accept image input and produce the required behavior as ST 
can. The most immediate first impression of comparison is how different all the 
formulations appear. ST, BCM, RH and PC-BC are based on the firing rate neuron 
formulation; FSG, NMA, NMAM are divisive contrast normalization models; CMA and 
IMM are spiking neuron models; ND employs mean-field approximation. BCM, FSG, 
NMA, and NMAM are single-neuron models. NMA goes beyond a single neuron in that 
it takes larger visual fields into account. CMA, ND, RH, PC-BC and ST employ networks 
of several types neurons. ND, RH, PC-BC and ST operate over complex network 
architectures. But this seems to be more of a feature of the model scope and starting 
assumptions than of substance.  

As a first point of comparison, all of the models except for ST are data-fitting models. 
Each would take existing data and determine parameter values of a set of equations that 
provide the closest fit to the data. As such, equations with high degrees of freedom (most 
variables) and nonlinearities have the greatest potential to capture the data presented. 
They also are the least specific or have the least scientific value because a high-enough 
number of variables and nonlinearities may capture just about any data set. ST takes input 
images and determines responses to that input, a completely different approach because 
the data and/or behavior must be produced for specific input. Again, a computer program 
may behave in any manner its programmer sees fit; it too may have suspect scientific 
value unless it has been developed on a sound and principled theoretical foundation. The 
development of ST has been conducted on such a sound theoretical foundation, and all 
aspects of its realization have been guided by it (Tsotsos 2011). 

The next dimension along which these models may be compared is the manner in which 
attention is incorporated. CMA encodes attention by modifying a linear contrast 
parameter in the equations for the E and FFI neurons. Similarly, BCM, FSG, NMA, and 
NMAM all provide a single parameter that controls attention; this is a bias or gain whose 
value changes from ‘attended’ to ‘unattended’ values. For example, in BCM, attention is 
implemented by increasing by a factor of 5 both excitatory and inhibitory synaptic 
weights projecting from the input neuron population responding to the attended stimulus. 
In NMAM there is a parameter that takes values equal to 1 for unattended stimuli and 
larger for attended ones. Its effect is multiplicative; it multiplies the product of slope of 
normalization and contrast in the exponent of the response function. These models are all 
silent on how this value is set or how selections may occur. CMA is also silent in this 
regard. In IMM the self-sustained activity of an additive gating signal is triggered by the 
presentation of the stimulus to be attended during a cueing interval. This allowed the 
investigation of the effect of attention on the baseline activity of neurons. In ND, 
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processing can be controlled by external task signals that select either neuron pools 
associated with an object to be searched, or a location, in order to identify the object at 
that location. In RH, object recognition neurons with RFs covering the visual area of 
interest have their sensitivity and gain increased by reentrant signals from movement 
areas, thus having an advantage in the competition process. PC-BC relies on feedback 
signals that can originate from node activations calculated at higher-levels in the 
hierarchy and/or external inputs, and attentional feedback is treated exactly the same as 
feedback from higher stages in the hierarchy. 

Different forms of competition have been employed by different authors. Most models 
implement competition through the mutual inhibition between neural outputs, e.g. BCM, 
ND, RH. In a few cases the competition involves the inputs, in the form of output 
neurons suppressing the input of other neurons, e.g. PC-BC, or a direct competition 
between the inputs in ST. 

 

Conclusion 

In this paper we have shown that ST generates patterns of attentional modulation and its 
temporal progression. The selection mechanism employed is completely integrated within 
the basic equations, without the need for external attentional signals. The selection can be 
aided by feature and location task biases, but these are not necessary. Further, it is 
consistent with the conclusions of Khayat et al. (2010) who concluded that attention can 
be best considered as modulating inputs to neurons, both spatial and feature: ST’s 
equations do exactly this, manipulating neural inputs to achieve the required attentive 
effect. In a very real sense, ST subsumes other models; however, this is at a qualitative 
level of description only. Most of the other models described are quantitative, that is, they 
can be quantitatively compared to actual neural recordings in terms of time and firing 
rates, whereas ST cannot. On the other hand, they cannot explain the top down latency of 
attentional modulation just like they cannot explain how attentional focus is determined. 
The transition of ST into a quantitative model is not an intellectual challenge; parameters 
derived from real data can be easily obtained and ST's basic equations modified 
appropriately. For the other models, easy transitions to deal with determination of focus 
and timing are not possible without whole-scale changes to the model. Further, ST makes 
unique predictions: 1) that circuits responsible for computing the θ-WTA function should 
exist; 2) that feedback connections should be considered to not have uniform function but 
may entail separable functionalities as in the model (bias signals, gating control signals at 
least). Although we have shown strong performance of the model, we are by no means 
convinced that this is the final word on the topic. Far from it, the need to tighter 
relationship between theory and experiment are critical as only close collaborations 
between theory and experiment will reveal the ways in which to further develop our 
models.  
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Appendix 

The following values are used for the various parameters in the ST equations. 

The exponent ξ= 3.0 represents a typical mean exponent for visual neurons (Sclar et al. 
1990).  

The maximum firing rate is normalized to 1 (Z=1). 

The base semi-saturation constant σ0= 0.8. The semi-saturation constant is modulated by 
fast and slow afterhyperpolarization currents, with Ffast = 1.3, Fslow = 2.  

Time constant values (τ = 10ms, τslow = 900ms , τ fast = 50ms) are consistent with 
physiological data (McCormick & Williamson 1989, Sanchez-Vives et al. 2000).  

As task bias is not used in these experiments, so B =1, except for the spatial cueing 
experiment presented in Figure 7, where a value of B =0.5 was used. 

While all the constants used in this model are in the general range found in the visual 
cortex, they are not crucial to the results presented here. The same equations are used for 
all excitatory neurons. 

The top level θ-WTA starts 100 ms after stimulus presentation, and θ is 20% of the 
maximum firing rate Z, i.e. 0.2. 

The parameters that determine the attentional modulation in the first experiment are the 
four weights that feed into each top-level neuron, two excitatory and two inhibitory. The 
weights, given here with the default values used to produce Figures 4-7 are: 

- pref+ = 1 - excitatory input for preferred stimulus. The lower the preferred 
excitation, the more effect the inhibitory inputs have, so the modulation is 
stronger.  

- pref− = −0.1 - inhibitory input for preferred stimulus. The stronger the preferred 
inhibition, the lower the initial response and the higher the rebound after ST. 

- nonpref+ = 0.2 - excitatory input for non-preferred stimulus. The main effect is on 
the poor, attend away condition (green line). Higher excitation offsets distractor 
inhibition, so it reduces the effect of ST.  

- nonpref− = -0.35 - inhibitory input for non-preferred stimulus. The higher the 
inhibition, the stronger the modulatory effect of ST. 

The circuit being symmetrical, the same four weight values are used for both top-level 
neurons. The effect of changing each weight independently is illustrated in Figure 11. 

- Left: pref+ (1.0…0.4) - excitatory input for preferred stimulus. The lower the 
preferred excitation, the more effect the inhibitory inputs have, so the modulation 
is stronger.  

- Center-left: pref− (0.1…-0.7) - inhibitory input for preferred stimulus. The 
stronger the preferred inhibition, the lower the initial response and the higher the 
rebound after ST. 
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- Center-right: nonpref+ (0.0...0.5) - excitatory input for non-preferred stimulus. 
The main effect is on the poor, attend away condition (green line). Higher 
excitation offsets distractor inhibition, so it reduces the effect of ST.  

- Right: nonpref− (0.0...-0.6) - the higher the inhibition, the stronger the modulatory 
effect of ST. 
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Figure 11 The effect of changing the weight values. Each column represents the 
modulation when one weight is changed, while the others are fixed at the default 
value. See text for details. 
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