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Abstract

This report presents novel binocular stereo video datasets that capture automo-
tive driving relevant scenarios as well as evaluation of five disparity estimation
algorithms on the acquired imagery. Binocular stereo has great potential as a
component technology for driving assistance, as it provides an approach to recov-
ering 3D distance relative to a vehicle and thereby provide critical information for
a variety of driving tasks. For incorporation into an overall driving system, can-
didate algorithms must have their performance specified precisely. The acquired
imagery and comparative algorithm evaluation respond to this need by providing
detailed qualitative and quantitative evaluation of alternative disparity estimation
approaches on driving relevant data.



Chapter 1

Introduction

Analogous to the role of vision in human perception, computer vision-based sens-
ing in automobiles is anticipated to play a key role in the quest to build human-like
perception around vehicles. Along these lines, estimates of 3D scene structure are
of particular importance to a variety of driving tasks, including collision avoid-
ance and more general navigation in the presence of other objects. For principled
selection between competing technologies for a particular driving task and in-
corporation into a larger automotive system, it is critical that components have
their individual performance capabilities characterized precisely. Toward such
ends, this paper presents comparative empirical evaluation of binocular stereo al-
gorithms on driving relevant datasets.

While technologies such as the Global Positioning System (GPS) are likely
to form the cornerstone of the sensing systems of next generation vehicles [3],
vision-based sensing is identified as a key complementary contributor [22, 14].
Active sensing technologies (e.g., radar, lidar) would also play a role in vehicle
guidance. However, they have a number of limitations that do not apply to vision-
based sensing, including reliance on special purpose hardware, dependency on
the working media and external lighting as well as susceptibility to interference
when multiple sensors are in a crowded area (congested traffic). Furthermore,
vision-based sensing naturally extends beyond distance measurements to include
lane following, object recognition and sign reading. Conceptually, a single video
camera might be enough for navigation; however, having multiple cameras has
potential for providing increased overall performance. Along these lines, binocu-
lar stereo, providing the minimal multiview setup, is a strong candidate for driving
applications.

Considerable previous research has addressed the comparative empirical eval-
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uation of stereo vision algorithms without consideration for specialized applica-
tions [17, 13, 4, 11, 24]. Closer to the focus of the present research, various
efforts have considered stereo vision evaluation specifically for driving, including
the evaluation of various match metrics under both local and global matchers [22],
the comparison of various non-local matchers with a single match metric [14] and
the comparison of stereo vs. motion-based algorithms [21]. Significantly, a good
deal of field data encompassing a variety of automotive driving scenarios has ap-
peared, eg. [8]. These datasets capture a great variety of road situations, weather
conditions and camera modes with one significant drawback – complete absence
of ground truth, or very limited sparse depth measurements for still frames using
lidar or similar technology. On the other hand, significant effort has been devoted
to generating complex synthetic (i.e., computer graphics generated) datasets with
full ground truth (depth and motion); while these data sets are modeled on driv-
ing scenarios, they fail to capture realistic scene materials, lighting and sensor
characteristics, which are crucial considerations in practice. Not surprisingly, the
conclusions of algorithm evaluations on synthetic scenes may turn out to be sig-
nificantly different from the field data experimental results [26].

In the light of previous research, the current effort makes the following contri-
butions: (i) To fill the gap between evaluation of stereo vision algorithms for auto-
motive applications on largely ungroundtruthed field data and completely artificial
computer graphics generated data, a novel driving relevant dataset of laboratory
acquired stereo videos with dense disparity data groundtruth for every frame is
presented; (ii) A complementary field dataset acquired from a prototype stereo
video camera equipped car is presented; (iii) Results of evaluating five disparity
estimation algorithms on both the laboratory and field datasets are presented. In
distinction from previous efforts, the current paper covers a wider range of stereo
vision algorithms on driver relevant datasets.
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Chapter 2

Datasets for driving scenarios

2.1 Field driving data
The field data was provided by an automotive manufacturer. In essence, it com-
prises a long video (7240 frames) acquired from a car equipped with a prototype
calibrated binocular video camera with 640×480 resolution at 30 fps. A followed
car performs a variety of basic maneuvers, including accelerating, decelerating,
lane changing and turning with respect to the camera bearing car. No groundtruth
3D distance currently accompanies this dataset. Example frames are presented in
Fig. 4.6. Essentially, this video sequence serves as a prototype for the laboratory
dataset described below; therefore, experimental results from the laboratory data
can be more readily extrapolated to the real world.

2.2 Laboratory driving emulation data
Acquisition of disparity groundtruth in field conditions is notoriously difficult.
Although datasets with laser range scanned groundtruth have appeared (e.g., [8]),
their spatial and temporal density are severely compromised. In response to this
state of affairs, the remainder of this section documents the construction of a scale
model driving relevant dataset with dense disparity groundtruth.

The developed 3D scale model is depicted in Fig. 2.1. The horizontal surface
of the model consists of a T-junction roadway and grass as well as various roadside
structures, including houses, trees and stop sign. Stereo cameras are mounted on
a computer controlled motion platform at one end of the model to simulate video
capture from a car moving through the scene along the roadway. A model car is
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Figure 2.1: Lab setup for the scale driving model.

connected to a second computer controlled motion platform to simulate motion
of a second car through the scene that can be captured from the first. The scale
of the entire mode is approximately 1 : 15. The stereo baseline is chosen to be 8
cm, which is well within the limits of the model car width, 13 cm. Illumination is
provided by ambient overhead lighting in the laboratory to approximate overhead,
outdoor illumination.

Nine experimental conditions were captured using the model that differ ac-
cording to the relative motions and positions of the camera and car. Table 2.1
groups the scenarios and explains them in detail. These conditions were chosen to
comprise a representative set of abstractions from actual driving conditions cap-
tured in the field data described in Sec. 2.1. For all conditions, 101 frames were
captured. All motions were generated by having the camera/car mounted on the
computerized motion control platforms configured to span the desired space of
motions.

For image capture, CCD video cameras with 8-bit monochrome at 1024× 768
spatial resolution were used. The actual depth estimation analysis in Sec. 4 was
done on half resolution at 512× 384. Example frames from three of the scenarios
described in Tab. 2.1 are shown in the top row of Fig. 2.2. While the acquired
imagery does not appear completely like natural imagery, it it does capture an
interesting range of variables, including, appropriately scaled scene components;
car with metallic paint, specular windows and realistic detailing; textured road
surface; diffuse, sky-type lighting; also a range of driving maneuvers are encom-
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Set Description
000 No motion: Both camera and car are at rest on the road

Same lane motion: The camera and car move along the same lane
001a Camera and car move at same speeds
001b Camera moves faster than car
001c Camera moves slower than car

Lane change: The camera moves along one lane of the road
and the car changes lanes

002a Car starts in same lane as camera and
switches to opposite lane

002b Car starts in opposite lane and switches
to same lane as camera
Turn: The camera moves down one lane of the road; the car starts
in the same lane, subsequently turns into the orthogonal road
at the T-junction and then continues to move along that road

003a Car turns left
003b Car turns right
004 Intersection: The camera moves along the road before the T-junc-

tion intersection and the car moves along the orthogonal road

Table 2.1: Evaluation datasets and brief distinctive description for each scenario.
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Name Colour Description
car red the car followed by the cameras

road green the ground plane consisting of the paved
road and the grassland to the right

background blue far houses and the sky on a frontoparallel plane
building cyan building to the left of the road

trees purple trees, foliage and stop sign
all full scene

Table 2.2: Scene segmentation annotation

passed. Moreover, it will be shown in Sec. 4 that depth estimation results on
the scale model imagery are in good accord with those recovered from driving
field data (unlike previous experiments with computer graphics generated imagery
[26]), which further suggests that the developed model captures key driving rele-
vant factors.

To obtain pixelwise groundtruth disparity, a structured light approach [18] was
applied to each binocular frame across the entire videos, as employed elsewhere
in comparable previous grounthruthing [16, 13]. To provide a fine grained anal-
ysis of algorithm performance as a function of scene components, images are
segmented according to meaningful object categories, as documented in Tab. 2.2
and visualized in Fig. 2.2, second row. The segmentation has been performed
in a semi-automatic fashion. The car is manually segmented in the first frame
and tracked throughout the remainder of the sequence using robust affine template
matching based on the Lucas-Kanade algorithm [2]. If the car changes appearance
significantly, eg. while turning as in 003a and 003b, it is hand segmented in addi-
tional frames within the sequences. After the car is localized, the background is
automatically detected by robustly fitting a plane to the disparity groundtruth in
the region above the car, while the road is found in a similar fashion by robustly
fitting a plane using the points other than car and background. Finally, build-
ing and trees are trivially localized once the car, road and background are ex-
cluded, since they manifest as the remaining portions of the left and right half
scenes, resp.

While it is common in general purpose stereo evaluation to report results
for different regions using more “generic” labeling (e.g., near vs. away from 3D
boundaries) [17], in the present evaluation emphasis is instead given to segmen-
tation by more directly driving relevant object categories, e.g., which will allow
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000 raw 003a raw 004 raw

000 segmented 003a segmented 004 segmented

Figure 2.2: Sample raw frames and segmentation results

for comparison of ability to recover cars vs. road surfaces vs. various road side
structures.
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Chapter 3

Stereo algorithms for driving

Decades of intensive research in computational stereo have resulted in a wide va-
riety of algorithms. Standard taxonomies of binocular disparity estimation divide
algorithms into local and global methods emphasizing their difference in com-
plexity and, consequently, in speed and accuracy [17]. Correspondingly, a classic
local block-matching algorithm [6] is considered and contrasted with a standard
(arguably the best [23]) global matcher, graph cuts [5]. Still, this bimodal tax-
onomy does not reasonably capture other useful algorithmic instantiations. In
particular, three additional considerations that have played a significant role in the
design of stereo matchers that should be captured include the combination of lo-
cal and global matching, the use of multiresolution, coarse-to-fine processing and
the use of high confidence matches to constrain operations in less well defined re-
gions. Correspondingly, three more exemplars are included. First, the semiglobal
stereo matcher is considered [12]. As its name suggests, this matcher can be seen
as a blend of local and global approaches. Second, a coarse-to-fine matcher is
considered [20]. As with all coarse-to-fine matchers, this algorithm makes use
of initial coarse spatial resolution matching to guide subsequent finer resolution
refinement; additionally, it makes use of adaptive windowing to ameliorate poor
resolution of 3D boundaries, a standard shortcoming of multiresolution matching.
Third, a region growing matcher is considered [7]. This approach makes use of
initial sparse, but high confidence matches to constrain subsequent matches at the
expense of match density. In summary, five algorithms have been considered, as
summarized in Tab. 3.1.

The current study does not investigate the performance of different pointwise
and area-based match metrics, as considerable previous investigations have con-
cluded that real data requires normalization or rank-based measurements to get
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Alg. Description
NCC dense block matching [17]
CTF coarse-to-fine adaptive block matching [19]
SGM semiglobal matching [12]
GC graph cuts stereo [5]
RG region-growing stereo [7]

Table 3.1: Algorithms considered in evaluation.

reliable results [13, 4]. Thus, all 5 algorithms rely on normalized cross-correlation
as their match measure computed over a 5× 5 window, except NCC which relies
on 9× 9 windows to obtain adequate match aggregation.
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Chapter 4

Experimental results

The NCC algorithm was implemented by the current authors, while the original
implementations of CTF, SGM, GC and RG were provided by [19], [12], [5] and
[7], resp. Parameters were set individually for each algorithm so as to achieve
best overall accuracy across the entire test dataset, while keeping average overall
density of estimates between algorithms reasonably similar so that error statistics
will not be biased by some algorithms providing notably sparser results than oth-
ers. Here, density refers to the percentage of points where an algorithm returns
a valid match. Once selected, parameters were kept fixed between datasets. All
methods employ the same disparity search range and use Left-Right consistency
check failure [6] to detect occlusions as well as to discard more generally invalid
matches.

4.1 Laboratory results

4.1.1 Qualitative results
Example recovered disparity maps for middle frames from representative sequences
001a and 004 together with ground truth and error maps are shown in Fig. 4.1.
The disparity maps are shown with occlusions and other regions where no result is
returned by a particular algorithm (e.g., due to left/right checking failures) over-
layed in dark blue and error maps are coloured according to the scene labeling
(colour coded as explained in Tab. 2.2) with intensity proportional to the disparity
error absolute difference. The supplementary video shows the actual sequences
for all datasets [1].
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Left frame 001a Disparity GT NCC disparity NCC error

CTF disparity CTF error SGM disparity SGM error

GC disparity GC error RG disparity RG error

Left frame 002a Disparity GT NCC disparity NCC error

CTF disparity CTF error SGM disparity SGM error

GC disparity GC error RG disparity RG error

Left frame 004 Disparity GT NCC disparity NCC error

CTF disparity CTF error SGM disparity SGM error

GC disparity GC error RG disparity RG error

Figure 4.1: Example frame from sequences 001a, 002a, 004 for all algorithms
evaluated. See text for details.
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Figure 4.2: Estimation density results (percentage of groundtruthed points where
algorithm returns a valid match) for all algorithms for every object category aver-
aged across datasets.

In can be observed from the disparity and error maps that all algorithms gen-
erally recover the 3D structure of the scenes, with SGM providing particularly
reasonable estimates and NCC the most gross errors. The most obvious gain of
the only true global method is in the background regions, which are well approx-
imated by a frontoparallel plane and thereby well suited to the GC match propa-
gation approach. Interestingly, the road regions appear to be the most problematic
as the majority of errors fall into the road object category. Finally, it appears that
CTF and SGM provide the densest results; whereas, RG yields the sparsest.

4.1.2 Estimation density
In the following, only points where grountruth is available and where valid matches
have been recovered are considered. Since different algorithms yield somewhat
different densities for each object category (even given an attempt to control over-
all density across algorithms, as noted above), densities are reported along with
accuracy and both should be considered in tandem to appreciate the results; see
Fig. 4.2 for density results. Since preliminary evaluation showed that density
depends on algorithm and object category (car vs. road, etc.), but not on the par-
ticular dataset (driving scenario), results are collapsed across datasets.

Regarding algorithm effects, it is seen that CTF and SGM yield the densest es-
timates across all categories. In contrast, the global match propagation of GC in-
consistently over or under smooths its results in left- vs. right-based matching,
which reduces its density under left-right checking match validation in compari-
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son to the more local methods. Density performance of NCC is similar to that of
GC. The sparsest results are returned by RG, which is consistent with its design
principle of being guided by high confidence matches [15, 7]. While sparser esti-
mates might be justified by relatively higher accuracy, results reported in the next
section show that such a trend is not present.

Regarding object category effects, it is seen that only the road category yields
noticeably different lower density results. This result derives from the fact that the
road surface is relatively weakly textured (except near the lane markers) and non-
Lambertian in reflectance and thereby provides a particularly strong challenge to
all of the algorithms.

4.1.3 Cumulative error statistics
To quantify algorithm accuracy, cumulative error statistics have been calculated,
which show the percentage of image points where disparity error in comparison to
grountruth is within a certain number of pixels. The results are shown in Fig. 4.3
for all algorithms as executed on all datasets and broken out by object category.

It is seen that the major dependence of algorithm accuracy on driving scenario
is restricted to car object regions (first column of Fig. 4.3). This result is to be ex-
pected: Only the camera and the followed car are in motion. Further, the camera
traces the same trajectory across all scenarios (varying only in speed 001a - 001c,
and not fast enough to yield motion blur); so, no effect of the static scene struc-
tures with scenario is expected. With respect to the followed car, in 000 - 002b the
view of the followed car is essentially the same: The rear, with variations provided
by distance from the camera and position in the scene depending on lane changes.
It is seen that distance is not a problem, as the actual disparity range (varying from
45 to 82 pixels) is always within range of the matchers and the number of pixels
on target (varying from approximately 3000 to 10000 pixels) prevents it from be-
coming too small to support locally stable estimates. In contrast, for the turning
scenarios 003a and 003b and the intersection scenario 004, matters become in-
terestingly different, as a side view of the car becomes available. The side view
provides for a larger number of pixels on target (at any given distance, there are
approximately twice as many pixels in a side view vs. a rear view). Further, the
side view provides additional texture detail in comparison to the rear view (e.g.,
from doors and detailing). Correspondingly, it is seen that accuracy increases in
the car regions for side viewing conditions. The effect is particularly noticeable
when comparing CTF performance in the car region on 003a and 003b in com-
parison to 000 - 002b and for all algorithms when comparing performance in the
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Figure 4.3: Cumulative error plots for all object categories, datasets and algo-
rithms. Algorithm colour coding is consistent with Fig. 4.2.
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car region on 004 vs. all other cases.
In addition to dependence on driving scenario, it is interesting to examine how

accuracy depends on scene object category. To do so it is useful to consider ob-
ject categories collapsed across scenario, as shown in the bottom row of Fig. 4.3.
From the perspective of cumulative error, it is seen that all algorithms perform
reasonably well and roughly equally in the car regions (with a minor exception
for CTF), which is satisfying given that detection and positioning of other cars on
the road is of great importance in driving applications. In contrast, all algorithms
perform relatively poorly (indeed worst) for the highly driving relevant road cat-
egory. Here, it is seen that NCC performance is weakest of all, e.g., with only
30% of its results within a reasonably useful 1-2 pixel error. The background re-
gions prove to be the easiest for all algorithms as they are relatively well textured
and fronto-parallel, which particular suits the smoothing favoured by (semi)global
SGM and GC. In contrast, while the building regions remain largely planar and
well textured, they are decidedly not frontoparallel and accuracy drops for all
algorithms, especially NCC. Finally, the trees regions are characterized by fine
texture detail and therefore also exhibit relatively strong performance across all
algorithms.

4.1.4 Framewise error statistics
Since driving data is acquired across time, it is of interest to consider framewise
algorithmic accuracy. Figure 4.4 shows framewise overall error plots for disparity
estimates within 2 pixels of groundtruth for all algorithms as executed on each
dataset. (Framewise errors as function of scene category were not found to pro-
vide additional insight with respect variation across time and are suppressed in
the interest of space.) It is seen that error performance does not change dramat-
ically with time, which indicates the consistency and stability of the algorithms.
The relative ordering of the alternative algorithms is largely preserved across the
duration of each sequence, with the (semi)global SGM and GC providing results
that show the least variation. Finally, recall that sequence 000 is completely static
and all error variation can be attributed solely to sensor noise.

4.1.5 Spread error statistics
To analyze the spread of the error distributions and thereby understand how the
error ranges of the various algorithms compare, errors across object categories
are shown as box plots [25] in Fig. 4.5. For the car regions, only CTF performs
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Figure 4.4: Framewise errors for threshold 2 disparity levels for each dataset av-
eraged across all object categories. Algorithm colour coding is consistent with
Fig. 4.2.

significantly worse than the others; however separate scene plots (not shown in
the interest of space) show that this is only true for situations with rear-view cars
in sequences 000 through 002b, which, as noted above, provide fewer pixels on
target than side views. For the road regions, NCC is especially poor (all error
rates exceed 50% and fall outside the plot), while RG is the best. For the back-
ground regions, it becomes apparent that SGM and RG are the strongest and
weakest performers, resp. For the building regions, NCC exhibits consistently
higher error rates, while all other methods are very similar in their performance.
For the trees regions, it is fair to say that performance for all algorithms is quite
similar, except that GC is better than RG. Finally, the results collapsed across
all object regions underline the strong overall performance of SGM, e.g., with its
entire interquartile range lying beneath that of all other algorithms.

4.2 Field data results
Example results from applying all algorithms to the field data are shown in Fig. 4.6
(extended video results shown in Supplemental Video [1]). Results are given as
greyscale disparity maps with invalid matches superimposed as dark blue. Sig-
nificantly, the field data results are quite consistent with the scale model results,
with a tendency to further emphasize the weaknesses of each algorithm. The esti-
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Figure 4.5: Error distributions displayed as box plots cumulative across all
datasets. The vertical extent of a box covers the interquartile range; the lines
below and above a box extend to the 10th and 90th percentiles; points beyond are
shown as +.

mates provided by NCC are “noisiest”, with very imprecise depth discontinuities.
CTF provides noticeably better results, with errors concentrated in relatively tex-
tureless regions in the car interior and road surface. The results of SGM appear to
be the best overall, with streaking line artifacts that are a well known property of
dynamic-programming-based stereo matching, which forms the core of SGM [17].
The results of GC are greatly oversmoothed, which can also decrease its match
density when left- and right-based smoothings are inconsistent. The results of
RG are relatively sparse without noticeable accuracy improvements relative to the
best performance of the other algorithms.
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Figure 4.6: Sample results on field dataset for for all algorithms.
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Chapter 5

Discussion

NCC is the most straightforward algorithm, which is easy to implement and run
on most architectures. This simplicity comes at the price of providing the overall
worst accuracy in the current evaluation, of particular significance given that it
does not even provide the highest density. This algorithm performed especially
poorly in the road and building regions and works generally poorly in resolution
of 3D boundaries, which is particularly noticeable in the field dataset. Still, the al-
gorithm showed some ability to resolve medium sized, reasonably textured objects
(e.g., car, trees), which may be useful for certain tasks (e.g., obstacle detection).

The particular evaluated CTF algorithm has been designed to include adaptive
windowing for matching in the vicinity of 3D object boundaries and has been
implemented with real-time performance [20, 19]. In the current evaluation it has
shown to yield accurate and high density estimates, with the exception of low
texture regions as found in the sky of background and the interior of car during
rear end viewing (datasets 000 - 002b). Significantly, CTF also showed similar,
relatively strong performance on the field data.

SGM has been successfully applied in driving scenario evaluations before
[26, 22, 14], and the present work verifies its promise in this application domain.
It displays the highest accuracy with very little error spread both overall and in
virtually all scene categories separately, except for the most challenging road re-
gions. Importantly, estimation density is high and very close to the lower com-
putational complexity [20] CTF alternative. Furthermore, results on field data are
of very good quality in comparison to other methods. Finally, the algorithm has
reasonably low complexity and real-time implementations have appeared [9, 10].
These characteristics combine to make SGM a very good candidate algorithm for
vision-based 3D estimation in driving applications.
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GC is a global stereo method with some claims to best overall general pur-
pose performance [17, 6, 23]. In the context of the current application domain
and evaluation, however, it is outperformed by SGM, which has shown to provide
superior accuracy results with higher density. It appears that GC’s performance
has been compromised particularly by a tendency to oversmooth its disparity esti-
mates, particularly noticeable on the field data, even though an attempt was made
to hand-optimize its parameters for the current evaluation. Moreover, GC has
not yet yielded to real-time implementation, a significant disadvantage for driving
applications.

RG is expected to yield sparser, but accurate and stable results by design.
While the disparity maps returned by RG are indeed the sparsest of all 5 methods,
estimation accuracy is never the best of all, except for the hardest road category,
where RG performs especially well at the expense of density. The latter fact sug-
gests that there may be use to some of the design principles implemented in RG.
The estimation density tradeoff is even more dramatic for the field results depicted
in Fig. 4.6, as extremely high proportion of points are reported as invalid; in fact,
only disparities for the side trees are computed reliably, while road and car are
virtually undetected, except when the car is very close to the camera. Further,
even though RG is based on local matching, the approach’s reliance on propaga-
tion of highly confident matches to other regions restricts its ability to be highly
parallelized, which may limit real-time realizations.

Beyond comparison of algorithms, it is interesting to consider how the current
results can more generally shed light on the relative difficulty of various driv-
ing relevant scene characteristics. The car region is of primary importance and
good performance is essential. Although SGM is the overall winner in accuracy
and density, other algorithms exhibit acceptable performance. Apparently, even
though cars are made of highly reflective materials, they possess enough visible
structure and silhouette to be correctly recovered in depth. The road regions con-
stitute another highly driving relevant category. Here, it has been found that these
regions are hardest to recover due to their relatively low texture (excepting lane
markings). The fact that RG performed relatively well in these regions suggests
that use of high confidence matches to constrain a direct ground plane fit may
provide a viable approach to dealing with such regions. The background regions
have a simple frontoparallel structure that is well suited to contemporary stereo
matching techniques, especially the smoothing embodied in (semi)global match-
ing algorithms SGM and GC. The building region can be perceived as a step up in
challenge from the background, as it contains planar, but not frontoparallel struc-
tures. The challenge is immediately reflected in error rates, especially in indicat-
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ing NCC as the weakest performer; whereas, all other approaches are comparably
able to respond to the increase in difficulty. The trees regions are characterized
by moderate to small sized objects with texture. Such characteristics are compat-
ible with contemporary stereo algorithm capabilities and the relatively low and
comparable error rates support this claim. Still, the error rates are higher than
for background regions, due to the presence of complex 3D boundaries. There-
fore, emphasis on accurate boundary recovery will aide in good recovery in such
regions.

Finally, the current scene segmentation into object categories offers sugges-
tions not only on how to improve the estimation algorithms, but also on how to
design more appropriate testing scenarios. For example, it is important to consider
cars with back views and side views as performance for some algorithms can dif-
fer significantly; it is beneficial to concentrate on building rather than simpler
background regions; scenes should have considerable road regions of different
surface cover and configurations.
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Chapter 6

Conclusion

The results of the evaluation indicate the relative advantages and disadvantages
of the various algorithms in driving relevant scenarios, including consideration of
accuracy and density of estimates. Of the algorithms evaluated, the semiglobal
matching algorithm [12] appears particularly well suited to driving applications
in providing accurate, dense estimates with potential for real-time performance
[9, 10]. The other algorithms considered exhibited various strengths and weak-
nesses, e.g., GC and RG arguably showed the second best overall accuracy, albeit
with compromised density (esp. RG) and less real-time potential; CTF showed
high density and has real-time instantiation [19], albeit with somewhat compro-
mised accuracy; NCC had arguably overall weakest performance. Finally, it is
noteworthy that the qualitative results presented on a field data set parallel those
found quantitatively on the scale model, laboratory dataset, which supports the
usefulness of the laboratory dataset in evaluation of vision algorithms for driving
applications.
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