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Abstract

Visual region-based tracking is a heavily researched general approach to fol-
lowing a target across a temporal image sequence. Little research, however,
has addressed the interrelationships of the various proposed approaches at a
theoretical level. In response to this situation, the present paper describes
a unifying framework for a wide range of region trackers in terms of the
amount of spatial layout that they maintain in their target representation.
This framework yields a general notation from which any of these trackers
can be instantiated. To illustrate the practical utility of the framework, a
range of region trackers are instantiated within its formalism and used to
document empirically the impact of maintaining variable amounts of spatial
information during target tracking.
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Chapter 1

Introduction

Object tracking is one of the most heavily researched areas in all of computer
vision. Within this literature, region trackers currently receive particularly
notable attention owing to their wide applicability and strong performance
in empirical evaluation [1]. In essence, region trackers are distinguished by
their use of dense, area-based representations that characterize the target
support and thereby can be contrasted with other classes of trackers that
rely on sparser representations (e.g., discrete feature and contour trackers
[1]). Interestingly, even though region trackers have been the subject of
intensive investigation, little has emerged in terms of overall frameworks
that theoretically relate the various region tracking approaches. The current
paper takes strides to fill this gap in the literature by presenting a unifying
framework for a wide range of region trackers. Such a framework can serve
to enhance understanding of commonalities and differences between extant
approaches as well as provide a mechanism for developing and analyzing new,
state-of-the-art systems.

Conceptually, much of the region tracking literature can be reviewed by
considering the degree to which the various approaches maintain spatial or-
ganization of their primitive visual measurements (e.g., colour, texture and
motion) across target support, see Fig. 1.1, where several representative ex-
amples are highlighted. At one extreme, basic kernel histogram trackers
operate by maintaining a single distribution of measurements that is aggre-
gated across the entire target region (e.g., [2, 3]), thus sacrificing all spatial
layout information. Benefits of utilizing such a coarse representation include
potential speed improvements due to the reduced dimensionality of the rep-
resentation as well as increased flexibility (e.g., for tracking during non-rigid
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Figure 1.1: A continuum of region trackers that vary based on the amount
of spatial organization information that is Retained throughout the tracking
process. Examples of various trackers are listed along the continuum.

deformations). Other systems incorporate very limited spatial arrangement
information (e.g., [4, 5, 6, 7, 8, 9, 10]). For example, Okuma et al. propose
a system for tracking hockey players where different color distributions are
maintained for the top and bottom halves of the players’ bodies [4]. Still other
approaches subdivide the target even more finely (e.g., [11, 12, 13, 14, 15]).
With an increased number of sample locations along with smaller accumula-
tion regions, these systems retain additional spatial organization information
regarding the target. FragTrack is a well known example of such a system
that represents the target using roughly 36 histograms derived from overlap-
ping target spatial regions [14]. Finally, at the opposite end of this continuum
that considers the amount of retained target spatial organization lie systems
traditionally termed template warp trackers (e.g., [16, 17, 18, 19, 20, 21]).
These trackers retain complete information regarding the spatial layout of
the target and the maximum number of data points with which to perform
effective matching by employing pointwise feature representations. The re-
gion of accumulation in such systems is minimal, subtending just a single
pixel. Perhaps most closely related to the current paper is a joint feature-
spatial spaces tracker that models uncertainty in spatial layout by varying
the bandwidth of a single spatial kernel. Also related is an approach that
models spatial layout transformations during tracking via a noise model [22].
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The current contribution differentiates itself by explicitly modeling variation
in the number, placement, and size/bandwidth of tracking kernels as well as
presenting a systematic evaluation of these parameters on several real-world
videos.

Given the potential for organizing a significant portion of the region track-
ing literature in terms of the amount of spatial organization that is main-
tained across target support, the remainder of this paper adds to the lit-
erature in two important ways. (i) It provides a novel analytic framework
that formally unifies a diversity of region trackers according to the amount of
maintained target spatial organization information. This framework connects
a range of existing trackers as opposed to presenting another single approach
to visual tracking in isolation. (ii) It empirically explores this space of track-
ers defined by the framework to document scenarios where it is beneficial to
operate with different amounts of spatial layout information. This ability
to systematically compare region trackers based on the amount of retained
spatial information is made practically possible due to the first contribution,
the unifying framework.
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Chapter 2

Analytic framework

To show how this continuum of trackers, ranging from kernel histogram to
template warp systems, can be unified under a common theoretical frame-
work, two specific trackers will be derived that define its end points. These
derivations will be performed with the goal of making the two tracker update
equations that serve to map a maintained target template to a target candi-
date in a particular image within a video as similar as possible. Consideration
will be restricted to image data represented in the form of multichannel fea-
ture measurements (e.g., RGB color or outputs of spatial filters at multiple
orientations [19]), as a generalization of single channel measurements (e.g.,
raw image intensity). Initially, particular choices will be made regarding
key tracker components, including the error function and optimization pro-
cedure. Sum-of-squared differences (SSD) will be used as the error function
to be optimized in a gradient fashion, e.g., [23]. Subsequently, these specific
choices will be relaxed to yield a more general framework. The following no-
tational conventions are adopted. Variables that appear within the multiple
kernel histogram derivation will appear with an overline (e.g., x̄n̄); analogous
variables within the template warping tracker framework will appear with no
overlines (e.g., xn). Variables that are common to both tracking architectures
will have no overlines (e.g., time, t).

Multichannel multiple kernel histogram tracker. In the kernel
histogram approach to target tracking, one or more spatial kernels, K, are
used to weight the relative importance of pixels across the target support
(e.g., [2, 5]). Multiple kernels within a target’s representation will be indexed
by the variable n̄ and centered about point x̄n̄. Also employed is a simple
function, b, that maps a pixel’s intensity to a histogram bin, m. Then, a
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multiple kernel histogram tracker defines the target template, consisting of a
set of histograms, as

q̂m (x̄n̄) = Cq

J∑
j=1

K (xj − x̄n̄) δ (b (xj)−m) , (2.1)

which is compared to target candidates defined at time t, specified as

p̂m (x̄n̄,a, t) = Cp

J∑
j=1

K (xj − (x̄n̄ +W (x̄n̄)a)) δ (b (xj)−m) , (2.2)

where Cq and Cp are normalization terms to ensure the histograms sum to
unity, as is common practise when processing histogram data (e.g., [2], [14]).
Additionally, δ is the Dirac delta function, and j varies to consider all J
pixels within the kernel support. To capture the spatial mapping between a
candidate in an image frame and the target template, p̂m includes a warping
function, W, with parameters, a, that models the allowed geometric trans-
formation (motion) of the target between images (e.g., translation, affine,
etc.).

In the above histogram definitions, kernel weighting is performed upon
single channel data; whereas, here the goal is to consider multichannel fea-
tures. When operating on multichanneled data, a modified histogram con-
struction technique is used whereby each bin in the histogram corresponds
to a particular channel of the data [24]. Each pointwise feature vector incre-
ments a histogram bin based on the magnitude of the corresponding feature
channel. Histograms constructed in the latter fashion illustrate the relative
presence or absence of each feature channel over the target support. This
modified template histogram is defined as

q̂m (x̄n̄) = Cq

J∑
j=1

(K (xj − x̄n̄)Q (xj ,m)) , (2.3)

where the normalization term is defined according to

Cq =
1∑M

mi=1

∑J
j=1 (K (xj − x̄n̄)Q (xj ,mi))

, (2.4)

Q (xj,mi) is the multichannel feature data in the first frame of the tracking
sequence, andmi varies over allM > 1 channels of feature data. Additionally,
the features are indexed according to their particular spatial location, xj.
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Feature Channel 
Decomposition

Accumulated Image 
from Histograms

Input Scene Frame

Figure 2.1: Creation of an “accumulated image” with a multiple kernel his-
togram tracker. (left) Input image from a video sequence. (middle) Feature
accumulation using four kernels denoted by red circles. The feature represen-
tation spans three channels; thus, a three-binned histogram is constructed
for each kernel. (right) The four histograms, with their spatial relationships
preserved via reference to an image grid, can be viewed as an accumulated
image with reduced resolution.

The updated target candidate histogram is defined as

p̂m (x̄n̄,a, t) = Cp

J∑
j=1

(K (xj − (x̄n̄ +W (x̄n̄)a))P (xj ,m, t)) , (2.5)

where P (xj,m, t) is the multichannel feature data at frame t and the nor-
malization term, Cp, is defined analogously to Cq, (2.4), ensuring p̂m sums
to unity.

Conceptually, when manipulating a multiple histogram formulation, the
collection of distributions can be visualized alternatively as a multichannel
feature image at a resolution lower than the original input data. To help
ground intuition, Fig. 2.1 shows a frame from a video sequence along with
a pictorial multichannel feature representation. The features are spatially
divided into quadrants using a collection of four kernels. Histogram accu-
mulation is performed according to (2.5), which subsequently produces four
histograms (one histogram per quadrant) that can alternately be organized
as a 2× 2 image of multichannel features. In the limit, if just a single kernel
were considered, a 1×1 multichannel feature image would be obtained, which
is equivalent to a single histogram.

Given the preceding analysis, it appears that the notion of scale, as it
concerns the image resolution over which features are accumulated (i.e., outer
scale [25]) may become important in developing the proposed theoretical
framework. With an eye toward subsequent derivations, minor additions will
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be made to the histogram definitions in order to explicitly capture the notion
of scale or level of image resolution. In particular, superscripts, l, are added
to the histograms, the warp parameters, and the spatial coordinates to ensure
all variables are operating at the same image resolution, as defined in terms
of coupled kernel accumulation and spatial sampling. In doing so, l = 0
denotes the original image resolution and increasing values of l correspond
to coarser resolutions. Incorporating this change yields a modified template
histogram definition

q̂lm

(
x̄l
n̄

)
= Cq

J∑
j=1

(
K l

0

(
x0
j − x̄0

n̄

)
Q0
(
x0
j ,m

))
, (2.6)

where the normalization term is defined as

Cq =
1∑M

mi=1

∑J
j=1

(
K l

0

(
x0
j − x̄0

n̄

)
Q0
(
x0
j ,mi

)) (2.7)

and Q0 represents the multichannel features at their original scale. Addition-

ally, x0
j denotes pixels at full resolution, x̄

0
n̄ is the center of the n̄th kernel at

the 0th level and the kernel K l
0 represents the input and output resolutions

with its subscript and superscript, respectively. The candidate histograms,
(2.5), are analogously updated to include resolution of analysis, l.

Before proceeding with the definition of an error function for the multi-
ple kernel histogram tracker, one final point should be noted. Rather than
obtaining a warped image at a level, l, by warping the kernel, K, at full
resolution and applying the result to the full resolution image, one can apply
an unwarped kernel to the input image at full resolution and subsequently
perform the analogous warp at level l (i.e., at the lower resolution). This
equivalence is expressed as

p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al, t

)
≡ p̂lm

(
x̄l
n̄,a

l, t
)

= Cp

J∑
j=1

(
K l

0

(
x0
j −

(
x̄0
n̄ +W0

(
x̄0
n̄

)
a0
))

P 0
(
x0
j ,m, t

))
, (2.8)

with superscripts on W, the warp matrix, and a, the warp parameters, denot-
ing the resolution at which the parametric warp is applied. This equivalence
relation need not be expressed for the template, as it is never explicitly
warped.

Now, the tracking error between target template, (2.6), and candidate,
(2.8), that encompasses multichannel features can be defined in terms of SSD
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as

Ω
(
al
)

=
N̄∑

n̄=1

M∑
m=1

(
q̂lm

(
x̄l
n̄

)
− p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al, t

))2
, (2.9)

where N̄ is the number of kernels, M is the number of histogram bins (equiv-
alently, feature channels), and x̄l

n̄ are the kernel centers. To provide a more
compact notation, the temporal variable, t, will be suppressed when the
meaning is unambiguous in the following. Adding a small perturbation to
the warping parameters in (2.9) and performing a first-order Taylor series
expansion results in

Ω
(
al +∆al

)
=

N̄∑
n̄=1

M∑
m=1

[
q̂lm

(
x̄l
n̄

)
− p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
)

− ∂

∂al

(
p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))

∆al
]2
. (2.10)

To compute the derivative of a candidate histogram, p̂lm, the normalization
variable, Cp, must be explicitly reintroduced, as it is also a function of al,
yielding

∂

∂al

(
p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))

=
∂

∂al

 plm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
)

∑M
mi=1 p

l
mi

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
)
 =


((

∇xlplm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))⊤

Wl
(
x̄l
n̄

))(∑M
mi=1 p

l
mi

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))

(∑M
m=1 p

l
mi

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))2 −

((∑M
m=1∇xlplmi

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))⊤

Wl
(
x̄l
n̄

))(
plm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))

(∑M
mi=1 p

l
mi

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))2

 ,
(2.11)

where mi ranges across all M channels, while ∇xl is the gradient of the

lth level accumulated image with respect to the spatial parameters, xl and
yl. The derivative, (2.11), will be denoted as R̄ to provide a more compact,
readable notation.

Reinserting R̄ into (2.10) yields

Ω
(
al +∆al

)
=

N̄∑
n̄=1

M∑
m=1

(
q̂lm

(
x̄l
n̄

)
− p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
)
− R̄∆al

)2
.

(2.12)
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The derivative of the simplified error function, (2.12), is subsequently com-
puted with respect to the motion parameter perturbations, ∆al, according
to

∂

∂∆al
[
Ω
(
al +∆al

)]
= −2

N̄∑
n̄=1

M∑
m=1

R̄⊤ (q̂lm (x̄l
n̄

)
− p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
)
− R̄∆al

)
.

(2.13)

Finally, setting (2.13) to zero so that the parameter perturbations can be
isolated leads to an update equation for the motion parameters

∆al =

 N̄∑
n̄=1

M∑
m=1

[
R̄⊤R̄

]−1
N̄∑

n̄=1

M∑
m=1

[
R̄⊤ (q̂lm (x̄l

n̄

)
− p̂lm

(
x̄l
n̄ +Wl

(
x̄l
n̄

)
al
))]

,

(2.14)

where −1 denotes the matrix inverse. This update equation, (2.14), provides
tracking as a spatial mapping (alignment) between the target template and
candidate.

Multichannel template warp tracker. Analogous to the previous
section, template warp tracking will be defined for multichannel image mea-
surements (features), with P and Q denoting the target template and candi-
date images, resp. Again, the multichannel feature images are normalized to
ensure appropriately weighted contributions from each channel [26], which
also keeps the formulation consistent with that of multiple kernel histograms
specified above. Thus, the normalized template and candidate feature images
are defined as

Q̂l
(
xl,m

)
=

Ql
(
xl,m

)
∑M

mi=1Q
l (xl,mi)

(2.15)

and

P̂ l
(
xl +Wl

(
xl
)
al,m, t

)
=

P l
(
xl +Wl

(
xl
)
al,m, t

)
∑M

mi=1 P
l (xl +Wl (xl)al,mi, t)

, (2.16)

respectively, where m indexes a particular channel of features and all other
notation is analogous to that of the previous section.

As in the previous section, the definitions of normalized template and
candidate images, (2.15) and (2.16), make use of the superscript, l, to de-
note image resolution. In this section, since arrays of standard images are
being operated upon (as opposed to histograms), pyramid processing will
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be invoked explicitly as a convenient representation for manipulating mul-
tiresolution data [27]; however, the resulting derivations are not dependent
upon pyramid processing. Here, the multichannel feature images form image
pyramids on a channel by channel basis. A so-called equivalent weighting
function [27], Gl

0, where the subscript and superscript indicate the input and
output level, respectively, can be used to compute the image feature pyramid
at level l, Ql, from the original feature image, Q0, according to

Q̂l
(
xl
n,m

)
=

 J∑
j=1

Gl
0

(
x0
j − x0

n

)
Q̂0
(
x0
j ,m

) ↓2l , (2.17)

where x0
n is the center of convolution, xl

n is the corresponding pixel in image

Q̂l, ↓2l indicates factor of 2l spatial subsampling, j ranges such that all pixels
within the support of the equivalent weighting kernel, Gl

0, are considered.
(While factor of 2l subsampling is used here for concreteness, alternatives
could be used, typically chosen to avoid aliasing under the operative ker-
nel, Gl

0.) Likewise, warped and downsampled normalized candidate images
can be produced using the present notation and the multiresolution warping
conventions introduced earlier, (2.8), to yield

P̂ l
(
xl
j +Wl

(
xl
i

)
al,m

)
≡ P̂ l

(
xl
n,a

l,m
)

=

 J∑
j=1

Gl
0

(
x0
j̃
−
(
x0
n +W0

(
x0
n

)
a0
))

P̂ 0
(
x0
j ,m

) ↓2l .

(2.18)

With normalized, downsampled, and warped feature images in place, the
template warp tracker of this section can be constructed. Recall that the
multiple kernel histogram tracker presented previously utilized the SSD error
metric. To establish explicit connections between the two paradigms, the
metrics should be equal, yielding the following error equation for the template
warp tracker

Ω
(
al
)

=
N∑

n=1

M∑
m=1

(
Q̂l
(
xl
n,m

)
− P̂ l

(
xl
n +Wl

(
xl
n

)
al,m, t

))2
. (2.19)

Consistent with the above developments for kernel tracking, a small per-
turbation is added to the warping parameters in (2.19), allowing for a first-
order Taylor series expansion according to

Ω
(
al +∆al

)
=

N∑
n=1

M∑
m=1

(
Q̂l
(
xl
n,m

)
− P̂ l

(
xl
n +Wl

(
xl
n

)
al,m

)
−
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∂

∂al

(
P̂ l
(
xl
n +Wl

(
xl
n

)
al,m

))
∆al

)2

. (2.20)

Note that the temporal variable, t, has been suppressed for compactness.
To compute the derivative of the warped candidate feature image, expansion
must be performed because the warp parameters appear both in the numer-
ator and denominator of the candidate definition, (2.16). This expansion
yields

∂

∂al

[
P̂ l
(
xl
n +Wl

(
xl
n

)
al,m

)]
=

∂

∂al

 P l
(
xl
n +Wl

(
xl
n

)
al,m

)
∑M

mi=1 P
l (xl

n +Wl (xl
n)a

l,mi)

 =


((

∇⊤
xlP

l
(
xl
n +Wl

(
xl
n

)
al,m

))
Wl
(
xl
n

)) (∑M
mi=1 P

l
(
xl
n +Wl

(
xl
n

)
al,mi

))
(∑M

mi=1 P
l (xl

n +Wl (xl
n)a

l,mi)
)2 −

((∑M
mi=1∇⊤

xlP
l
(
xl
n +Wl

(
xl
n

)
al,mi

))
Wl
(
xl
n

)) (
P l
(
xl
n +Wl

(
xl
n

)
al,m

))
(∑M

mi=1 P
l (xl

n +Wl (xl
n)a

l,mi)
)2

 ,
(2.21)

where ∇⊤
xlP l

(
xl
n +Wl

(
xl
n

)
al,mi

)
is the spatial gradient of the candidate.

In subsequent equations, the derivative, (2.21), will be denoted as R to
provide a more compact, readable notation. Reinserting R into (2.20) yields

Ω
(
al +∆al

)
=

N∑
n=1

M∑
m=1

(
Q̂l
(
xl
n,m

)
− P̂ l

(
xl
n +Wl

(
xl
n

)
al,m

)
−R∆al

)2
.

(2.22)

The derivative of the simplified error function, (2.22), is next computed with
respect to the motion parameter perturbations

∂

∂∆al

[
Ω
(
al +∆al

)]
=

−2
N∑

n=1

M∑
m=1

R⊤
(
Q̂l
(
xl
n,m

)
− P̂ l

(
xl
n +Wl

(
xl
n

)
al,m

)
−R∆al

)
.

(2.23)

Finally, setting (2.23) to zero and isolating the motion parameters results in

∆al =

(
N∑

n=1

M∑
m=1

[
R⊤R

])−1 N∑
n=1

M∑
m=1

[
R⊤

(
Q̂l
(
xl
n,m

)
− P̂ l

(
xl
n +Wl

(
xl
n

)
al,m

))]
,

(2.24)
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which fully defines the template warping tracker for multichannel features.
Drawing equivalences. Comparison of the kernel histogram, (2.14),

and template warp, (2.24), tracking update equations reveals that they have
the same general form, but slight notational discrepancies. It will now be
shown that these differences are purely superficial. To draw this connection,
a two step approach is taken. First, the summations across both update
equations will be demonstrated to perform the same series of operations when
the systems are properly configured. Second, it will be shown that under
mild conditions, the processed feature data (multiple kernel histograms and
multichannel feature images) are equivalent.

With respect to the first step, it is straightforward to argue that the inner
summations, denoted as

∑M
m=1 in both equations, are equivalent. These two

summations both accumulate error over all M feature channels. Addition-
ally, a connection must be drawn between the outer summation in (2.14)
over N̄ kernels and that in (2.24) over N pixels. This connection is formed
by considering the relationship between kernel histogram accumulation and
pyramid downsampling.

An illuminating example comparing the process of placing kernels within
a multichannel feature image and downsampling such an image is shown in
Fig. 2.2. On the left most panel, an input cube of multichannel features
is shown. The x and y axes indicate the spatial dimensions; whereas, the
depth of the cube denotes the feature channels. This multichannel feature
image is the primary input for subsequent processing for both the multiple
kernel histogram tracker and the template warp tracker. The middle column
of the figure illustrates how the multichannel feature image is processed by
the multiple kernel histogram tracker. Specifically, the tracker is configured
to place kernels on a uniform grid with a pixel spacing of two, where “K” in-
dicates a kernel center. After kernel application, the result can be visualized
as a set of images, with spatial dimensions of 4× 4. The right-most column
of the figure illustrates the downsampling procedure for the template warp
tracker. Following appropriate blurring, downsampling is performed over a
single level (from Level 0 to Level 1) and pixels are subsampled by a factor
of two along each spatial dimension, with retained pixels indicated by red
arrows. After downsampling, the template warping tracker will operate on a
set of 4×4 downsampled feature images. Notably, the pixels that are explic-
itly retained and subsequently processed by both trackers originate from the
same pixels at full resolution. This discussion shows that the summations
in the update equations, (2.14) and (2.24), can be constructed to perform
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Figure 2.2: Comparison of kernel accumulation vs. downsampling. See text
for details.

identical accumulations. Mathematically, the number of kernels is set equal

to the resolution of the lth level image where tracking is performed, i.e.,
N̄ = N and the variables of summation n̄ and n are configured to consider
equivalent pixels on a regularly spaced grid. Under such a configuration, the
summations for both tracking paradigms perform the same series of oper-
ations,

∑N̄
n̄=1 ≡ ∑N

n=1, establishing that the accumulations in both update
equations, (2.14) and (2.24), can be designed to be equivalent.

To continue drawing connections between the two formulations, the ker-
nel histograms, (2.6), and normalized multichannel feature images, (2.17),
must also be shown to be two different conceptualizations of the same data.
A side by side comparison reveals that these two expressions share many
similarities. Both equations perform normalization due to its benefits when
manipulating multichannel data [26], i.e., Cq in (2.6) and normalized im-

ages, Q̂, in (2.17), such that pointwise summations across channels are unity.
The template image, (2.17), includes explicit notation indicating that sub-
sampling is performed across each pyramid level, ↓2l . However, it was just
shown that equivalent subsampling can be performed in the multiple kernel
histogram framework by appropriately selecting the kernel positions.

Another apparent difference between the two representations is that in
(2.6) pixels in the template image are weighted by a spatial kernel; whereas,
in (2.17) the image is convolved with a blurring filter. If the kernel weighting
function, K l

0, and the blurring filter, Gl
0, are equal, these two equations will

perform the same series of operations and will thus be equivalent. Gaussian
filters are often used for blurring during downsampling [27], while Gaussian
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spatial kernels have been used previously in kernel histogram trackers, e.g.,
[2]. Thus, a Gaussian kernel has proven to be an effective choice in both
paradigms, but for equivalence between (2.6) and (2.17), the only critical
requirement is that K l

0 = Gl
0. An analogous argument can be presented for

the warped candidate data, (2.8) and (2.18).
By drawing this connection between the histogram data and the feature

images, the two step analysis is complete. The primary point to emphasize
is as follows: When the update equations for the multiple histogram and the
template warping systems are configured in an analogous fashion, they both
produce an identical tracker. As a corollary, either tracker formulation can
be used to describe a wide range of systems, extending from a single kernel
histogram instantiation to a traditional template warp tracker. Thus, the
two formulations can be used interchangeably to describe a continuum of
region trackers.

Unifying framework. This section presents a generalized notation de-
scribing the continuum of trackers from single kernel histogram to template
warping. By changing the parameter settings of this generalized equation, a
tracker that behaves identically to a single kernel histogram tracker, a stan-
dard template warp tracker, or at any point in between can be instantiated.
The primary variable that determines the location at which a tracker appears
along the continuum is the spatial resolution of analysis, l, which captures
the amount of retained spatial layout information. This spatial arrangement
information is dependent upon the sampling density of the measurements
and the size of the aggregation region. To provide as broad a framework as
possible, generalization can be performed at the level of the error function,
since the previous section showed that summations and data (feature) rep-
resentations in the kernel histogram, (2.9), and template warping trackers,
(2.19) can be made identical.

Accordingly, a generalized error function to define region trackers across
the continuum is given by

Ω
(
al
)

=
N∑

n=1

M∑
m=1

ξ
(
Q̂l
(
xl
n,m

)
, P̂ l

(
xl
n +Wl

(
xl
n

)
al,m, t

))
, (2.25)

where ξ is a general error function that operates on multichannel image
features (P̂ l and Q̂l). A simple error function, SSD, was utilized in the
previous subsection; however, a more sophisticated function such as a robust
estimator [18] can be alternatively incorporated. The optimization strategy
for locating extrema of (2.25) with respect to the motion parameters, a, is
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another aspect that the tracker designer can control and may depend on
the selected error metric. In previous subsections, this paper presented a
gradient-based approach for computing the parameter updates. Alternative
optimization methods may include simple “spotting” (i.e., exhaustive search)
approaches [14] or Newton-like techniques [17]. Finally, the particulars of
kernel placement and support can be specified by the designer.
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Chapter 3

Empirical results

This section presents example instantiations of the developed general region
tracker formulation to uncover advantages and disadvantages of including
varying amounts of spatial layout in the target representation. It should be
stressed that the current evaluation is not concerned with comparing a new
state-of-the-art tracker against other strong trackers, rather with the coverage
of a range of extant trackers. The instantiations considered in this evaluation
will be referred to in terms of their spatial resolution, which captures both
the spatial support over which local feature measurements are aggregated
and the number of kernels that are placed. Analogous to pyramid processing
nomenclature [27], resolution will be specified in terms of levels, Level 0
. . . Level L, where the former corresponds to a traditional template warping
tracker (single pixel impulse kernel at every point) and the latter is analogous
to a single kernel histogram tracker (kernel covers the entire target support).
Thus, the set of trackers considered encompasses systems that are comparable
to several standard algorithms in the literature, including mean shift [2]
(Level L), FragTrack [14] (0 < Level l < L), and template warping [23]
(Level 0).

In the evaluation, intermediate levels, 0 < Level l < L, are derived re-
cursively from Level 0 via factor of two reduction in the number of kernels
along both spatial axes with matched increase in aggregation using a Gaus-
sian kernel. While the framework set forth in the previous section allows for
arbitrary kernel placement and support, the factor of two variation provides
systematic exploration of the range between single kernel and template warp
tracking.

For all trackers in all experiments, a common set of parameters was em-
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Figure 3.1: Qualitative tracking comparisons. Frame numbers are shown
in the top left corner. Top-to-bottom by row are PETS2007, Tiger2, and
PageFlip. Boxes correspond to the tracker with a kernel at every pixel (red),
the Level 2 tracker, downsampled twice (green), and the single kernel tracker
(blue), respectively.

ployed. For multichannel features, 3D, xyt, spatiotemporal oriented ener-
gies derived from pointwise application of quadrature pair Gaussian second
derivative filters and their Hilbert transforms to full resolution imagery are
used [28], as they capture both spatial and temporal target characteristics
and have been shown to yield strong performance at both ends of the pro-
posed continuum [21]. The error function for evaluating target candidates
was taken as SSD. To optimize the error function, spotting, i.e., exhaustive
search over translation, was performed over a 7×7 pixel search grid, which is
roughly twice the maximum interframe displacement of a target in the videos
considered. Finally, a simple autoregressive template update mechanism is
employed in all trackers [29].

Three challenging video sequences are considered for evaluation; see Fig.
3.1. To initiate tracking in each video, an outline of the target was pro-
vided manually in the first frame. The first example, PETS2007 [30] (Fig.
3.1, top row), illustrates the challenge of tracking a single target (a person)
against similarly appearing background clutter (other people), including mu-
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tual occlusions. Here, it is seen that maintaining additional spatial layout
yields better performance, as tracking accuracy incrementally improves as
one moves from single kernel through an intermediate number of kernels to
a kernel at every pixel. These results can be explained by the fact that
the background clutter shares a very similar appearance to the target and
is often found in close proximity (even momentarily occluding the target);
thus, maintenance of increased amounts of distinguishing spatial informa-
tion yields corresponding success. The greater number of kernels provides
most improvement near the end of the sequence, when clutter is greatest.
The second example, Tiger2 [31] (Fig. 3.1, middle row), shows the challenge
of tracking a deforming object (toy tiger with articulating mouth) moving
rapidly amongst clutter (a plant). Here, it is seen that maintaining an in-
termediate number of kernels yields best performance. This result can be
explained by the single kernel instantiation still not maintaining a represen-
tation that is rich enough to distinguish the target from the clutter, while the
pixelwise version is not allowing for sufficient deformation. In contrast, the
intermediate representation provides a good tradeoff in these requirements.
The third example, PageFlip (Fig. 3.1, bottom row, author’s video), shows
the case of tracking through a radical appearance change, as a book translates
through the scene and a page flip occurs mid-way. In this situation, only the
single kernel case can track accurately through the page flip. By collapsing
the local feature measurements across target support, this tracker capitalizes
on the fact that while the local appearance of the target changes drastically,
its global attributes remain consistent: The open book remains character-
ized by a page of text and painting reproduction, even though they are not
identical. The other instantiations are too sensitive to local appearance to
succeed in the presence of this challenge.

A quantitative analysis of tracking performance was also completed using
ground truth target bounding boxes that were obtained by hand at a mini-
mum of every fifth frame for each video. To summarize the results, the center
of mass Euclidean pixel distance error was averaged across all frames for a
dense sampling of tracking levels, yielding the statistics in Table 3.1. These
results provide quantitative support for the qualitative trends that have been
described.

While these experiments are not meant to be exhaustive, they provide
evidence regarding the advantages and disadvantages of maintaining vari-
ous amounts of spatial layout information with respect to the challenges
present in the videos under analysis. These initial experiments support the
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Table 3.1: Summary of quantitative results for tracker instantiations. Values
listed are pixel distance errors for the center of mass points averaged over all
frames. Green and red show best and worst performance, resp. NA indicates
that given the target size, the single kernel case already has been achieved
at an earlier level.

Level 0 1 2 3 4 5 6 7

PETS2007 5.4 11.6 21.6 14.7 21.5 47.5 NA NA
Tiger2 43.7 20.5 19.5 21.0 26.5 NA NA NA
PageFlip 82.5 83.3 83.7 84.6 84.0 87.6 69.2 16.6

following observations regarding general performance trends: Maintenance
of maximally dense spatial representations provides a high degree of target
discriminability against clutter (e.g., PETS2007); however, this comes at the
price of being overly sensitive to target deformations that are better ignored
(e.g., Tiger2, PageFlip). Radical appearance changes (e.g., PageFlip) can
be dealt with best by maintaining only a coarse target layout. Moderate
degrees of deformation, especially in the presence of clutter (e.g., Tiger2) are
accommodated well by maintaining an intermediate amount of target lay-
out. The framework of Sec. 3 provides a systematic approach to exposing
and understanding the presented range of phenomena and can guide further
investigation.
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Chapter 4

Discussion

This paper has presented a unifying framework that creates a continuum of
region trackers spanning from single kernel histogram to template warping
systems. A detailed formal analysis has shown how this range of trackers
can be related in terms of the amount of maintained spatial organization
in their target representations and thereby highlights their commonalities
and differences. Leveraging this unifying framework, a systematic empirical
exploration of numerous trackers instantiated from this framework was per-
formed. This study revealed tradeoffs in tracking performance as the amount
of spatial organization information was varied.

Future research can exploit the proposed framework in a variety of ways.
From a theoretical perspective, it would be of interest to expand the frame-
work to encompass an even wider range of trackers (e.g., blob trackers) [1].
From a design perspective, it would be of interest to leverage the framework in
the development of novel, state-of-the-art algorithms (e.g., trackers that au-
tomatically choose an appropriate amount of spatial information to include,
based on the tracking task/data at hand). From an empirical perspective,
the framework can guide the development of experiments that appropriately
tax a range of operating points along the continuum of spatial organization.
More generally, the presented research provides twofold benefit to the field by
unifying a wide range of extant region trackers and providing a mechanism
for evaluating the importance of spatial layout in a particular tracking task
in a principled fashion.
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